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4Dipartimento di Fisica, Università degli Studi di Milano, Milano I-20133, Italy
5Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Udr Milano, Milano I-20133, Italy

(Received 23 March 2012; published 19 June 2012)

A quantum measurement can be described by a set of matrices, one for each possible outcome, which

represents the positive operator-valued measure (POVM) of the sensor. Efficient protocols of POVM

extraction for arbitrary sensors are required. We present the first experimental POVM reconstruction that

takes explicit advantage of a quantum resource, i.e., nonclassical correlations with an ancillary state. A

POVM of a photon-number-resolving detector is reconstructed by using strong quantum correlations of

twin beams generated by parametric down-conversion. Our reconstruction method is more statistically

robust than POVM reconstruction methods that use classical input states.
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Measurements are at the heart of the scientific method
because they allow us to gauge observables in experimen-
tal tests, leading either to the confirmation or to the ruling
out of the scientific hypothesis. In quantum mechanics,
measurements play a critical role because they connect
the abstract description of quantum phenomena in Hilbert
space to observable events. In the process of measurement,
a quantummechanical object interacts with a measurement
device, and a measurement outcome is a result of such
interactions. A complete quantum mechanical description
of a measurement device is its positive operator-valued
measure (POVM). In the quantum realm, sensor calibration
corresponds to determining its POVM. In the last decade,
the rapid development of innovative quantum technologies
promoted POVMs from being an abstract theoretical tool
to the experimental realm. In particular, precise and fully
quantum characterization techniques for sensors [1–4] play
a critical role for the implementation of quantum informa-
tion processing, metrology, and imaging [5–16], as well as
tomography of states [17–24] and operations [25–30].
Thus, quantum sensor characterization can be seen as a
simultaneous measurement of multiple parameters; there-
fore, the efficiency of such a measurement is of utmost
importance. However, POVM extraction has been experi-
mentally pursued by brute force methods so far, i.e., by
probing sensors with a suitably large set of interrelated
input signals and classical states, yielding slow conver-
gence [2,3]. It was shown [1] that taking advantage of
quantum resources, e.g., entanglement, can improve con-
vergence beyond the traditional methods. Here, we present
the first experimental POVM reconstruction that explicitly
uses a quantum resource, i.e., nonclassical correlations
with an ancillary state [31]. Our experiment represents a

major step forward towards quantum mechanical treatment
of sensors: it demonstrates the reconstruction of an inher-
ently quantum measure of an arbitrary detector’s perform-
ance—its POVM—by realizing for the first time the
method of Ref. [1].
A POVM is defined as a set of operators (matrices) �n

that give the probability of the measurement outcomes via
the Born rule pn ¼ Tr½%�n�, where % is the density op-
erator describing the system being measured. In principle,
it is possible to extract a POVM of a photon detector using
classical states of light (e.g., coherent states [2]) by invert-
ing the Born rule after collecting data for a sufficiently
large set of states. A direct inversion, however, is a rather
delicate and mathematically unstable procedure, so that
even a small uncertainty due to a finite statistical sample
size can result in a large uncertainty in POVM matrix
elements. Having a quantum source producing on-demand
Fock states with a defined photon number would simplify
the problem significantly, improving accuracy in the same

measurement time by at least a factor of
ffiffiffiffi
N

p
, where N is

the number of possible measurement outcomes for a de-
tector. Unfortunately, there are no ideal sources of photon
number states. A measurement scheme based on nonclassi-
cally correlated bipartite systems (beyond N ¼ 1) is an
attractive alternative that realizes the full potential of the
original scheme of [32]. In this case [1], one beam is sent to
the detector under test (DUT) and the other (an ancilla
state) to an ideal photon-number-resolving (PNR) detector
(i.e., 100% efficiency and full photon number resolution),
playing the role of what in the following we will address as
a quantum tomographer. In this case, by using twin beams,
one produces heralded (but not predefined) Fock states,

thus yielding a measurement speedup of at least
ffiffiffiffi
N

p
.
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This alternative retains the statistical reliability advantage
of the on-demand Fock state source. Even with an imper-
fect tomographer (i.e., efficiency <1 and no photon-
number resolution), significant advantage over classical
measurements can be retained. Thus, ancilla-assisted quan-
tum schemes, where nonclassical correlations play a key
role in improving both precision and stability, represent a
practical advantage of quantum-enabled measurements
over their classical counterparts.

Here we provide the first experimental implementation of
this novel paradigm and demonstrate an effective reconstruc-
tion method for the POVM of an arbitrary detector, thus
giving the full quantum characterization of its performance.

Let us assume that a bipartite system may be prepared in
a given state described by the density operator %R, and that
besides the measurement made by the detector to be cali-
brated, a known observable with a discrete set of outcomes
is measured at the tomographer. In our scheme, the DUT is
a phase-insensitive PNR detector, which represents one of
the most critical components in quantum technology. The
detector’s POVM elements are diagonal operators in the
Fock basis and may be written as �n ¼ P

m�nmjmihmj,
where �nm represents the probability of observing n
counts when m photons are incident on a PNR detector
(with the obvious constraint that

P
n�nm ¼ 1). �nm is the

matrix element to be reconstructed by our measurement.
In our experiment, the bipartite state consists of the

optical twin beams %R ¼ jRiihhRj, jRii ¼ P
mRmjmijmi,

where jmi is the state of one beam with m photons; the
tomographer is a simple yes or no detector with a select-
able efficiency � defined as including all optical losses and
assumes that the detector is live and ready to sense incom-
ing light; and Rm is the probability amplitude of a particu-
lar jmi state. An experimental event is a detection of n
photons at the DUT paired with a measurement outcome
(‘‘yes’’ or ‘‘no’’) at the tomographer, which occur with
probabilities

pðn; yesÞ ¼ X

m

�nmjRmj2½1� ð1� �Þm� and

pðn; noÞ ¼ X

m

�nmjRmj2ð1� �Þm; (1)

respectively. Upon collecting data to determine pðn; yesÞ
and pðn; noÞ, one may invert these relations and recover the
unknownmatrix elements�nm [31]. The distribution jRmj2
of the bipartite states is determined from the photon num-
ber distribution of the beam addressed to the tomographer,
which is identical to its twin that is sent to the DUT. In
this case, the data are the unconditional tomographer
click events, which occur with probability pðnoÞ ¼P

mjRmj2ð1� �Þm, and allow reliable reconstruction of
jRmj2’s [22] after collecting data at different system detec-
tion efficiencies. Note that this procedure is much simpler
than full quantum tomography [17–20], as no additional
calibration is needed to determine the jRmj2 coefficients

other than the calibration of the efficiencies at the tomog-
rapher. Notice also that entanglement is not needed to
achieve this POVM reconstruction of a PNR detector.
Instead, it is the strong nonclassical correlation that enhan-
ces the accuracy and stability of the reconstruction, thus
highlighting the role of squeezing and ancilla states as a
crucial technical resource for the development of photonic
quantum technologies.
The experimental setup (Fig. 1) comprises an 800-nm

mode-locked laser with a repetition rate of 76 MHz,
doubled via second harmonic generation to 400 nm, which
pumps a LiIO3 crystal to produce degenerate, but non-
collinear, photons using parametric down-conversion
(PDC) with type I phase matching [5]. One of the beams
from this crystal is sent to the tomographer that consists of
a calcite polarizer (that allows changing the detection
efficiency), an interference filter (with a passband of
20 nm, full width at half maximum), and a silicon single
photon avalanche diode (SPAD). The beam is delivered to
the SPAD through a multimode fiber, which defines the
spatial collection of the light. Because the down-converted
photons have the same linear polarization in both arms, the
polarizer can be used to variably attenuate the input beam
and hence change the efficiency of the tomographer. The
other PDC beam is directed to our PNR DUT, a detector
tree consisting of two Si-SPADs, through a coupling sys-
tem similar to the tomographer path (i.e., an interference
filter and a fiber coupler). This two-SPAD DUT is able to
discriminate between three possibilities: 0, 1, and 2 or
more photo detections per pulse. An event 0 is when
neither SPAD clicks. An event 1 is when either SPAD
clicks, but not both. An event 2 is when both SPADs click.

FIG. 1 (color online). Experimental setup: LiLO3 crystal
pumped with a pulsed 400-nm beam created through second
harmonic generation (SHG) produces two correlated beams. One
is sent to the tomographer (T), while its twin is sent to the DUT.
The tomographer efficiency is varied by rotating the linear
polarizer. Interference filters (IF) with 20-nm bandpasses are
used to limit out-of-band light on the detectors. A FPGA is used
for real-time processing and data acquisition. The DUT (inset) is
a PNR detector made of two Si-SPADs connected through a
50:50 fiber beam splitter (BS).
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The outputs of the two Si-SPADs of our PNR detector,
together with the tomographer output and a trigger pulse
(from the laser), are sent to a field programmable gate array
(FPGA) based processing and data collection system.
We distinguish the three possible outcomes of the DUT
along with the results of the tomographer measurements.
Because detectors have dead time, the FPGA is pro-
grammed to avoid taking data when either of the detectors
in the system is not ready. Before the data acquisition,
the tomographer arm polarizer is calibrated to provide the
20 different system efficiencies that are needed for the
experiment.

To reconstruct the POVM of our DUT, we first deter-

mine the relative frequencies fð0Þ, fð1Þ, and fð2Þ, respec-
tively from the number of 0-, 1-, and 2-click events

normalized to their sum. We also determine the relative

frequencies of conditional events paired with the tomog-

rapher’s clicks [fðyesj0; ��Þ, fðyesj1; ��Þ, fðyesj2; ��Þ],
and no-clicks [fðnoj0; ��Þ, fðnoj1; ��Þ, fðnoj2; ��Þ] for

each efficiency ��. As mentioned above, the preliminary

step in obtaining the POVM elements is the reconstruction

of the photon number distribution jRmj2 [22] of the

bipartite state. Figure 2(a) fits the pðnoÞ data to a Poisson

distribution with � ¼ 0:5983� 0:0017 mean photons per
pulse. This is then used to reconstruct the bipartite state
jRmj2 distribution seen in Fig. 2(b). The experimentally
reconstructed photon distribution is in excellent agreement
with the Poisson distribution, with a fidelity larger than
99.4% (here and in the following, we use the conventional
definition of fidelity as the sum of the square root of the
product of the experimental and the theoretical probabil-
ities [22]). Data are shown only up to m ¼ 5 photons since
in our experiment the probability of observing more than
five photon pairs per pulse is negligible (less than
4� 10�4). We then substitute the reconstructed jRmj2’s
together with the set of calibrated efficiencies f��g into
Eq. (1), and reconstruct the quantities �nm using a regu-
larized least-square method [2,3] to minimize the deviation
between the measured and theoretical values of the prob-
abilities. In particular, for each output n of the DUT,
we minimize the deviation between the observed
pexpðn; yesÞ ¼ fðnÞfðyesjn;��Þ and the theoretical proba-

bilities pðn; yesÞ if an event n coincided with a click on a
tomographer, and between pexpðn; noÞ ¼ fðnÞfðnojn; ��Þ
and pðn; noÞ if an event n was not correlated to a click of a
tomographer. This is done for each ��.
The reconstructed �0m, �1m, and �2m are presented in

Fig. 3 for input states with up to m ¼ 5 photons. For the
first five values (i.e.,m � 4), the high fidelities (larger than
99.9%) and low uncertainties highlight the excellent agree-
ment between the theoretical and experimental results. The
quality of the POVM reconstruction rapidly decreases for
m> 4 because of the lack of high photon number events,
as discussed in connection with Fig. 2. Note that this
limitation is not inherent to our calibration method. In
practice, estimating the probabilities with sufficient accu-
racy in the photon number range of interest in a finite
measurement time requires a bipartite state with enough
Fock states in that range; our twin beam source produces
enough states up to m ¼ 4.
To assess the reliability of the reconstruction, we

compare the measured probabilities pexpðn; onÞ and

FIG. 2 (color online). (a) A linearized Poisson distributionwith
respect to detection efficiency. The best fit (line) of the pðnoÞ data
(points) yields a Poisson distribution with � ¼ 0:5983� 0:0017
mean photons per pulse. (b)The reconstructed bipartite state jRmj2
distribution (light colored bars), compared to a Poisson distribu-
tion (black bars) with the photon number determined by the fit in
(a). Uncertainties shown represent the one � variations in the
reconstructions performed on 30 different data sets.

FIG. 3 (color online). Reconstruction of the POVM elements for photon numbers up to m ¼ 5. Experimentally reconstructed (light-
colored bars) and theoretical (black bars) histograms for (a) �0m, (b) �1m, and (c) �2m. The quality of the reconstruction of POVM
elements with m< 5 is independently confirmed by observed fidelities above 99.9%. As expected, the accuracy starts deteriorating for
input states with m � 5. The uncertainty bars represent the statistical fluctuations in the reconstructions performed on 30 different
data sets.
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pexpðn; offÞ with the ones obtained from Eq. (1) using the

reconstructed POVM and the reconstructed state (see
Fig. 4). The excellent agreement, as seen by the near-unity
fidelities, confirms that the reconstructed POVM provides a
reliable quantum description of the detection process.

In conclusion, we have experimentally reconstructed the
POVM of a photon-number-resolving detector by exploiting
the quantum correlation of a twin-beam state. The recon-
structed POVMelements are in excellent agreement with the
theoretically expected ones, as witnessed by their fidelities,
always above 99.9% for up to four incoming photons. Our
results represent a major step towards quantum photonics for
two reasons. First, this is the first experimental demonstration
of an enhanced ancilla-assisted quantum detector tomogra-
phy. We demonstrated the reconstruction of an inherently
quantum measure of an arbitrary detector’s performances—
its POVM. Second, inview of the development of novel PNR
detectors with improved efficiency, timing jitter, and dy-
namic range, we expect a dramatic growth in the demand
of robust, reliable, and fully quantum characterization meth-
ods, with emphasis on those exploiting quantum resources to
go beyond the limits of classical measurement.
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Legré, and N. Gisin, Phys. Rev. Lett. 93, 180502 (2004).
[7] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H.

Weinfurter, and A. Zeilinger, Nature (London) 390, 575
(1997).

[8] D. Boschi, S. Branca, F. DeMartini, L. Hardy, and S.
Propescu, Phys. Rev. Lett. 80, 1121 (1998).

[9] J. L. O’Brien, Science 318, 1567 (2007); P. J. Shadbolt,
M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino,
J. C. F. Matthews, M.G. Thompson, and J. L. O’Brien,
Nature Photon. 6, 45 (2012).

[10] P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin,
Nature (London) 409, 1014 (2001).

[11] T. Yamamoto, M. Koashi, S. K. Ozdemir, and N. Imoto,
Nature (London) 421, 343 (2003).

[12] J.W. Pan, C. Simon, and A. Zellinger, Nature (London)
410, 1067 (2001).

[13] C. Sayrin et al., Nature (London) 477, 73 (2011).
[14] V. Boyer, A.M. Marino, R. C. Pooser, and P.D. Lett,

Science 321, 544 (2008).
[15] G. Brida, M. Genovese, and I. Ruo Berchera, Nature

Photon. 4, 227 (2010).
[16] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett.

96, 010401 (2006).
[17] K. Vogel and H. Risken, Phys. Rev. A 40, 2847 (1989).
[18] G.M. D’Ariano, C. Macchiavello, and M.G.A. Paris,

Phys. Rev. A 50, 4298 (1994).
[19] U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M. G.

Raymer, Opt. Commun. 127, 144 (1996); M. Asorey, P.
Facchi, G. Florio, V. I. Manko, G. Marmo, S. Pascazio, and
E. C. G. Sudarshan, Phys. Lett. A 375, 861 (2011); Y.
Bogdanov, G. Brida, M. Genovese, S. P. Kulik, E. V.
Moreva, and A. P. Shurupov, Phys. Rev. Lett. 105,
010404 (2010); M. Vasilyev, S. K. Choi, P. Kumar, and
G.M. D’Ariano, Phys. Rev. Lett. 84, 2354 (2000).

[20] G. Breitenbach, S. Schiller, and J. Mlynek, Nature
(London) 387, 471 (1997).

[21] A. Agliati, M. Bondani, A. Andreoni, G. De Cillis, and
M.G.A. Paris, J. Opt. B 7, S652 (2005).

[22] G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M.
Genovese, G. Brida, A. R. Rossi and M.G.A. Paris, Phys.
Rev. Lett. 95, 063602 (2005).

[23] A. Allevi, A. Andreoni, M. Bondani, G. Brida, M.
Genovese, M. Gramegna, P. Traina, S. Olivares, M.G. A.
Paris, and G. Zambra, Phys. Rev. A 80, 022114 (2009).

[24] J. Rehacek, D. Mogilevtsev, and Z. Hradil, Phys. Rev.
Lett. 105, 010402 (2010); Z. Hradil, D. Mogilevtsev, and
J. Rehacek, Phys. Rev. Lett. 96, 230401 (2006).

[25] G.M. D’Ariano and P. Lo Presti, Phys. Rev. Lett. 86, 4195
(2001).

[26] J. B. Altepeter, D. Branning, E. Jeffrey, T. C. Wei, P. G.
Kwiat, R. T. Thew, J. L. O’Brien, M.A. Nielsen, and A.G.
White, Phys. Rev. Lett. 90, 193601 (2003).

[27] J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James,
N. K. Langford, T. C. Ralph, and A.G. White, Phys.
Rev. Lett. 93, 080502 (2004).

FIG. 4 (color online). (a) Comparison between measured
(points) and theoretical (lines) probabilities, pðn; yesÞ, for n ¼
1, 2, and 3, for each measurement ��. Probabilities for n ¼ 2 and
3 are scaled by 5 and 100, respectively. Theoretical probabilities
are obtained by substituting the measured values of the efficien-
cies ��, the reconstructed POVM, and the reconstructed jRmj2
into Eq. (1). Panel (b) demonstrates the agreement between the
theory and experimental data in terms of fidelity.

PRL 108, 253601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JUNE 2012

253601-4

http://dx.doi.org/10.1103/PhysRevLett.93.250407
http://dx.doi.org/10.1103/PhysRevLett.93.250407
http://dx.doi.org/10.1038/nphys1133
http://arXiv.org/abs/1103.2991
http://dx.doi.org/10.1103/PhysRevA.82.021807
http://dx.doi.org/10.1016/j.physrep.2005.03.003
http://dx.doi.org/10.1103/PhysRevLett.93.180502
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1103/PhysRevLett.80.1121
http://dx.doi.org/10.1126/science.1142892
http://dx.doi.org/10.1038/nphoton.2011.283
http://dx.doi.org/10.1038/35059017
http://dx.doi.org/10.1038/nature01358
http://dx.doi.org/10.1038/35074041
http://dx.doi.org/10.1038/35074041
http://dx.doi.org/10.1038/nature10376
http://dx.doi.org/10.1126/science.1158275
http://dx.doi.org/10.1038/nphoton.2010.29
http://dx.doi.org/10.1038/nphoton.2010.29
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1103/PhysRevA.40.2847
http://dx.doi.org/10.1103/PhysRevA.50.4298
http://dx.doi.org/10.1016/0030-4018(96)00061-2
http://dx.doi.org/10.1016/j.physleta.2010.12.056
http://dx.doi.org/10.1103/PhysRevLett.105.010404
http://dx.doi.org/10.1103/PhysRevLett.105.010404
http://dx.doi.org/10.1103/PhysRevLett.84.2354
http://dx.doi.org/10.1038/387471a0
http://dx.doi.org/10.1038/387471a0
http://dx.doi.org/10.1088/1464-4266/7/12/031
http://dx.doi.org/10.1103/PhysRevLett.95.063602
http://dx.doi.org/10.1103/PhysRevLett.95.063602
http://dx.doi.org/10.1103/PhysRevA.80.022114
http://dx.doi.org/10.1103/PhysRevLett.105.010402
http://dx.doi.org/10.1103/PhysRevLett.105.010402
http://dx.doi.org/10.1103/PhysRevLett.96.230401
http://dx.doi.org/10.1103/PhysRevLett.86.4195
http://dx.doi.org/10.1103/PhysRevLett.86.4195
http://dx.doi.org/10.1103/PhysRevLett.90.193601
http://dx.doi.org/10.1103/PhysRevLett.93.080502
http://dx.doi.org/10.1103/PhysRevLett.93.080502


[28] M. Lobino, D. Korystov, C. Kupchak, E. Figueroa, B. C.
Sanders, and A. I. Lvovsky, Science 322, 563
(2008).

[29] I. Bongioanni, L. Sansoni, F. Sciarrino, G. Vallone, and P.
Mataloni, Phys. Rev. A 82, 042307 (2010).

[30] S. Rahimi-Keshari, A. Scherer, A. Mann, A. T. Rezakhani,
A. I. Lvovsky, and B. C. Sanders, New J. Phys. 13, 013006
(2011).

[31] This is in contrast to ancilla-based detector calibra-
tions, [for an example, see A. P. Worsley et al., Opt.
Express 17, 4397 (2009)], which require assumptions
(i.e., detector linearity) and are aimed at extracting a
single detection efficiency parameter rather than the
more extensive quantum description (POVM).

[32] B.Ya. Zeldovich and D.N. Klyshko, JETP Lett. 9, 40
(1969).

PRL 108, 253601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JUNE 2012

253601-5

http://dx.doi.org/10.1126/science.1162086
http://dx.doi.org/10.1126/science.1162086
http://dx.doi.org/10.1103/PhysRevA.82.042307
http://dx.doi.org/10.1088/1367-2630/13/1/013006
http://dx.doi.org/10.1088/1367-2630/13/1/013006
http://dx.doi.org/10.1364/OE.17.004397
http://dx.doi.org/10.1364/OE.17.004397

