
LDPC for QKD Reconciliation
*

Alan Mink and Anastase Nakassis

Information Technology Laboratory, National Institute of Standards and Technology,

 100 Bureau Dr., Gaithersburg, MD 20899

amink@nist.gov, anakassis@nist.gov

Abstract

We present the Low Density Parity Check (LDPC) forward error correction algorithm adapted for the

Quantum Key Distribution (QKD) protocol in a form readily applied by developers. A sparse parity

check matrix is required for the LDPC algorithm and we suggest using some that have been defined by

the IEEE and ETSI standards organizations for use in various communication protocols. We evaluate the

QKD performance of these various parity check matrices as a function of the quantum bit error rate. We

also discuss the computational precision required for this LPDC algorithm. As QKD evolves towards

deployment, complete algorithm descriptions and performance analysis, as we present, will be required.

1. Introduction

The Quantum Key Distribution (QKD) protocol [BEN84] uses an unsecured quantum channel and an

unsecured, but integrity protected classical channel to establish a shared secret between two parties,

Alice and Bob, at the two ends of the channels. There are four stages to the QKD protocol. Stage 1 is

where the transmission of encoded single photons occurs over the lossy quantum channel and the

photons’ value is measured. Stage 2 is where Alice and Bob exchange information over the classical

channel to “sift” their bit sequences to achieve a common sequence to work with, but that sequence may

have errors. Stage 3 is where Alice and Bob exchange information over the classical channel to

reconcile, correct errors, between their bit sequences without exposing the value of their bits. Stage 4 is

where Alice and Bob privacy amplify their now identical bit sequences through the application of a hash

function that does not require any communication, yielding a shared secret between Alice and Bob.

 We are focusing on the third stage of this protocol, the Reconciliation stage, where a rough secret (a

sequence of bits called the sifted bits) has been established at both Alice and Bob but there are some

errors in Bob’s sequences of bits, although their number and order are the same as Alice’s bits. The error

rate within these sequences is called the quantum bit error rate (QBER) and must be less than 11% to

provide the desired information theoretical security. High levels, as well as significant changes, in the

QBER indicate potential eavesdropping. A Reconciliation algorithm to correct Bob’s bits must do so

indirectly, without exposing those secret bit values. Any Reconciliation algorithm will, however,

indirectly expose some information about those secret bit values. The original photon stream of

randomly encoded quantum states is transmitted over the lossy quantum channel during the first stage of

the QKD protocol, while the Reconciliation stage uses the reliable classical channel.

*
 The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of

Standards and Technology. Any software code/algorithm is expressly provided “AS IS.” NIST makes no warranty of any kind, express,

implied, in fact or arising by operation of law, including, without limitation, the implied warranty of merchantability, fitness for a

particular purpose, non-infringement and data accuracy.

The Low Density Parity Check (LDPC) forward error correction algorithm was initially proposed by

Gallager [GAL68]. It became popular in the early 2000s for data communications and was first applied

to the Quantum Key Distribution (QKD) protocol by BBN [ELL05]. The main benefits of using LDPC

for QKD are that only a single round trip communication is required and the amount of information that

might be exposed to an eavesdropper is more easily computed compared to the Cascade [BRA94] error

correction algorithm, initially used for QKD, that requires a number of round trip communications. On

the other hand, from our implementations, Cascade requires about 1 to 2 bytes of memory per bit of data

to be corrected, whereas LDPC requires about 20 to 30 bytes of memory – an order of magnitude larger.

This only accounts for required memory bits, not the larger amount actually allocated due to the

fragmentation of minimum allocation units. For example, 18 bit values on a PC would be allocated in

units of 32-bits, ~75% additional overhead, and in FPGA hardware, 1000 10-bit entries would be

allocated as a block of 1024 by 18-bits, ~85% additional overhead. For our FPGA implementations

[MIN07], Cascade’s processing rate, ~5 Mbits/s, is also faster than LDPC’s, between ~2 Mbits/s (for

large dataset sizes, ~50K) and 4 Mbits/s (for small dataset sizes, ~2K), but the communication delays are

negligible for these measurements. As the distance between Alice and Bob increases, communication

delays will have a greater impact on Cascade’s performance and thus favor LDPC. But even at 100 km,

Cascade’s performance only drops to ~3 Mbits/s because of its large computational granularity while

LDPC’s performance drops to ~1.5 Mbits/s for the small dataset size but stays approximately the same

at about 2 Mbits/s for the large dataset size. These are per-thread execution rates and would linearly

scale with parallel instantiations, but in hardware the number of threads is limited by available memory.

We discuss how the QKD environment differs from a classical communication channel environment and

its impact on error correction. Nakassis [NAK12] has developed efficient versions of the LDPC

algorithms that can use fast table lookups rather than execute more time consuming mathematical

functions. The trade-off is the accuracy required by these tables, which in turn translates to the size of

those tables. We present a version of that algorithm in a form readily applied by developers.

Furthermore, a major consideration in applying LDPC is how to build an appropriate parity check

matrix. We propose the adoption of matrices already in use by some existing communication standards

groups. Through an implementation of this LDPC algorithm, we evaluate the error correction

performance of a number of these matrices as well as the precision of these lookup tables necessary to

drive them and some heuristics that enhance their performance. As QKD evolves towards deployment,

complete algorithm descriptions and performance analysis, as we present here, will be required.

2. Classical vs. QKD Environment for LDPC

In the classical communication environment a sequence of data bits, x={x0, x1, … , xn-1}, is sent over an

error prone channel resulting in a received sequence of data bits, y={y0, y1, … , yn-1}. Any differences

between x and y are errors. LDPC applied to such an environment adds an additional sequence of parity

bits, s={s0, s1, … , sm-1}, that is also sent over the same error prone channel. It is used to determine errors

and help correct them. The transmission is the k-bit (k=n+m) sequence, I={x0, x1, … , xn-1, s0, s1, … , sm-

1}, that is the concatenation of x and s. The received sequence is J={y0, y1, … , yn-1, t0, t1, … , tm-1},

where { t0, t1, … , tm-1} is the sequence of the received parity bits. Any differences between I and J are

errors. Sender and receiver use the same predefined m-row by k-column sparse parity check matrix, M,

such that

[0] = [M] x [I]
T
 = [M1 M2] x [x s]

T

where [I]
T
 is the transpose of [I]

T
, all arithmetic is modulo base 2 (i.e., additions are the same as

XORs), [0]={00, 01, … , 0m-1} (i.e., all zero elements), M2 is an m x m matrix that allows easy

computation of the parity bits so that the matrix multiplication results in [0] (thus doesn’t need to be sent

to the receiver) and M1 is an m-row by n-column parity check matrix. The matrix M doesn’t change for

each new data sequence, but the parity bits, s, must be recomputed for each new data sequence.

When the receiver gets its copy of the parity bits, t, the receiver performs a similar computation:

[0] = [M] x [J]
T
 = [M1 M2] x [y t]

T

If the result isn’t [0], then there are errors in J, and the belief propagation part of the LDPC algorithm is

iteratively applied to revise J until it converges (i.e., the results are [0]) or the maximum number of

iterations is reached.

In classical wireless communications, the expected average error rate is ~10
-3

 or less. The success or

failure of the error correction may or may not be sent back to the transmitter. If LDPC fails, then

additional forward error correction codes as well as retransmission are always an option.

In a QKD environment a sequence of qbits is sent over an error prone quantum channel in stage one of

the QKD protocol, but only a small number of those bits are received. In stage two of the QKD protocol,

only appropriately measured qbits received by Bob are “sifted” and retained by both Bob and Alice.

This results in a similar condition to classical communications, where Alice has a bit sequence x={x0,

x1, … , xn-1} and Bob has a bit sequence y={y0, y1, … , yn-1}. Any differences between x and y are

errors. Because LDPC in QKD uses a reliable classical channel there is no need for the extra parity bits,

s, used in the classical case, resulting in a more streamlined approach as follows:

[CS] = [M1] x [x]
T

But the resulting [CS], also called a checksum vector, is now a non-zero m-bit vector. So Alice sends

[CS] to Bob over the reliable classical channel, which is received error free. Bob computes:

[DS] = [M1] x [y]
T

and compares the two. If [CS] ≠ [DS], then there are errors in y, and the belief propagation part of the

LDPC algorithm is iteratively applied to correct y until it converges (i.e., the results are [CS] = [DS]) or

the maximum number of iterations is reached.

The average QKD QBER is between 10
-2

 and 10
-1

, much larger than the classical communication cases.

A QBER above 11% would result in discarding both x and y since security could no longer be relied

upon. The success or failure of the error correction is always sent back to Alice. If LDPC fails,

additional forward error correction codes or retransmission are never options, due to concerns of

exposing too much information about x and y. Instead, both x and y are discarded.

3. Matrices & Tables

One problem in applying LDPC is building the matrix, [M1]. The basic guidelines are that each row

defines a single checksum, and usually contains somewhere between 5 and 20 “1”s while the rest of the

elements of that row are “0”s. Each column represents a bit and indicates which checksums that bit

participates in, and usually contains somewhere between 3 and 13 “1”s while the rest of the elements of

that column are “0”s. Since the columns number in the thousands to tens of thousands and the number of

rows is between 20% and 70% of the number of columns, we see that such matrices are indeed sparse. If

the number of “1”s in each row is r and the number of “1”s in each column is c (r and c can be

different), then the matrix is referred to as being regular. If r is different for different rows and/or c is

different for different columns, then the matrix is referred to as irregular. Irregular matrices have been

shown to provide better error correction performance than regular matrices [RIC01]. As the error rate

increases, the “1”s per row decrease, resulting in smaller checksums (i.e., fewer bits per checksum) but

more of them (i.e., more rows).

A number of papers [LEI05, SHO03] suggest a randomly generated matrix performs well. Others have

noted that the occurrence of “cycles” in a matrix structure can affect the convergence of the algorithm.

Although cycles cannot be eliminated in such matrices, their length can be maximized thus reducing

their effects. One would also assume that properties of the channel errors could also have an effect on

the selection of an optimum matrix. We have focused on matrices from some standards groups that

apply LDPC and have published their family of acceptable matrices, such as the IEEE 802.11n Std

[11n09], IEEE 802.16e Std [16e05] and ETSI DVB Std [DVB09]. These matrices have a systematic

structure that allows a compact description for their generation. Alternatively we can follow construction

guidelines presented by others [MAC99, KIM09]. In a section below, using selected matrices from each

of these standards, we evaluated their error correction performance for QKD applications as a function

of the QBER.

To compute the likelihood values in the belief propagation algorithm, we can do the floating point

computations on demand or to save time we can map these values onto integers and prebuild a lookup

table that would simplify the computations. This would result in faster execution times and would be

attractive for hardware environments where arithmetic function support may be limited. We found a 1K

size table of 10-bit entries (10-bit precision) adequate for many situations, but not all. A 2K size table of

11-bit entries (11-bit precision) yielded better results, but a 4K size table of 12-bit entries (12-bit

precision), worked well for all our test cases. We define the following profiles, one for each of these

different size tables:

Profile 1 yields a ~1K table of 10 bit entries: Na=175, Ma=1023, Nf=173, Mf=1013.

Profile 2 yields a ~2K table of 11 bit entries: Na=312, Ma=2009, Nf=313, Mf=2009.

Profile 3 yields a ~4K table f 12 bit entries: Na=555, Ma=3893, Nf=556, Mf=3896.

Our algorithm uses natural logarithms to further simplify the computations to additions and subtractions

and requires two lookup tables, an “a2f” and an “f2a” table. They were constructed from the pseudo

code in Fig 1, using constants defined in the profiles above.

 for (i=1; i<=Ma; i++) for (i=1; i<=Mf; i++)

 { a = exp(-i/Na); { f = exp(i/Nf); // raise to the power of e

 f = (1+a)/(1-a); a = (f-1)/(f+1);

 z = ln(f); z = -ln(a); // natural logarithm

 j = (int) (Nf*z+0.5); j = (int) (Na*z+0.5); // map to integer range

 if (j<=0) j=1; if (j<=0) j=1; // keep in range limits

 if (j>Mf) j=Mf; if (j>Ma) j=Ma;

 a2f[i] = j; f2a[i] = j; // load value into table

 } }

Fig 1. Pseudo code for the construction of the LDPC “a2f” & “f2a” lookup tables.

The initial likelihood values needed for the algorithm can also be pre-computed and stored in a pair of

small tables of a dozen entries each. They can be constructed from the following equations:

 F_init = Nf * ln((1-p)/p); // initial F likelihood

 A_init = -Na * ln((1-2*p)); // initial A likelihood

where Na and Nf are taken from the profiles above and used to map these decimal values to the integer

precision desired, p is the estimated QBER, 0.01≤ QBER≤ 0.12. We always round the QBER up to the

next multiple of 0.01 (e.g., a QBER of 2.1% is rounded to 3%). As an example, using profile 1 we

obtain the likelihood initialization tables (in hexadecimal notation) shown in Table 1.

a_init_list[1:12] = { f_init_list[1:12] = {

 0x0004, // 1% QBER 0x0316, // 1% QBER

 0x0007, // 2% 0x02A1, // 2%

 0x000B, // 3% 0x0259, // 3%

 0x000F, // 4% 0x0226, // 4%

 0x0012, // 5% 0x01FD, // 5%

 0x0016, // 6% 0x01DC, // 6%

 0x001A // 7% 0x01C0, // 7%

 0x001F, // 8% 0x01A7, // 8%

 0x0023, // 9% 0x0190, // 9%

 0x0027, // 10% 0x017C, // 10%

 0x002B, // 11% 0x016A, // 11%

 0x0030 // 12% 0x0159 // 12%

}; };

Table 1. Example (using profile 1, 10-bit precision) of initial likelihood value lookup tables.

4. LDPC Belief Propagation Algorithm

A complete pseudo code description of our version of the LDPC algorithm, including belief propagation,

is presented in Fig 3. It is fashioned from the logarithm-based algorithm presented by Nakassis

[NAK12]. We define the following information and data structures used in this algorithm:

 y[1:n] - a list of Bob’s original info bits

 y1[1:n] - a list of Bob’s corrected info bits

 c[1:m] - a list of Alice’s checksum values

 b[1:m] - a list of Bob’s original checksum values

 d[1:m] - c XOR b, XOR of Alice & Bob’s checksum values

 cs_list[1:k] - a list of checksum info (the sparse matrix info) as follows:

 cs_list [i].bit# - the i-th participating bit number

 cs_list [i].LL_ptr - a pointer to the associated LL_reg

 LL_reg[1;k] - a list of the Likelihood registers

where k is the number of non-empty entries in the sparse matrix. If the matrix is regular (all checksums

contain the same number of bits and each bit participates in the same number of checksums), then k =

(bits/checksum * m). If the matrix is irregular (variable checksum lengths and/or bits participating in a

variable number of checksums), then one must compute the value of k by summing the number of bits in

each checksum. In addition to these data lists, we also need mappings showing the start and end of each

checksum in the cs_list list as well as a mapping showing the start and end of each bit’s likelihood

register group in the LL_reg list, see Fig 2. The cs_list defines each checksum, the participating bit

numbers and its associated likelihood register, and is ordered by checksum. The i-th entry of the

cs_index list points to the start of the i-th checksum definition. The LL_reg list contains the likelihood

values and is ordered by bit number. The i-th entry of the LL_index list points to the start of the i-th bit

likelihood register group.

cs_index[j] - ptr to the start of the j-th chksum (j=1, … , m+1), where cs_index[m+1]=k+1

LL_index[i] - ptr to the start of the LL_reg group for the i-th info bit (i=1, … , n+1)), where

LL_index [n+1]=k+1

Figure 2. A diagram of the LDPC data mapping lists.

5. Performance, Precision & Heuristics

Performance for LDPC is commonly presented in the form of “waterfall graphs” that plot correctable

error rates vs. signal-to-noise ratio (SNR). This is mainly done because classical communication uses

various encoding schemes that map differently to the bit error rate. For QKD performance, a more useful

presentation is a table showing correctability vs. quantum bit error rate (QBER). For our analysis we

selected the largest matrices from the IEEE 802.11n Std [11n09] (z=81), IEEE 802.16e Std [16e05]

(z=96), and ETSI DVB Std [DVB09] (FECFRAME=64800). The matrices are summarized in Table 2,

which shows their code rates, the number of information bits, the number of checksum bits and the

expected limits of their correction based on the QBER (i.e., the first entry in the table is expected to

successfully correct data that has up to ~2% QBER based purely on entropy calculations). For a rough

estimate of correctability, we estimated that rate ratio should exceed the entropy, H, by about 30%,

1.3*H < (1-rate)/rate, where H = -(p*log2p+(1-p)*log2(1-p)), p=QBER and rate is the rate of the LDPC

matrix. For each of our measurements we ran 1000 different samples. For each sample, we generated

random bits for Alice from the standard C pseudo random number generator (PRNG) that uses a uniform

distribution. To generate Bob’s information bits, we randomly flipped some of Alice’s bits, based on the

QBER and using the same PRNG. Thus the actual error rate of any sample varies about a mean whose

value is the QBER.

To establish a baseline for the performance of these matrices, we used a version of the algorithm

presented above in which we employed double precision floating point variables and arithmetic instead

of our integer mappings and replaced the table lookups with direct calculations (i.e., we used code

similar to the first 3 lines of the of the pseudo code in Fig 1, rather that the “a2f” & “f2a” tables). This

implementation, running on a PCs in the C programming language, was about an order of magnitude

slower than our lookup table version on the same PC also in C. The results are shown in Table 3. Zero

failure entries in the table indicates that all correction attempts were successful for the 1000 samples

used in these test, but it doesn’t mean that it can correct all possible error sequences for the QBER.

There are some sequences that aren’t correctable by this technique, but they would be a small number.

As the “waterfall” graphs in other LDPC papers show, the resultant error rate, after correction, decreases

exponentially as the signal-to-noise ratio increases (QBER decreases) but doesn’t go to zero.

As we scan Table 3 from left to right, we see that the failures go from low to high. So this format makes

it easy to determine at what QBER a given matrix begins to fail and how different matrices of the same

rate provide different correction performance. In these experiments, the ETSI matrices outperform the

IEEE matrices. For example, the ETSI 5/6 rate matrix corrects up to a QBER of 2% with very low

failure rate, while the IEEE 5/6 rate matrices has a low failure rate at a 1% QBER, but incurs about a

40% failure rate at a QBER of 2% . We believe this is due to the ETSI matrices having a larger dataset

than the IEEE matrices, more than an order of magnitude larger. This allows more separation of

information bits in checksums, what is referred to as larger cycles [LEC10]. Also the ETSI matrices

have a sharper failure drop-off (i.e., going from one QBER value to the next results in complete failure)

whereas the IEEE matrices seem to drop-off more slowly, over a number of QBER values.

For our table lookup implementation, we investigated a number of table sizes. The prime candidates

were 1K and 4K size tables. For hardware implementations where memory space is limited, using 1K

lookup tables is desirable, but that limits precision to 10 bits. For example, FPGAs tend to have limited

memory space (~10 Mbits) compared to PCs (~100 Gbits), and some FPGAs allocate that space in 1K

blocks of a number of bits per entry (e.g., 1Kx18 bits). Others [KIE05] have suggested 6 bit precision is

sufficient to attain correction performance within 0.1 dB of the Shannon limit. As we can see from

comparing the results of Table 5 against Table 3, 10-bit precision doesn’t correct as well as double

precision, especially for the higher 5/6 rate matrix. However, 10 bit precision does as well as the double

precision version for the lower rate (2/3 and 3/5) matrices. Increasing the size of the lookup tables to 4K,

resulting in 12-bit precision, generally improves the high rate matrices results, especially for the ETSI

matrices. This can be seen from Table 4. Our assumption is that these are cases where the tables couldn’t

differentiate between a number of adjacent entries due to precision limitations (i.e., when the likelihood

values were low). Furthermore, using 12-bit precision helps the correction algorithm to converge faster,

as can be seen in Tables 8-10. Tables 8-10 are grouped by matrix rate and show two values in each table

entry. The first value is the number of failures (shown in Tables 3-7) and the second entry is the average

number of iterations required for the algorithm to converge. Using 11-bit precision (2K tables) does

better than 10-bit precision but not as well as 12-bit precision. Increasing precision, beyond 10-bits, does

not have any significant effect on the correction performance for the lower rate (2/3 and 3/5) matrices.

We have explored a number of heuristics in an attempt to increase the performance of these algorithms

using these matrices. We found a simple technique that greatly increases the error correction

performance for high rate matrices. Simply employ a high estimate of the QBER parameter, which is

used to initialize and compute the likelihood values. For instance, we add 2 or 3 to the QBER, so when

the QBER is ~1%, we use an estimate of 4%. We can see the results of this heuristic in Tables 8-10, in

the config lines labeled with a ”+%” (i.e., 1K+% and 4K+%). For example, 1K+% indicates 1K lookup

tables with an increased QBER estimate. This heuristic allows the use of 1K tables for the ETSI 5/6 rate

matrix at 1% QBER and avoids moving to the 3/4 rate matrix for 1% QBER. Using the 3/4 rate matrix

yielding less secure bits per reconciliation. Using this heuristic for the higher rate matrices also results in

slightly faster convergence, thus increased speed performance of the algorithm. Unfortunately using this

heuristic with lower rate matrices can give slightly worse performance at the QBER where the matrix

begins to fail, but shows no effect in the QBER region where the matrix operates well. For example, the

IEEE 11n 2/3 rate matrix at 7% QBER.

Another heuristic we investigated was to monitor the number of checksum errors, cs_err, looking for

that number to become small (cs_err <10) and stop changing for some consecutive iterations (>2). We

interpreted that to indicate additional iterations may not be able to achieve convergence due to problems

with the belief propagation deciding between only a few bits. Our assumption was that the belief

propagation wasn’t strong enough to push the values of those few bits over the decision threshold.

When this situation occurred, we searched for the smallest, non-negative f_tot values and save them

along with the bit numbers they were associated with. For these small number of checksum errors, there

are usually only 2 or 3 possible number of bit errors for each checksum error. For example, 9 checksum

errors usually implies either 5 or 7 bit errors. So we first take the 5 lowest, non-negative f_tot values and

flip the values of the 5 data bits associated with them and see if that will result in convergence (i.e., [CS]

= [DS]). If that fails, we then do the same for the next 2 lowest, non-negative f_tot values and flip the

values of the 2 bits associated with them and see if that will result in convergence. If convergence

occurs, we successfully terminate, otherwise we terminate in failure. When this condition occurs, we

have seen this heuristic work about 50% to 90% of the time. A further benefit of this heuristic is that it

avoids useless iterations that will lead to failure and sometimes it also intercepts instances that will

successfully converge in a few more iterations, but converges early with this heuristic. Unfortunately the

overall effect is negligible, since this condition occurs infrequently, except for when the QBER is at or

near its failure limit and in those cases it tends to work less consistently.

6. Summary/Conclusion

We have presented a description of the LDPC forward error correction algorithm adapted for the QKD

protocol in a form readily applied by developers. This includes sources for the LDPC matrices as well as

lookup tables, data structures and a pseudo code description of the complete LDPC algorithm, both of

which are normally absent from LDPC descriptions. We suggest using LDPC matrices that have been

defined by the IEEE and ETSI standards organizations for use in various wireless communication

standards. We evaluated the QKD error correction performance of these various matrices as a function

of the QBER. We provided sufficient detail so that our correction results are reproducible by other

researchers. We also discussed the computational precision required for this LPDC algorithm and

showed a simple heuristic technique to boost performance with less precision. We have presented

complete algorithm descriptions and performance analysis to ease the use of LDPC error correction in

future QKD systems. As researchers develop new parity check matrices optimized for QKD that may

require different algorithms, similar complete algorithm descriptions and performance analysis will be

needed.

References

[BEN84] C. H. Bennet and G. Brassard, “Quantum Cryptography: Public key distribution and coin

tossing”, Proc of the IEEE Intern’l Conf on Computers, Systems, and Signal Processing, Bangalore,

India (1984).

[BRA94] Brassard, G., and Salvail, L., Lecture Notes in Computer Science, 765, 410-423 (1994), ISSN

0302-9743.

[DVB09] ETSI EN 302 307 V1.2.1 (2009-08), “Digital Video Broadcasting (DVB); Second generation

framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News

Gathering and other broadband satellite applications (DVB-S2)”, Sect 5.3 and Annex B, 2009.

[ELL05] C. Elliott, et. Al., “Current Status of the DARPA Quantum Network”,

<http://arxiv.org/ftp/quant-ph/papers/0503/0503058.pdf>, Mar. 2005.

[GAL68] R. Gallager, “Information Theory and Reliable Communication”, New York: Wiley, 1968.

[KIE05] F. Kienle, T. Brack and N. Wehn, “A synthesizable IP Core for DVB-S2 LDPC Code

Decoding”, Proc. Design, Automation and Test in Europe, Vol. 3, pp. 100- 105, Mar. 2005.

[KIM09] J. Kim, A. Ramamoorthy, and S. McLaughlin, “The Design of Efficiently-Encodable

Rate-Compatible LDPC Codes”, IEEE Trans. Comm., Vol. 57, No. 2, pp 365- 375, Feb. 2009.

[LEC10] G. Lechner, “The Effect of Cycles on Binary Message-Passing Decoding of LDPC Codes,”

Australian Communications Theory Workshop (AusCTW), Canberra, Australia, Feb 2010.

<http://www.gottfriedlechner.com/homepage/Publications_files/ausctw2010-bmp-paper.pdf>

[LEI05] B. M. J. Leiner , “LDPC Codes – a brief Tutorial”, Apr. 2005.

http://users.tkk.fi/pat/coding/essays/ldpc.pdf

[MAC99] D. MacKay, “Good Error-Correcting Codes Based on Very Sparse Matrices”, IEEE Trans

Information Theory, Vol. 45, N0. 2, pp 399-431, Mar 1999.

[MIN07] A. Mink, “Custom hardware to eliminate bottlenecks in QKD throughput performance”, Proc.

SPIE: Optics East 07, 6780, 678014-1, Boston, MA, Sept. 2007.

[NAK12] A. Nakassis and A. Mink, “LDPC error correction in the context of Quantum Key

Distribution”, Proc. SPIE: Defense Security & Sensing, Balt., MD, Apr. 2012.

[RIC01] T. Richardson, M. Shokrollahi and R. Urbanke, “Design of Capacity-Approaching Irregular

Low-Density Parity-Check Codes”, IEEE Trans. Information Theory, Vol. 47, No. 2, pp 619-637, Feb.

2001.

[SHO03] A. Shokrollahi, “LDPC Codes: An Introduction”, Apr 2003.

<http://www.telecom.tuc.gr/~alex/papers/amin.pdf>

[11n09] IEEE Std 802.11n 2009, “Wireless LAN Medium Access Control & Physical Layer

Specification”, Part 11, Amendment 5, Annex R, Oct. 2009.

[16e05] IEEE Std 802.16e 2005, “Air Interface for Fixed and Mobile Broadband Wireless Access

Systems”, Part 16, Amendment 2, Annex H, Feb. 2006.

Matrix

Source

Code

Rate

Info

Bits

Number of

Checksums

Est QBER

Correction

IEEE 11n 5/6 1620 324 2%

ETSI DVB 5/6 54000 10800 2%

IEEE 16e 5/6 1920 384 2%

IEEE 11n 3/4 1458 486 4%

ETSI DVB 3/4 48600 16200 4%

IEEE 16e 3/4 A 1728 576 4%

IEEE 16e 3/4 B 1728 576 4%

IEEE 11n 2/3 1296 648 8%

ETSI DVB 2/3 43200 21600 8%

IEEE 16e 2/3 A 1536 768 8%

IEEE 16e 2/3 B 1536 768 8%

ETSI DVB 3/5 38880 25920 10%
Table 2. Matrix characteristics, code rates, number of information bits, number of

checksum bits and the expected limits of their correction based on the QBER

Matrix

Source

Code

Rate 1%

QBER

2% 3% 4% 5% 6% 7% 8% 9% 10% 11%

IEEE 11n 5/6 0 413 986

ETSI DVB 5/6 0 0 1000

IEEE 16e 5/6 0 413 988

IEEE 11n 3/4 0 0 3 206 814

ETSI DVB 3/4 0 0 0 0 994

IEEE 16e 3/4 A 0 0 10 372 941

IEEE 16e 3/4 B 0 0 3 209 852

IEEE 11n 2/3 0 0 0 0 0 10 145 623 944

ETSI DVB 2/3 0 0 0 0 0 0 0 0 993

IEEE 16e 2/3 A 0 0 0 0 0 3 105 543 917

IEEE 16e 2/3 B 0 0 0 0 11 163 567 921 997

ETSI DVB 3/5 0 0 0 0 0 0 0 0 0 61 1000
Table 3. Double precision baseline failures for 1000

samples (Max 31 iterations for Convergence)

Matrix

Source

Code

Rate 1%

QBER

2% 3% 4% 5% 6% 7% 8% 9% 10% 11%

IEEE 11n 5/6 1 419 988

ETSI DVB 5/6 1 28 1000

IEEE 16e 5/6 1 417 989

IEEE 11n 3/4 0 0 3 205 815

ETSI DVB 3/4 0 0 0 0 996

IEEE 16e 3/4 A 0 0 9 365 943

IEEE 16e 3/4 B 0 0 2 208 851

IEEE 11n 2/3 0 0 0 0 1 10 142 621 944

ETSI DVB 2/3 0 0 0 0 0 0 0 0 1000

IEEE 16e 2/3 A 0 0 0 0 0 3 102 543 917

IEEE 16e 2/3 B 0 0 0 0 12 159 566 921 997

ETSI DVB 3/5 0 0 0 0 0 0 0 0 0 61 1000
Table 4. 12-bit precision, 4k table failures for 1000

samples (Max 31 iterations for Convergence)

Matrix

Source

Code

Rate 1%

QBER

2% 3% 4% 5% 6% 7% 8% 9% 10% 11%

IEEE 11n 5/6 28 481 991

ETSI DVB 5/6 983 1000 1000

IEEE 16e 5/6 15 492 992

IEEE 11n 3/4 0 1 6 205 819

ETSI DVB 3/4 26 11 9 10 1000

IEEE 16e 3/4 A 0 0 8 369 943

IEEE 16e 3/4 B 1 0 6 258 853

IEEE 11n 2/3 0 0 0 0 0 8 137 615 942

ETSI DVB 2/3 0 0 0 0 0 0 0 0 997

IEEE 16e 2/3 A 0 0 0 0 0 2 101 538 916

IEEE 16e 2/3 B 0 0 0 0 9 151 556 919 997

ETSI DVB 3/5 0 0 0 0 0 0 0 0 0 60 1000
Table 5. 10-bit precision, 1k table failures for 1000 samples

(Max 31 iterations for Convergence)

Matrix

Source

Code

Rate 1%

QBER

2% 3% 4% 5% 6% 7% 8% 9% 10% 11%

IEEE 11n 5/6 0 505 999

ETSI DVB 5/6 0 27 1000

IEEE 16e 5/6 0 508 998

IEEE 11n 3/4 0 0 2 229 876

ETSI DVB 3/4 0 0 0 0 996

IEEE 16e 3/4 A 0 0 9 417 969

IEEE 16e 3/4 B 0 0 2 250 913

IEEE 11n 2/3 0 0 0 0 0 8 156 671 963

ETSI DVB 2/3 0 0 0 0 0 0 0 0 999

IEEE 16e 2/3 A 0 0 0 0 0 2 106 587 952

IEEE 16e 2/3 B 0 0 0 0 10 152 594 952 999

ETSI DVB 3/5 0 0 0 0 0 0 0 0 0 219 1000
Table 6. 12-bit precision, + extra % QBER, failures for

1000 samples (Max 31 iterations for Convergence)

Matrix

Source

Code

Rate 1%

QBER

2% 3% 4% 5% 6% 7% 8% 9% 10% 11%

IEEE 11n 5/6 1 534 999

ETSI DVB 5/6 2 903 1000

IEEE 16e 5/6 1 546 998

IEEE 11n 3/4 0 0 2 232 878

ETSI DVB 3/4 0 0 0 0 1000

IEEE 16e 3/4 A 0 0 6 418 969

IEEE 16e 3/4 B 0 0 2 221 917

IEEE 11n 2/3 0 0 0 0 0 8 155 671 963

ETSI DVB 2/3 0 0 0 0 0 0 0 0 1000

IEEE 16e 2/3 A 0 0 0 0 0 2 109 589 953

IEEE 16e 2/3 B 0 0 0 0 10 147 585 952 999

ETSI DVB 3/5 0 0 0 0 0 0 0 0 0 221 1000
Table 7. 10-bit precision, + extra % QBER, failures for

1000 samples (Max 31 iterations for Convergence)

Matrix

Source

Code

Rate

Config 1%

QBER

2% 3% 4% 5% 6% 7% 8% 9% 10% 11%

ETSI DVB 5/6 Log 0/6.8 0/18.8 1000/31.0

4k 1/7.5 28/28.1 1000/31.0

4K+% 0/7.4 27/21.9 1000/31.0

1K 983/30.9 1000/31.0 1000/31.0

1K+% 2/8.5 903/30.7 1000/31.0

IEEE 11n 5/6 Log 0/4.5 413/19.3 986/30.9

4k 1/4.6 419/19.4 988/30.9

4K+% 0/5.3 505/22.0 999/31.0

1K 28/5.8 481/21.1 991/30.9

1K+% 1/5.5 534/22.7 999/31.0

IEEE 16e 5/6 Log 0/4.6 413/19.7 988/30.9

4k 1/4.6 417/19.8 989/30.9

4K+% 0/5.4 508/22.4 998/31.0

1K 15/5.5 492/21.8 992/30.9

1K+% 1/5.6 546/23.3 998/31.0
Table 8. Performance for various configurations of 5/6 rate matrix; failures/average iterations to

converge for 1000 samples (Max 31 iterations for Convergence)

Matrix

Source

Code

Rate

Config 1%

QBER

2% 3% 4% 5% 6% 7% 8% 9% 10% 11%

ETSI DVB 3/4 Log 0/4.6 0/6.5 0/9.1 0/14.6 994/30.9

4k 0/4.7 0/6.6 0/9.3 0/14.9 996/31.0

4K+% 0/4.8 0/6.5 0/9.2 0/15.2 999/31.0

1K 26/6.4 11/8.2 9/11.3 10/18.2 1000/31.0

1K+% 0/5.0 0/7.0 0/10.0 0/16.9 1000/31.0

IEEE 11n 3/4 Log 0/3.2 0/4.6 3/7.1 206/15.9 814/28.3

4k 0/3.2 0/4.6 3/7.1 205/15.9 815/28.4

4K+% 0/3.5 0/4.7 2/7.2 229/17.0 876/29.5

1K 0/3.3 1/4.8 6/7.4 205/16.3 819/28.5

1K+% 0/3.5 0/4.8 2/7.4 232/17.3 878/29.6

IEEE 16e 3/4 A Log 0/3.2 0/4.6 10/7.8 372/19.4 941/30.2

4k 0/3.2 0/4.6 9/7.8 365/19.4 941/30.2

4K+% 0/3.4 0/4.7 9/7.9 417/20.9 969/30.6

1K 0/3.2 0/4.7 8/7.9 369/19.6 943/30.2

1K+% 0/3.4 0/4.8 6/8.0 418/21.0 969/30.7

IEEE 16e 3/4 B Log 0/3.2 0/4.6 3/7.1 209/16.2 852/29.0

4k 0/3.3 0/4.7 2/7.1 208/16.2 851/29.0

4K+% 0/3.3 0/4.8 2/7.3 250/17.5 913/30.0

1K 1/3.4 0/4.8 6/7.4 258/17.7 853/29.1

1K+% 0/3.6 0/4.9 2/7.4 221/16.6 917/30.0
Table 9. Performance for various configurations of 3/4 rate matrix; failures/average iterations to

converge for 1000 samples (Max 31 iterations for Convergence)

Matrix

Source

Code

Rate

Config 1%

QBER

2% 3% 4% 5% 6% 7% 8% 9% 10% 11%

ETSI DVB 2/3 Log 0/4.0 0/4.8 0/5.8 0/6.9 0/8.1 0/10.0 0/12.9 0/19.1 993/31.0

4k 0/4.0 0/4.9 0/5.8 0/6.9 0/8.3 0/10.1 0/13.0 0/19.3 1000/31.0

4K+% 0/4.0 0/4.9 0/5.8 0/6.9 0/8.2 0/10.1 0/13.1 0/19.8 999/31.0

1K 0/4.4 0/5.2 0/6.1 0/7.3 0/8.7 0/10.7 0/13.8 0/20.3 997/31.0

1K+% 0/4.0 0/5.0 0/5.9 0/7.1 0/8.5 0/10.5 0/13.7 0/20.6 1000/31.0

IEEE 11n 2/3 Log 0/2.9 0/3.5 0/4.2 0/5.1 0/6.5 10/8.9 145/15.0 623/25.3 944/30.4

4k 0/2.9 0/3.5 0/4.3 0/5.1 1/6.5 10/8.9 142/15.0 621/25.3 944/30.3

4K+% 0/2.9 0/3.6 0/4.3 0/5.2 0/6.5 8/9.0 156/15.7 671/26.4 963/30.6

1K 0/2.9 0/3.6 0/4.3 0/5.2 0/6.6 8/8.9 137/15.1 615/25.3 942/30.3

1K+% 0/2.9 0/3.5 0/4.3 0/5.2 0/6.5 8/9.0 155/15.8 671/26.5 963/30.6

IEEE 16e 2/3 A Log 0/2.8 0/3.6 0/4.3 0/5.2 0/6.5 3/8.8 105/14.6 543/24.4 917/30.2

4k 0/2.8 0/3.6 0/4.3 0/5.2 0/6.5 3/8.8 102/14.6 543/24.4 917/30.2

4K+% 0/2.9 0/3.6 0/4.4 0/5.3 0/6.6 2/8.9 106/15.0 587/25.5 952/30.6

1K 0/2.9 0/3.6 0/4.4 0/5.3 0/6.6 2/8.9 101/14.7 538/24.5 916/30.2

1K+% 0/2.9 0/3.6 0/4.4 0/5.3 0/6.6 2/8.9 109/15.1 589/25.6 953/30.6

IEEE 16e 2/3 B Log 0/2.8 0/3.4 0/4.3 0/5.5 11/8.0 163/14.4 567/24.0 921/30.0 997/31.0

4k 0/2.8 0/3.4 0/4.3 0/5.5 12/8.0 159/14.3 566/24.0 921/30.0 997/31.0

4K+% 0/2.9 0/3.4 0/4.3 0/5.5 10/7.9 152/14.4 594/24.8 952/30.4 999/31.0

1K 0/2.8 0/3.4 0/4.3 0/5.5 9/8.0 151/14.2 556/23.9 919/30.0 997/31.0

1K+% 0/2.9 0/3.4 0/4.3 0/5.5 10/7.9 147/14.4 585/24.7 952/30.4 999/31.0
Table 10. Performance for various configurations of 2/3 rate matrix; failures/average iterations to

converge for 1000 samples (Max 31 iterations for Convergence)

 // top level LDPC algorithm

ldpc_algo() {

 LL_init(); // initialization

 success = 0; i = 0;

 for i < max_loops

 { cs_msgs_2_bits(); // compute & update likelihood by chksums

 bit_msgs_2_cs(); // compute & update likelihood by bits & Bob’s bits

 success = converged(); // recomputed chksums & test for convergence

 i++;

 if (success = 1) { print(“LDPC converged in %d loops\n”, i); break; }

 }

 if (success = 0) print(“LDPC failed\n”);

 return (success);

} // end prog

--

 // initialize log likelihood with p=QBER

LL_init() {

f_init = f_init_list[QBER]; // Nf*ln((1-p)/p), initial f - likelihood

a_init = a_init_list[QBER]; // Na*ln((1-2*p)), initial a - likelihood

for (i=1; i<=k; i++) // initial all likelihood regs to channel likelihood

 LL_reg[i] = a_init; //

} // end fct

--

 // compute new likelihood ratios by checksum groups

cs_msgs_2_bits() {

 for (i=1; i<=m; i++) // for each chksum

 { sign=d[i]; big_alpha=0;

 j1=cs_index[i]; j2=cs_index[i+1]; // get chksum indices

 for (j=j1; j<j2; j++) // compute Likelihood for i-th chksum

 { a1 = LL_reg[cs_list[j].LL_ptr];

 if (a1<0) { sign=1-sign; big_alpha=big_alpha-k1;}

 else big_alpha=big_alpha+k1;

 }

 for (j=j1; j<j2; j++) // update each likelihood contribution

 { a1 = LL_reg[cs_list[j].LL_ptr];

 if (a1 < 0) { p_sign=1-sign; p_alpha=big_alpha+a1;}

 else { p_sign=sign; p_alpha=big_alpha-a1;}

 if (p_alpha<=0) p_alpha=1;

 if (p_alpha>Ma) p_alpha=Ma;

 if (p_sign==0) LL_reg[cs_list[j].LL_ptr] = p_alpha;

 else LL_reg[cs_list[j].LL_ptr] = -p_alpha;

 }

 } // end loop on checksums

} // end fct

--

 // compute new likelihood values by bit groups

bit_msgs_2_cs() {

 for (i=0; i<n; i++) // for each info bit

 { j1= LL_index[i]; j2= LL_index[i+1]; // indices for i-th bit LL_reg group

 f_tot = f_init; // init belief value for i-th bit

 for (j=j1; j<j2; j++) // sum individual beliefs

 { u= LL_reg[j];

 if (u>0) u = a2f[u]; // convert a-to-f

 else u = -a2f[-u];

 LL_reg[j] = u;

 f_tot = f_tot + u;

 }

 for (j=j1; j<j2; j++) // update individual beliefs

 { k = f_tot – LL_reg[j];

 if (k<0) {p_sign=1; k=-k;}

 else p_sign=0;

 if (k<1) k=1; if (k>Mf) k=Mf;

 if (p_sign == 1) LL_reg[j] = -f2a[k]; // convert f-to-a

 else LL_reg[j] = f2a[k];

 }

 if (f_tot < 0) y1[i] = 1 – y[i]; // update Bob’s corrected bits

 else y1[i] =y[i];

 } // end loop on info bit

} // end fct

--

 // check if LDPC belief propagation algorithm has converged

converged() {

 success = 1; // init to success

 for (i=1; i<=m; i++) // for each chksum

 { sum = 0;

 j1=cs_index[i]; j2=cs_index[i+1]; // get chksum indices

 for (j=j1; j<j2; j++) // compute revised chksum

 { sum = sum XOR y1[cs_list[j].bit#]

 }

 if (sum ≠ c[i]))

 success = 0; // set to failure

 }

 return (success);

} // end fct

--

Figure 3. Pseudo code for the complete LDPC algorithm

