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Abstract

The Good, the Bad, & the Ugly Face Challenge Problem was created to
encourage the development of algorithms that are robust to recognition across
changes that occur in still frontal faces. The Good, the Bad, & the Ugly
consists of three partitions. The Good partition contains pairs of images that
are considered easy to recognize. The base verification rate (VR) is 0.98 at a
false accept rate (FAR) of 0.001. The Bad partition contains pairs of images
of average difficulty to recognize. For the Bad partition, the VR is 0.80 at a
FAR of 0.001. The Ugly partition contains pairs of images considered difficult
to recognize, with a VR of 0.15 at a FAR of 0.001. The base performance is
from fusing the output of three of the top performers in the FRVT 2006. The
design of the Good, the Bad, & the Ugly controls for pose variation, subject
aging, and subject “recognizability.” Subject recognizability is controlled by
having the same number of images of each subject in every partition. This
implies that the differences in performance among the partitions are a result
of how a face is presented in each image.
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1. Introduction

Face recognition from still frontal images has made great strides over
the last twenty years. Over this period, error rates have decreased by three
orders of magnitude when recognizing frontal faces in still images taken with
consistent controlled illumination in an environment similar to a studio [1,
2,3, 4, 5, 6]. Under these conditions, error rates below 1% at a false accept
rate of 1 in 1000 were reported in the Face Recognition Vendor Test (FRVT)
2006 and the Multiple Biometric Evaluation (MBE) 2010 [4, 6].

With this success, the focus of research is shifting to recognizing faces
taken under less constrained conditions, which include greater variability
in pose, ambient lighting, expression, size of the face, and distance from
the camera. The trick in designing a face recognition challenge problem is
selecting the degree to which the constraints should be relaxed so that the
resulting problem has the appropriate difficulty. The complexity of this task
is compounded by the fact that it is not well understood how the above factors
affect performance. The problem cannot be too easy so that it is merely an
exercise in tuning existing algorithms, nor so difficult that progress cannot
be made—the three bears problems [2].

Traditionally, a challenge problem is specified by the two sets of images
that are to be compared. The difficulty of the problem is then characterized
by the performance of a set of algorithms tasked with matching the two
sets of face images. To create a problem with the desired level of difficulty,
the performance of a set of algorithms can be one component in the design
process. Others factors in the selection process include limiting the number
of images per person and requiring pairs of images of a person to be collected
on different days.

The Good, the Bad, and the Ugly (GBU) challenge problem consists of
three partitions called the Good, the Bad, and the Ugly. The difficulty of
each partition is based on the performance of three top performers in the
FRVT 2006. The Good partition consists of pairs of face images of the
same person that are easy to match; the Bad partition contains pairs of
face images of a person that have average matching difficulty; and the Ugly
partition concentrates on difficult to match face pairs. Nominal performance
on the GBU is based on fusing the results from three top performers in the
FRVT 2006. The Good partition has a verification rate (VR) of 0.98 at a
false accept rate (FAR) of 0.001. The Bad and Ugly partitions have VRs of
0.80 and 0.15 at FAR of 0.001, respectively. The performance range over the



three partitions is roughly an order of magnitude!.

There are numerous sources of variation, known and unknown, in face
images that can affect performance. Four of these factors were explicitly
controlled for in the design of the GBU challenge problem: subject aging,
pose, change in camera, and variations among faces. The data collection pro-
tocol eliminated or significantly reduced the impact of three of these factors.
Changes in the appearance of a face due to aging is not a factor because
all images were collected in the same academic year (9 month time span).
However, the data set contains the natural variations in a person’s appear-
ance that would occur over an academic year. Because all the images were
collected by the same model of camera, difference in performance cannot be
attributable to changes in the camera. Changes in pose are not a factor
because the data set consists of frontal face images.

One potential source of variability in performance is that people vary in
their “recognizability.” To control for this source of variability, there are face
images of each person in all three partitions. In addition, each partition has
the same number of images of each person. Because the partition design con-
trols for variation in the recognizability of faces, differences in performance
among the three partitions are a result of how the faces are presented.

The primary goal of the GBU face challenge problem is to focus attention
on the fundamental problem of comparing single frontal face images across
changes in appearance. There are numerous applications that require match-
ing single frontal images. Examples include recognition from face images on
mug shots, passports, drivers licenses, and US Government PIV Identity
cards. Additionally, there are numerous commercial and academic organiza-
tions that have developing algorithms specifically for this application area.
The structure of the GBU encourages algorithm development in these ap-
plication areas as well as supports both the development of new recognition
algorithms and experiments to identify factors that effect performance.

2. Generation of the Good, the Bad, & the Ugly Partitions

The GBU partitions were constructed from the Notre Dame multi-biometric
data set used in the FRVT 2006 [4]. The images for the partitions were se-

Unstructions for obtaining the complete GBU distribution can be found at
http://face.nist.gov. Instructions for obtaining the LRPCA algorithm can be found at
http://www.cs.colostate.edu/facerec.



lected from a superset of 9,307 images of 570 subjects. All the images in the
superset are frontal still face images collected either outside or with ambient
lighting in hallways. The images were acquired with a 6 Mega-pixel Nikon
D70 camera. All photos were taken in the 2004-2005 academic year (Aug
2004 through May 2005).

Each partition in the GBU is specified by two sets of images: a target
set and a query set. For each partition, an algorithm computes a similarity
score between all pairs of images in that partition’s target and query sets.
A similarity score is a measure of the similarity between two faces. Higher
similarity scores imply greater likelihood that the face images are of the
same person. If an algorithm reports a distance measure, then a smaller
distance measure implies greater likelihood that the face images are of the
same person. Distances are converted to similarity scores by multiplying by
negative one. The set of all similarity scores between a target and a query set
is called a similarity matrix. A pair of face images of the same person is called
a match pair, and a pair of face images of different people is called a non-
match pair. From the similarity matrix, receiver operating characteristics
(ROC) and other measures of performance can be computed.

To construct the GBU Challenge Problem we sought to specify target
and query sets for each of the three partitions such that recognition difficulty
would vary markedly while at the same time factors such as the individual
people involved or number of images per person remained the same. To gauge
the relative difficulty associated with recognizing a pair of images, similarity
scores were created by fusing scores from three of the top performing algo-
rithms in the FRVT 2006; this fusion process is described more fully in the
next section.

The following constraints were imposed when selecting the GBU parti-
tions:

Distinct Images: An image can only be in one target or query set.

Balanced subject counts: The number of images per person are the
same in all target and query sets.

Different days: The images in all match pairs were taken on different
days.
After applying these constraints, and given the total number of images avail-
able, the number of images per person in the target and query sets was
selected to fall between 1 and 4. This number depended upon the total
availability of images for each person.



The selection criteria for the partition results in the following properties.
An image is only in one partition. There are the same number of match face
pairs for each subject in each partition. There are the same number of non-
match pairs between any two subjects in each partition. This implies that any
difference in performance between the partitions is not a result of different
people. The difference in performance is a result of the different conditions
under which the images were acquired. Figures 1, 2, and 3, show examples
of matching face pairs (mated vertically) from each of the partitions.

The images included in the GBU target and query sets were decided in-
dependently for each person. For each subject 7, a subject-specific similarity
matrix S; is extracted from a larger matrix containing similarity scores from
the FRVT 2006 fusion algorithm. Each subject-specific matrix contained all
similarity scores between pairs of images of subject ¢. For the Good par-
tition, a greedy selection algorithm iteratively added match face pairs for
subject ¢ that maximized the average similarity score for subject i; for the
Ugly partition, match face pairs were selected to minimize the average sim-
ilarity score for subject i; and for the Bad partition, face pairs for subject
1 were selected to maintain an approximately average similarity score. The
selection process for each subject was repeated until the desired number of
images were selected for that subject. Since the images for each subject are
selected independently, the similarity score associated with a good face pair
can vary from subject to subject (similarly for the Bad and Ugly partitions).

Each of the GBU target and query sets contains 1,085 images for 437
distinct people. The distribution of image counts per person in the target
and query sets are 117 subjects with 1 image, 122 subjects with 2 images, 68
subjects with 3 images, and 130 subjects with 4 images. In each partition
there is 3,297 match face pairs and 1,173,928 non-match face pairs. In the
GBU image set 58% of the subjects are male and 42% female; 69% of the
subjects are Caucasian, 22% east Asian, 4% Hispanic, and the remaining
5% other groups; and 94% of the subjects are between 18 and 30 years old
with the remaining 6% over 30 years old. For the images in the GBU, the
average distance between the centers of the eyes is 175 pixels with a standard
deviation of 36 pixels.

3. The FRVT 2006 Fusion Performance

Performance results for the GBU Challenge Problem are reported for the
GBU FRVT 2006 fusion algorithm, which is a fusion of three of the top



Figure 1: Examples of face pairs of the same person from each of the partitions: (a) good,
(b) challenging, and (c) very challenging.



Figure 2: Examples of face pairs of the same person from each of the partitions: (a) good,
(b) challenging, and (c) very challenging.
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Figure 3: Examples of face pairs of the same person from each of the partitions: (a) good,
(b) challenging, and (c) very challenging.




performers in the FRVT 2006. The algorithms were fused in a two-step pro-
cess. First, for each algorithm the median and the median absolute deviation
(MAD) were estimated from every 1 in 1023 similarity scores (median; and
MADy, are the median and MAD for algorithm k). The median and MAD
were estimated from 1 in 1023 similarity scores to avoid over tuning the esti-
mates to the data. The similarity scores were selected to evenly sample the
images in the experiment?. Second, the fused similarity scores are the sum
of the individual algorithm similarity scores after the median has been sub-
tracted and then divided by the MAD. If s; is a similarity score for algorithm
k and sy is a fusion similarity score, then sy = ", (s, — mediany)/MADy, .

Figure 4 reports performance of the fusion algorithm on each of the par-
titions. Figure 5 shows the distribution of the match and non-matches for
the fusion algorithm on all three partitions. The non-match distribution is
stable across all three partitions. The match distribution shifts for each par-
tition. The Good partition shows the greatest difference between the median
of the match and non-match distributions and the Ugly partition shows least
difference.

4. Protocol

The protocol for the GBU Challenge Problem is one-to-one matching with
training, model selection, and tuning completed prior to computing perfor-
mance on the partitions. Consequently, under this protocol, the similarity
score s(t,q) between a target image ¢ and a query image ¢ does not in any
way depend on the other images in the target and query sets. Avoiding
hidden interactions between images other than the two being compared at
the moment provides the clearest picture of how algorithms perform. More
formally, any approach that redefines similarity s(t,q;7) such that it de-
pends upon the target (or query) image set 7 is NOT allowed in the GBU
Challenge Problem.

To maintain separation of training and test sets, an algorithm cannot be

2The parameters for the fusion formula were computed from a subset of the similarity
scores rather than on the complete set of similarity scores. This was done with the goal of
generating a fusion formula that would generalize to additional faces or algorithm data,
rather than being overly tuned to this particular dataset. In the algorithm evaluations
carried out by NIST, the commonly applied procedure is to combine data with a method
that has the ability to generalize.
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Figure 4: ROC for the Fusion algorithm on the Good, the Bad, & the Ugly partitions.
The verification rate for each partition at a FAR of 0.001 is highlighted by the vertical
line at FAR=0.001.

trained on images of any of the subjects in the GBU Challenge Problem. It is
important to note that there are images of the subjects in the GBU problem
that are in the FRGC and the MBGC data sets. These images must be
excluded from model selection, training, or tuning of an algorithm.

We illustrate acceptable and unacceptable training protocols with three
examples. The first example is the training of a principal components anal-
ysis (PCA) based face-recognition algorithm. In the algorithm, PCA is per-
formed on a training set to produce a set of Eigenfaces. A face is represented
by projecting a face image on the set of Eigenfaces. To meet the training
requirements of the protocol, images of subjects in the GBU must be ex-
cluded from the PCA decomposition that produces a set of Eigenfaces. The
benchmark algorithm in Section 5 includes a training set that satisfies the
training protocol.

A second example is taken from a common training procedure for linear
discriminant analysis (LDA) in which the algorithm is trained on the images
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Figure 5: Histogram of the match and non-match distributions for the Good, the Bad, &
the Ugly partitions. The green bars represent the match distribution and the yellow bars
represent the non-match distribution. The horizontal axes indicate relative frequency of
similarity scores.

in a target set. Generally, it is well known that the performance of algorithms
can improve with such training, but the resulting levels of performance typ-
ically do not generalize. For example, we’ve conducted experiments with
an LDA algorithm trained on the GBU target images and performance im-
proved over the baseline algorithm presented, see Section 5. However, when
we trained our LDA algorithm following the GBU protocol, performance did
not match the LDA algorithm trained on a GBU target set.

The GBU protocol does permit image specific representations as long
as the representation does not depend on other images of other subjects in
the GBU Challenge Problem. An example is an algorithm based on person-
specific PCA representations. In this example, during the geometric nor-
malization process, 20 slightly different normalized versions of the original
face would be created. A person-specific PCA representation is generated
from the set of 20 normalized face images. This method conforms with the
GBU training protocol because the 20 face images and the person specific
PCA representation are functions of the original single face image. When
there are multiple images of a person in a target or query set, this approach
will generate multiple image-specific representations. This training proce-
dure does not introduce any dependence upon other images in the target set
and consequently is permitted by the GBU protocol.

11
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5. Baseline Algorithm

The GBU Challenge Problem includes a baseline face recognition algo-
rithm as an entry point for researchers. The baseline serves two purposes.
First, it provides a working example of how to carry out the GBU experiments
following the protocol. This includes training, testing and evaluation using
ROC analysis. Second, it provides a performance standard for algorithms
applied to the GBU Challenge Problem.

The architecture of the baseline algorithm is a refined implementation of
the standard PCA-based face recognition algorithm, also known as Eigen-
faces [7][8]. These refinements considerably improve performance over a
standard PCA-based implementation. The refinements include represent-
ing a face by local regions, a self quotient normalization step, and weighting
eigenfeatures based on Fischer’s criterion. We refer to the GBU baseline
algorithm as local region PCA (LRPCA).

It may come as a surprise to many in the face recognition community
that a PCA-based algorithm was selected for the GBU benchmark algo-
rithm. However, when developing the LRPCA baseline algorithm, we ex-
plored numerous standard alternatives, including LDA-based algorithms and
algorithms combining Gabor based features with kernel methods and sup-
port vector machines. For performance across the full range of the GBU
Challenge Problem, our experiments with alternative architectures have not
resulted in overall performance better than the LRPCA baseline algorithm3.

5.1. A Step-by-step Algorithm Description

The algorithm’s first step is to extract a cropped and geometrically-
normalized face region from an original face image. The original image was
assumed to be a still image and the pose of the face is close to frontal. The
face region in the original is scaled, rotated, and cropped to a specified size
and the centers of the eyes are horizontally aligned and placed on standard
pixel locations. Scaling, rotating, and cropping of the face is based on the
centers of the eyes which were manually located®. In the baseline algorithm,
the face chip is 128 by 128 pixels with the centers of the eyes spaced 64

3This statement was accurate for the original submission to the IEEE Ninth Interna-
tional Conference on Automatic Face and Gesture Recognition 2011.

4The coordinates of the manually located centers of the eyes are made available to
researchers.

12



Figure 6: This figure shows the 14 local regions in the LRPCA algorithm. The fourteen
regions include the cropped face. The crop face has been geometrically normalized and
the self quotient procedure performed.

pixels apart. The baseline algorithm runs in two modes: partially and fully
automatic. In the partially automatic mode the coordinates of the centers of
the eyes are provided; in the fully automatic mode, the centers of the eyes
are located by the baseline algorithm.

In the LRPCA algorithm, the PCA representation is based on 14 local
regions. The 14 regions include the complete face chip. The 14 local regions
are cropped out of a normalized face image. Some of the local regions overlap,
see Figure 6. The local regions are centered relative to the average location
of the eyes, eyebrows, nose and mouth.

The next step normalizes the 14 face regions to attenuate variation in
illumination. First, self quotient normalization is independently applied to
each of the 14 regions [9]. The self quotient normalization procedure first
smoothes each region by convolving it with a two-dimensional Gaussian ker-
nel and then divides the original region by the smoothed region, see Figure 7.
In the final normalization step, the pixel values in each region are further ad-
justed to have a sample mean of zero and a sample standard deviation of
one.

During training, 14 distinct PCA subspaces are constructed, one for each
of the face regions. From each PCA decomposition, the 3rd through 252th

13
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Figure 7: This figure illustrates the computation of a self-quotient face image. The face
image to the left is a cropped and geometrically normalized image. The image in the
middle is the geometrically normalized image blurred by a Gaussian kernel. The image
on the left is a self-quotient image. This image is obtained by pixel-wise division of the
normalized image by the blurred image.

eigenvectors are retained to represent the face. The decision to use these
eigenvectors was based upon experiments on images similar to the images in
the GBU Challenge Problem. A region in a face is encoded by the 250 coeffi-
cients computed by projecting the region onto the region’s 250 eigenvectors.
A face is encoded by concatenating the the 250 coefficients for each of the 14
regions into a new vector of length 3500.

Each dimension in the PCA subspace is further scaled. First, the repre-
sentation is whitened by scaling each dimension to have a sample standard
deviation of one on the training set. Next, the weight on each dimension
is further adjusted based on Fisher’s criterion, which is the ratio of the be-
tween class variance and the within class variance (07/02). This weight is
computed based on the images in the training set emphasizes the dimensions
along which images of different people are spread apart and attenuates the
dimensions along which the average distance between images of the same
person and images of different people are roughly the same.

During the recognition process, images are first processed as described
above and then projected into the 14 distinct PCA subspaces associated with
each of the 14 regions. The coordinates of images projected into these spaces,
250 for each of the 14 regions, are then concatenated into a single feature
vector representing the appearance of that face. This produces one vector
per face image; each vector contains 3,500 values. The baseline algorithm
measures similarity between pairs of faces by computing the Pearson’s cor-
relation coefficient between pairs of these vectors. The performance of the
baseline algorithm on the GBU Challenge Problem is summarized in Fig-
ure 8. A comparison of performance of the Fusion and the LRPCA-baseline
algorithm is given in Table 1.

A recent area of interest in face recognition and biometrics is recognition

14
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Figure 8: ROC for the LRPCA baseline algorithm on the GBU partitions. The verification
rate for each partition at a FAR of 0.001 is highlighted by the vertical line at FAR=0.001.
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Figure 9: ROC for the LRPCA-ocular baseline algorithm on the Good, the Bad, & the
Ugly partitions. In (a) performance is for the left ocular region that consists of the left
eye and two left eye-brow regions; performance in (b) is for corresponding right ocular
regions. The verification rate for each partition at a FAR of 0.001 is highlighted by the
vertical lines at FAR=0.001.

from the ocular region of the face. There is interest in recognition from both
near infrared and visible imagery. The region-based design of the LRPCA
algorithm allows for baselining ocular performance on the GBU partitions.
Baseline performance for the left ocular is computed from three of the 14
regions. The regions are the left eye and two left eye brow regions. For the
right ocular region, performance is computed from the right eye and two right
eye brow regions. Here left and right are defined in respect to the subject
where the left ocular region corresponds to a subject left eye. Performance
for the LRPCA-ocular baseline for the left and right ocular regions is given
in Figure 9.

A summary of performance of the Fusion, the LRPCA-face baseline and
the LRPCA-ocular baseline algorithms are given in Table 1.

6. Analysis

The goals of the GBU includes understanding the properties of face recog-
nition algorithms. One aspect is understanding and characterizing the factors

16



Table 1: Performance of the Fusion, the LRPCA-face baseline, and the LRPCA-ocular
baseline algorithms. For the ocular baseline, performance is given for both the left and
the right ocular regions. The verification rates at a FAR = 0.001 are given.

LRPCA-ocular
Partition Fusion LRPCA-face left right

Good 0.98 0.64 0.47 0.46
Bad 0.80 0.24 0.16 0.17
Ugly 0.15 0.07 0.05 0.05

that affect performance.

6.1. Limits of Fxpression and Lighting Effects

A common assumption in the face recognition community is that the
primary factors affecting performance are aging, pose, illumination and ex-
pression (A-PIE). Here we show that this assumption does not apply to the
GBU. Aging, which refers to the elapsed time between two face images of
a person, is not a factor because all the images in the GBU were collected
with a nine month time span. Additionally, all images in the GBU nominally
have a frontal pose and therefore it is assumed pose is not a factor. There
are a few images in the GBU that are clearly not frontal, but the number is
sufficiently small that it does not account for the difference in performance
among the three partitions.

Of the four A-PIE factors, the GBU contains significant variations in
illumination and expression. Both these factors can have a significant impact
on performance.

In a meta-analysis on the effect of covariates on face recognition perfor-
mance, changes in expressions was identified as a factor that consistently
impacted performance [10]. For expression, the data collection protocol re-
quested that subjects present neutral and smiling expressions. Face image
pairs are categorized as having the same expression when the two images are
labeled smiling or two images are labeled neutral. Similarly, pairs labeled
as different expressions when one image is labeled smiling and the other is
labeled neutral.

Lighting is one factor affecting face recognition performance and has been
extensively studied [11]. According to the spherical harmonic theory [12],

17



99% of the reflected energy can be captured by the first nine spherical har-
monics. An image can therefore be relighted based on a set of lighting images.
Sim and Kanade [13] applied a Bayesian model and a kernel regression tech-
nique to synthesize new images for different illuminations. This work was
extended to estimate the illumination directions in facial imagery [14]. The
output of this analysis was the dominant lighting direction. For this study,
lighting direction was estimate by the method of Beveridge et al [14]. The
lighting direction was quantized to frontal, right, left or from behind. For the
analysis in this section, a pair of face images has the same lighting if both
images had the same lighting direction; otherwise, the face pair had different
lighting.

To assess the impact of change in expression and lighting direction, all
match face pairs are given one of labels: 1) same lighting, same expression; 2)
same lighting, different expression; 3) different lighting, same expression; and
4) different lighting, different expression. Figure 10 summarizes the results
of this analysis. In Figure 10 there is a bar for each partition, and each bar
consists of four color coded rectangles. Each of the rectangles corresponds
to one of the four labels regarding the status of change in expression and
lighting direction. The length of the rectangles is proportional to the number
match face pairs with the corresponding label. For the Good partition, there
are 1641 face pairs with the same lighting and same expression, 343 face
pairs with different lighting and different expression. Also reported for each
change in expression and lighting condition, is the verification rate at a FAR
of 1/1000. The easiest case is same lighting and same expression for the
Good partition with a verification rate of 99.5%. The most difficult case
is different lighting and different expression for the Ugly partition with a
verification rate of 7.6%.

The Good partition contained the most number of same lighting, different
expression match face pairs, followed by the Bad and then the Ugly parti-
tions. Similarly, the Ugly partition contained the most number of different
lighting, different expression match pairs, followed by the Bad and then the
Good partitions.

For the Good partition, the verification rate at a FAR of 1/1000 for all
four cases is better than all cases in the Bad partition. Similarly, performance
on all cases for the Bad partition is better than all cases on the Ugly partition.
If changes in lighting or expression was the source of a large percentage of
the difference in performance among the three partitions, then there would
not be the observed stratification of performance.

18



|:| Same Lighting, Same Expression D Different Lighting, Same Expression

D Same Lighting, Different Expression D Different Lighting, Different Expression
99.5% 98.3% 98.6% 95.9%
Good
1641 823 490 343
B 85.6% 77.9% 76.5% 65.2%
ad
570 959 690 1078
37.6% 19.6% 16.1% 7.6%
Ugly
311 807 604 1575

Figure 10: Effect of expression and lighting over the GBU partitions. Each bin shows the
verification rate at 1/1000 FAR and the total number of match pairs.

The results in this section suggest that there exist other factors that sig-
nificantly effect performance. Currently these factors have not been identified
and the GBU challenge problem provides a basis for identifying these factors.

6.2. Zoo Analysis

One of the open questions in face recognition is “are some faces harder or
easier to recognize than other faces?” This question implicitly implies that
faces are ordered from hardest to easiest to recognize. If there is an ordering
to the recognizability of faces, then the order should be stable over imaging
conditions. Because there are the same number of images of each person in
each the GBU partitions, the GBU is amenable to examining the relative
difficulty of faces across imaging conditions.

Characterizing the ease or difficulty of recognizing a person from their
face, or more generally from any biometric, is referred to as the biometric
zoo problem. Zoo analysis falls into two basic classes. The first looks at the
“most” and “least” difficult to recognize faces—the extremes of the distribu-
tion [15],[16],[17]. The second looks at the relative ranks of all the faces in a

19



Table 2: Spearman’s correlation coefficients for zoo analysis

Median match scores Median non-match scores

Good—-Bad 0.39 0.38
Bad-Ugly 0.46 0.11
Good-Ugly 0.32 0.03

data set [18], [19]. We chose to follow the second method.

Our analysis is based on two measures of face difficulty. The first is the
median match score of a subject. The second is the median non-match scores
of a subject. The degree of consistency in recognizability of the faces in the
GBU among the partitions is measured by Spearman’s correlation coefficient.

For a partition, the median match score for subject k is the median of all
the match similarity scores where both the target and query are images of
subject k. Likewise, the median non-match score for subject k is median of
all non-match similarity scores where either the target or query image is an
image of subject k.

Figure 11 plots the correlation between the median subject match and
non-match scores among the three partitions. Table 2 reports Spearman’s
correlation coefficient corresponding to the scatterplots in Figures 11.

For the median match scores, correlation varies from 0.32 to 0.46. This
shows some degree of similarity in the relative ranking among the partitions
for the median match scores. For the median non-match scores, correlation
varies from 0.03 to 0.38. The 0.03 coefficient is between the Good and Ugly
partitions, which is essentially random. The median non-match scores effects
the ability of a person to be consistently impersonated. This result suggests
that the ease with which a person can be impersonated varies with image
acquisition conditions.

7. Discussion and Conclusion

This paper introduces the Good, the Bad, & the Ugly Challenge Problem.
The main goal of the challenge is to encourage the development of robust
algorithms for recognizing frontal faces taken outside of studio style image
collections. The three partitions in the GBU Challenge Problem emphasize
the range of performance that is possible when comparing faces photographed

20
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Figure 11: Scatterplots of median subject match scores and median subject non-match
scores. Each dot corresponds to a subject. The blue vertical line marks the median
subject match (non-match) scores for the horizontal axis. The red horizontal line marks
the median subject match (non-match) scores for the vertical axis. (a) Compares median
subject match and non-match between the Good and Bad partitions; (b) compares median
subject match and non-match between the Bad and Ugly partitions; and (¢) compares
median subject match and non-match between the Good and Ugly partitions.
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under these conditions. This structure allows for researchers to concentrate
on the “hard” aspects of the problem while not compromising performance
on the “easier” aspects.

Partitioning the challenge by levels of difficulty is the most prominent
feature of the GBU Challenge Problem design. Another is controlling for the
“recognizability” of people by selecting images of the same 437 people for
inclusion in each of the GBU partitions. The data in the three partitions is
further balanced so as to ensure that for each person the number of target
and query images in each partition is the same. The design of the GBU Chal-
lenge Problem means that any difference in performance observed between
partitions cannot be attributed to differences between people or numbers of
images for individual people.

The unique design of the GBU Challenge Problem allows researchers to
investigate factors that influence the performance of algorithms. O’Toole et
al. [20],[21] looked at the demographic effects on the nonmatch distribution.
Beveridge et al. [22] showed that the quality of face images comes in pairs.
Quality comes in pairs was shown by the existence of contrary face image: im-
ages that have a contrary nature because they simultaneously have high and
low quality. Additional possible lines of investigation include understanding
the factors that characterize the difference in match face pairs across the
partitions. Our results show that changes in expression and lighting direc-
tion do not characterize the majority of the variation across the partitions.
A second line of research is characterizing the recognizability of a face; e.g.,
the biometric zoo. Our zoo experiments suggest that recognizability is not
stable across the partitions. A third line of research is developing methods
for predicting performance of face recognition algorithms. The design of the
GBU Challenge Problem encourages both the development of algorithms and
the investigation of methods for understanding algorithm performance.
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