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Two-dimensional transport and screening in topological insulator surface states
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We study disorder effects on the surface states of the topological insulator Bi2Se3 close to the topologically
protected crossing point. Close to charge neutrality, local fluctuations in carrier density arising from the random
charged disorder in the environment result in electron and hole puddles that dominate the electronic properties of
these materials. By calculating the polarizability of the surface state using the random-phase approximation, and
determining the characteristics of puddles using the self-consistent approximation, we find that band asymmetry
plays a crucial role in determining experimentally measured quantities, including the conductivity and the puddle
autocorrelation length.
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Topological insulators (TIs) are a new class of materials1–4

that are typically distinguished by their robust metallic
surface state encapsulating a nonconducting bulk. From this
perspective, a major shortcoming of the early experiments
was that carrier doping levels were sufficiently high, re-
sulting in the bulk bands being metallic, as opposed to
insulating. This made it almost impossible to definitively
separate the properties of the surface state from that of
the bulk, and the system did not behave as a TI because
the bulk is conducting rather than insulating. This leads
to the problem that while spectroscopic measurements such as
angle-resolved photoemission spectroscopy (ARPES) demon-
strate the clear existence of the expected surface topolog-
ical bands, transport measurements have been difficult to
interpret due to the coexistence of both bulk and surface
conduction.

It is, therefore, encouraging that several recent experimental
studies5–8 report the direct observation of two-dimensional
(2D) surface states in transport measurement. These reports
claim to observe the electronic properties of the surface
state with energy close to the topologically protected band-
crossing point (also called the Dirac point). Our previous
work on the electronic properties of graphene9–12 would
lead us to expect that close to the Dirac point the energy
landscape and the spatial electronic structure would become
highly inhomogeneous, breaking the surface into puddles
of electrons and holes. This physically intuitive picture of
inhomogeneous electron and hole puddles has been highly
successful in understanding both transport experiments13,14

and scanning probe experiments15 in graphene, where the
charge inhomogeneity results in a low-density conductivity
plateau with a nonvanishing minimum conductivity at the
Dirac point. Since topological insulators and graphene have
different electronic structure and screening properties, for the
case of these topological surface states, it is not a priori clear
what will be the energy scale of the electron-hole puddles
and the corresponding signature of such inhomogeneity in
transport and scanning probe microscopy.

To understand the role of a locally fluctuating carrier
density on the electronic screening and conductivity of the
2D surface states in these new 3D TI materials, we perform
an effective medium analysis where the local conductivity

is determined using a Boltzmann transport theory in the
presence of disorder, and where the effective disorder strength
itself is calculated self-consistently using the random-phase
approximation (RPA) screening theory. Our main finding is
that band asymmetry, which can almost always be ignored
when studying graphene, plays a crucial role in TI experiments.
One striking example is that in some cases, the TI surface
conductivity does not even have a minimum conductivity in
the vicinity of the band-crossing point, making the physics
very different from that of graphene. Comparing our theory
with the existing Bi2Se3 experiments,5–8 we also conclude
that the current systems have very large background disor-
der making it difficult to access the physics of the Dirac
point.

The starting point for our calculation is to make some
reasonable approximation for the band structure of the topo-
logical surface state. One approach16,17 would be to perform
ab initio calculations and fit that data to the most general
model Hamiltonian allowed by symmetry. However, we find
significant discrepancy between the electronic structure cal-
culations and the photoemission (ARPES) experiments. As a
result, a reasonable comparison with experiment would require
that we fine tune a model Hamiltonian with 12 parameters.
While this procedure could be done, it would be unnecessarily
cumbersome and obscure any physical insight. Instead, we
follow the minimal model proposed earlier18 in the literature
mimicking the full ab initio band structure,

H(k) = h̄2k2

2m∗ + h̄vF(kxσy − kyσx), (1)

where (σx,σy) is a 2D vector of Pauli matrices, k = (kx,ky) is
the 2D wave vector, vF is the Fermi velocity of the Dirac
bands, and effective mass m∗ characterizes the degree of
asymmetry between the electron and hole bands. Estimates for
the values of these two parameters for Bi2Se3 vary widely in the
experimental literature. For example, values for vF vary from
2 × 105 m/s (Ref. 19) to 6.4 × 105 m/s (Ref. 5), and measured
values for m∗ vary from 0.11me (Ref. 20) (me is the electron
mass) to 0.32me (Ref. 21). This situation should be contrasted
with graphene, where vF is the single band parameter, and most
experimental reports agree on its value to within 5%.9 We use
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the two-parameter (m∗ and vF) model of Eq. (1) in the current
work.

Since we are concerned with the screening properties
of electrons, it is useful to define an interaction parameter
rs = e2/(κh̄vF), where we reiterate that throughout this work,
vF is the parameter in Eq. (1) characterizing the Dirac-like
bands; only at low carrier density does it coincide with the
Fermi velocity. Here, κ is approximately half of the dielectric
constant of the bulk Bi2Se3 insulator [whose reported value
varies from around 30 (Ref. 19) to about 55 (Ref. 22)]. We
certainly expect that as more experiments on TI materials
become available, these parameters will become better known
both for Bi2Se3 and other related materials. To make our theory
more compact, we formulate everything in terms of rs and a
characteristic density n0 = (m∗vF)2/(4πh̄2), where reasonable
values of rs are in the range 0.05 to 0.5, and reasonable values
of n0 are from 1011 cm−2 to 3 × 1013 cm−2. We note that
n0 is an important parameter characterizing the deviation of
the system (for n > n0) from purely Dirac-like behavior—in
graphene, n0 is very large.

The Thomas-Fermi screening theory for electrons specifies
that all external potentials are screened by a surface 2D
dielectric function ε(q) = 1 + qTF/q. For the Hamiltonian in
Eq. (1), we find

qTF = rskF

1 + sgn(n)
√|n|/n0

= ηrskF, (2)

where sgn is the signum function, and we use the con-
vention that electrons have sgn(n) = +1 while holes have
sgn(n) = −1. For both electrons and holes, we have kF =√|4πn|. Note that qTF diverges for n → −n0, implying perfect
screening associated with the diverging density of states in
Eq. (1) arising from the quadratic dispersion and the band
asymmetry. It turns out that the theory can be completely
characterized by the two parameters rs and n0, rather than the
three microscopic parameters m∗, vF, and κ .

Our numerical analysis using the full random-phase ap-
proximation (RPA) shows that the Thomas-Fermi analysis is

accurate provided that we restrict the carrier density for holes to
|n| < |n0|. No such restriction is required for electrons. Within
the Boltzmann transport approximation, the conductivity σ =
(kF�)(e2/2h), where � = vFτ/η is the mean free path. The
scattering time is calculated within the Born approximation as

h̄

τ
= πnimp

∑
k′

∣∣∣∣v(q)

ε(q)

∣∣∣∣
2

sin2[θkk′]δ(εk − εk′), (3)

where nimp is the surface density of random charged impurities,
εk is the carrier energy, θkk′ is the scattering angle between
wave vectors k and k′, and v(q)/ε(q) is the Fourier transform
of the screened impurity potential. For the purpose of this
calculation, we assume that the dominant scatterers are long-
ranged Coulomb impurities (with an average 2D density of
nimp placed an average distance of d away from the TI surface),
although our formalism can easily be generalized to other
types of impurities. We also ignore strong potential defects that
couple the bulk and surface states, as was considered recently
in Ref. 23. For these charged impurities, the conductivity can
be calculated analytically, giving

σB[n,n0,rs] = 1

8

e2

h

n

nimp

1

F1[ηrs/2]
,

F1[x]

x2
= π

4
+ 3x − 3x2π

2
+ x(3x2 − 2)

arccos[1/x]√
x2 − 1

,

η[n/n0] =
√

n0√
n0 + sgn(n)

√|n| . (4)

The results for the Boltzmann transport theory are shown
in Fig. 1. One immediately observes that the asymmetry in
the conductivity is quite pronounced compared to a linear
Dirac dispersion (m∗ = ∞; also shown). The electron branch
has a much larger conductivity with σB(n) being superlinear,
while the hole branch has a much lower sublinear σB(n). This
pronounced asymmetry between electron and hole transport,
following directly from the band asymmetry of Eq. (1), is a
characteristic feature of 2D TI transport.24
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FIG. 1. (Color online) Theoretical calculations for the dependence of conductivity on carrier density using parameters rs = 0.1 and
n0 = 2 × 1013 cm−2. The left panel has impurity concentration nimp = 1013 cm−2, and the right panel is dirtier with nimp = 5 × 1013 cm−2.
Dashed blue lines show the Boltzmann transport result described in Eq. (4), and dash-dotted black lines are for Dirac bands, i.e., m∗ → ∞ in
Eq. (1). The red solid line is the result of the effective-medium theory calculation obtained by solving Eq. (6) using d = 0.1 nm. The left panel
has a conductivity minimum in the vicinity of the Dirac point, while for the right panel the conductivity monotonically increases as the carriers
are tuned from holes (negative n) to electrons (positive n).
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FIG. 2. (Color online) Theoretical calculations for disorder-
induced carrier density neff as a function of impurity concentration
nimp using parameters rs = 0.1, n0 = 1013 cm−2, and d = 0.1 nm.
The curves were calculated using the Thomas-Fermi screening theory,
while the circles (holes) and squares (electrons) show the RPA. For
electrons, the two approximations agree to within our numerical
accuracy. For holes, they agree only for neff < n0 (shown as a dotted
line). One implication of this result is that the charge neutrality point
will be distinct from the Dirac point.

At low carrier density, the disorder-induced fluctuations in
carrier density become larger than the average carrier density.
In particular, when the average carrier density vanishes with
the chemical potential at the Dirac point, one might expect
that the electronic properties of the system are determined by
the typical carrier density inside the electron and hole puddles.
For example, one could define a carrier density distribution
function P [n], and the condition of zero average carrier
density implies the vanishing of the first moment of P [n].
The second moment of the carrier density distribution nrms

would then determine how the carriers in this inhomogeneous
system screen any external potential, including the impurity
potential that induced the fluctuations to begin with. This
implies that the density fluctuations need to be calculated
self-consistently.11 We calculate the properties of this inho-
mogeneous system by assuming a global screening function
that depends on the impurity profile only through an effective
carrier density neff (where knowing neff , one can then calculate
all moments of P [n] including nrms, e.g., for Dirac fermions,
nrms ≈ √

3neff).

This effective carrier density neff is nothing other than a
measure of the typical carrier density inside the electron and
hole puddles. After obtaining neff , we can then compute other
properties of the Dirac point including its conductivity (that
can be measured in a transport experiment) or its density-
density correlation function [measured using a scanning
tunneling microscope (STM)]. Calculating neff is therefore
a central result of this work. We do this by requiring that
the density induced by the second moment of the screened
disorder potential is precisely the same as the density entering
the global screening function. Applying this procedure to
Eq. (1), and defining the dimensionless variable y = |neff|/n0,
we derive a system of equations that can be easily solved
numerically:

y2

4
+ y + sy3/2 = AC0

[
B

√
y

1 + s
√

y

]
,

C0[x] = ∂x

[
xex

∫ ∞

x

t−1e−t dt

]
, (5)

A = 1

2

nimp

n0
r2
s , B = 2rsd

√
4πn0.

Here, s = sgn(n) denotes the electron (s = +1) and hole
(s = −1) bands.

In Fig. 2, we show the effective carrier density obtained
using this self-consistent method. Notice that the induced
carrier density is different for electrons and for holes except in
the limiting case nimp � n0 [where Eq. (1) gives a symmetric
linear Hamiltonian]. This asymmetry implies that the charge
neutrality point (where the number of electrons and holes
are equal) does not necessarily coincide with the Dirac point
(the crossing point between electron and hole bands). The
numerical value of neff/nimp is rather small (less than 0.03).
This not only guarantees convergence of the theory, but also has
important implications for experiments. Since n0 and nimp are
comparable in current experiments, if neff/nimp is not small,
this would imply that the energy scale associated with the
disorder-induced inhomogeneity would be comparable to the
bulk band gap, and there would be no hope of observing any
physics associated with the topological surface state. We note
that in graphene, neff ∼ nimp, which is in contrast to 2D TI
transport where we are finding neff � nimp.
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FIG. 3. (Color online) Minimum conductivity as a function of system parameters: (a) impurity concentration nimp, (b) dielectric constant κ ,
(c) low-energy Fermi velocity vF, and (d) impurity distance d . The values for the parameters not being varied are nimp = 5 × 1013 cm−2, vF =
4.5 × 105 m/s, κ = 50, d = 0.1 nm, and m∗ = 0.2. A zero value for σmin means that there was no local minimum in the conductivity in the
vicinity of the Dirac point. Solid curves are a guide to the eye.
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We now proceed to calculate the electronic transport in this
inhomogeneous puddle-dominated carrier density landscape.
The procedure is to first assume that the local conductivity can
be calculated from the local carrier density using Eq. (4). Then,
an effective-medium theory (EMT) can be used to calculate
the global conductivity from this distribution of spatially
fluctuating local conductivities,12

∫
dnP [n]

σB(n) − σEMT

σB(n) + σEMT
= 0. (6)

The EMT assumes that the dominant contribution to the
resistivity arises from scattering inside the electron and hole
puddles, and not across the puddles. This is a reasonable
assumption because the cross puddle backscattering is sup-
pressed due to spin conservation. To simplify the theory,
we assume that P [n] is Gaussian, with variance

√
3n∗,

where n∗ =
√

ne
effn

h
eff is the geometric mean of the electron

and hole density fluctuations (see Fig. 2). Our results are
shown in Fig. 1. An important result of performing the EMT
average using an asymmetric conductivity is that the carrier
density at which the conductivity is minimum is distinct
from both the charge neutrality point and Dirac point, further
complicating the analysis and interpretation of experiments.
This is illustrated dramatically in the right-hand panel, where
there is no conductivity minimum in the vicinity of the Dirac
point. Rather, the conductivity increases monotonically from
σ = 0 for n = −n0 to σB(|n|) for n � n0. Indeed, in the
experiments of Ref. 5, the most disordered sample does not
show a (clear) minimum conductivity, while other devices do
have a local σmin close to the Dirac point, similar to that shown
in the left-hand panel of Fig. 1. The possible nonexistence of
a conductivity minimum in 2D TI transport is a qualitative
prediction of our theory.

We have explored how σmin depends on a variety of
physical parameters. In most cases, we find that the minimum
conductivity increases with increasing κ , vF, m∗, and sample
purity (n−1

imp). However, there is also a large range of parameter
space where there is no conductivity minimum associated with
the Dirac point (we denote this case as σmin = 0). We illustrate
our results in Fig. 3, where we show the dependence of σmin on
κ , vF, and d. As seen in the figure, in each of these cases, the
crossover between the presence or absence of a well-defined
σmin occurs quite sharply as a function of the parameter being
varied.

The analytic results provided in Eq. (5) were done using
the Thomas-Fermi (TF) approximation. We have also done
calculations using the full static RPA. We find in general, as
shown in Fig. 2, very good agreement between the TF and
RPA results, with the RPA results being obtained completely
numerically.

Finally, we turn our attention to the recent experiments
which have directly observed the electron-hole puddles on
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FIG. 4. (Color online) Theoretical calculations for potential cor-
relation fluctuation C(r) = 〈[V (r) − V̄ ][V (0) − V̄ ]〉 for the electron
band using the same parameters as in Fig. 1(b). The y axis is normal-
ized by (rsh̄vF

√
πnimp)2. From top to bottom, the curves represent

average electron doping of n = 0, 1013 cm−2, and 1015 cm−2.

the Bi2Se3 surface.19 In addition to being a local probe,
by tuning the bias voltage between the tip and the sample,
these experiments can probe features in the density of states
away from the Fermi energy. In current TI materials, this is
especially important because unintentional doping pushes the
Fermi energy far from the Dirac point. For each position in
space, one can map out the energy of the Dirac point ED . Shifts
of ED away from the average potential V̄ give the screened
disorder potential landscape whose autocorrelation function
is C(r) = 〈[V (r) − V̄ ][V (0) − V̄ ]〉. Theoretical calculations
for the correlation function are shown in Fig. 4 for different
(average) electron carrier densities n using the Thomas-Fermi
approximation and solving for the total density ntot = n + neff

self-consistently. The effect of electron doping is to slightly
reduce both the magnitude of the potential fluctuations C(0)
as well as the spatial correlation length of the puddles.

Our predictions for screening and carrier transport in
disordered 2D TI surface states should be testable in future
experiments. In particular, the band asymmetry gives rise to
interesting and qualitatively novel effects, e.g., causing the
Dirac point, the charge neutrality point, and the minimum
conductivity to occur at different carrier densities. In addition,
electron and hole 2D transport in TIs should manifest strong
asymmetry, and in some situations with strong disorder (i.e.,
large nimp or small d) there may not be any minimum
conductivity plateau associated with the Dirac point. All of
these features have important implications for using transport
measurements to characterize these TI surface states, and
eventually when utilizing them as an electronic material.
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