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Abstract
We calculate the renormalized effective two-, three-, and four-body interactions for N neutral ultracold

bosons in the ground state of an isotropic harmonic trap, assuming two-body interactions modeled with the
combination of a zero-range and energy-dependent pseudopotential. We work to third-order in the scattering
length at(0) defined at zero collision energy, which is necessary to obtain both the leading-order effective four-
body interaction and consistently include finite-range corrections for realistic two-body interactions. The
leading-order, effective three- and four-body interaction energies are U3 (ω) = −(0.85576...)[at(0)/σ(ω)]2 +
2.7921(1)[at(0)/σ(ω)]3 + O(a4

t ) and U4(ω) = +(2.43317...)[at(0)/σ(ω)]3 + O(a4
t ), where ω and σ(ω) are

the harmonic oscillator frequency and length, respectively, and energies are in units of ~ω. The one-
standard deviation error ±0.0001 for the third-order coefficient in U3(ω) is due to numerical uncertainty in
estimating a slowly converging sum; the other two coefficients are either analytically or numerically exact.
The effective three- and four-body interactions can play an important role in the dynamics of tightly confined
and strongly correlated systems. We also performed numerical simulations for a finite-range boson–boson
potential, and it was comparison to the zero-range predictions which revealed that finite-range effects must
be taken into account for a realistic third-order treatment. In particular, we show that the energy-dependent
pseudopotential accurately captures, through third order, the finite-range physics, and in combination with
the multi-body effective interactions gives excellent agreement with the numerical simulations, validating
our theoretical analysis and predictions.

PACS numbers: 31.15.ac,31.15.xp,05.30.Jp,67.85.-d
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I. INTRODUCTION

Effective multi-body interactions arise when quantum fluctuations dress the intrinsic interac-
tions between particles. They play a central role in quantum field theories and exemplify the
significant difference between interactions in classical and quantum theories. For example, even
for a quantum field that has only intrinsic two-body interactions at high energies, at low-energy
scales, after the high-energy degrees of freedom are coarse-grained away, the field will manifest
at some level effective n-body interactions. The ability to trap and control systems of ultracold
neutral atoms [1, 2] has created new opportunities to study this physics in the laboratory. Ef-
fective three-body interactions in the limit of large two-body scattering length have in particular
received a great deal of attention, motivated both by the predictions of universal behaviors [3–9]
and the ability to use ultracold atoms to study physics ranging from molecular [10] to nuclear
scales [11, 12]. Recently, attention has focused on Efimov-like states and universal behaviors for
four-body systems, again in the limit of large scattering lengths [13–16].

Here, we focus on the opposite regime of weakly interacting neutral bosons with small scattering
lengths. Even in this limit, effective higher-body interactions can be important, particularly for
tightly confined or strongly correlated particles. This is seen dramatically in [17], where a superfluid
of bosonic atoms is quenched by suddenly increasing the depth of an optical lattice. After the
quench, which creates a non-equilibrium state of strongly correlated bosons, beating effects due to
multiple distinct interaction energies, as expected from effective three- and higher-body interactions
[18, 19], are seen in the collapse and revival oscillations of the first-order coherence. Effective
multi-body interactions should also have played a role in previous collapse and revival experiments
[20–22], although in those cases inhomogeneities may have masked their signature. More recently,
effective three- and four-body interactions have been used to demonstrate atom-number sensitive
photon-assisted tunneling in optical lattices [23], and their influence has been seen in precision
measurements on Mott-insulator states of ultracold atoms [24]. A number of studies also suggest
that elastic multi-body interactions can play an interesting role in generating exotic quantum
phases in optical lattices or modify the superfluid to Mott-insulator phase transition [25–32].

In this paper, we use renormalized quantum field theory [33] to calculate the perturbative
ground-state energy for N ultracold neutral bosons in a three dimensional isotropic harmonic po-
tential with angular frequency ω, and extract from it the effective m-body interaction energies
U2(ω), U3(ω), and U4(ω) as a function of ω. The key purpose of the present paper is to (i) sys-
tematically develop a renormalized quantum field theory approach for ultracold trapped bosons
including finite-range effects, (ii) determine the leading-order four-body interaction, and (iii) val-
idate the formalism through comparison with numerical results. To obtain effective four-body
interaction energies it is necessary to work through third order in the two-body scattering length.
We use renormalized perturbation theory (see [33]), which develops an expansion around physical
as opposed to bare coupling parameters, to systematically cancel the multiple divergences that
arise at higher-orders in quantum field perturbation theory. (In this paper, the physical coupling
parameter is defined in terms of the measured scattering length, or alternatively the measured
energy shift, for two interacting ultracold boson in a harmonic trap at a specified trap frequency.)
Renormalized perturbation theory, which is more commonly used in high-energy physics, in this
context naturally describes how the effective interactions depend on trap frequency. An example of
the power of renormalized perturbation theory to capture low-energy physics is that we indepen-
dently reproduce, through third order, the two-body ground-state energies calculated in [34]. More
fundamentally, the analysis in this paper provides an explicit example of renormalization physics
and running coupling constants that can be directly probed using trapped ultracold bosonic atoms,
and used to test central concepts in effective field theory.

To calculate effective interactions for confined bosons, we first assumed that the two-body
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FIG. 1: Illustration of the idea of replacing a multiple-orbital (or multiple-band) model with orbitals i =
0, 1, ... with only intrinsic two-body interactions by a single-orbital (or single-band) model with effective
multi-body interactions between renormalized states. A ground state multi-body model can be useful when
virtual excitations of bosons to excited vibrational levels are important.

interactions could be described in the low-energy, s-wave limit by an energy-independent zero-range
δ-function pseudopotential. To test our perturbative predictions, we then numerically calculatedN -
boson ground-state energies using a finite-range two-body Gaussian model potential. Comparison
with the numerical results revealed that finite-range effects must also be taken into account for
an accurate description of realistically interacting bosons. In this paper, we show that both the
finite range effects and effective interactions are accurately captured by the combination of zero-
range and energy-dependent δ-function pseudopotentials. Including the finite-range corrections, we
are able to validate our analytic and numerical calculations of all perturbation theory coefficients
through third order.

The basic idea in our approach is the following: we “integrate out” excited vibrational states
thereby trading a multi-orbital theory with intrinsic two-body interactions for a single-orbital the-
ory with effective multi-body interactions. The latter can provide a simple but powerful alternative
description of the low-energy few-body physics. The quantum fluctuations to excited states both
dress the two-body interactions and generate effective higher-body interactions. The idea is illus-
trated in Fig. 1. We showed in [18, 19] how this approach can be used to approximately incorporate
the influence of higher bands via the simple modification of adding higher-body interactions to the
single-band Bose-Hubbard model [35, 36].

Beyond applying directly to ultracold neutral bosons in an isotropic harmonic potential, our re-
sults can give qualitative insight into the effective interactions for other trapping potentials. They
can also be used for rough approximations to the effective two-, three-, and four-body interactions
in anisotropic potentials, and for neutral bosons in optical lattices. In the latter case, however,
anharmonicities are important. For example, we estimate an approximately 30% anharmonic cor-
rection to the three-body interactions for 87Rb in typical lattices. The role of anharmonicities
for collapse-and-revival dynamics in optical lattice systems has been analyzed further in [37]. In-
homogeneities and the effect of a background harmonic potential on lattice collapse-and-revival
dynamics has been studied in [38, 39].

Tunneling also has an influence on collapse and revival in optical lattices [40–42]. In deep
(post-quench) lattices the typical tunneling energy is nearly an order of magnitude smaller than
the effective three-body interaction energy, making the latter effect dominant. Tunneling should,
however, be of comparable importance to the effective four-body interactions. Approaches apply-
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ing effective interaction methods to tunneling in lattice or multi-well systems include [43–46], and
related methods for analyzing physics involving interactions, correlations, higher bands, and quan-
tum tunneling in lattice systems include [47–52]. Fermionic systems and fermion-boson mixtures
also yield interesting types of effective interactions that have received increasing attention (e.g.,
[31, 37, 53–56]), as well as three-body interactions of fermions and polar molecules in lattices [25].

For experiments with 87Rb at typical lattice densities the recombination rate [5, 57] is one or
more orders of magnitude smaller than the frequencies associated with both the effective three-
and four-body energies, and therefore the elastic effective interactions described in the present
paper are more important than inelastic multi-body interactions driving loss. Roughly, we expect
three-body recombination to scale at fourth order in the scattering length [58], and in the future
we would like to understand both elastic and inelastic interactions in a unified framework. The
role of effective three-body interactions in thermalizing a homogenous 1D Bose gas has also been
studied [59], and it would be interesting to investigate this physics in the context of a 3D optical
lattice system.

The remainder of this paper is organized as follows. In Sec. II, we provide an overview of
our results. Section III compares the perturbation theory predictions to numerical estimates for
finite-range interactions. Sections IV and V describe the details of the renormalized perturbation
theory used to obtain the effective multi-body interactions. Section IV defines the renormalized
Hamiltonian and derives the first- and second-order corrections, while Sec. V derives the two-,
three-, and four-body interaction energies through third order. Section VI summarizes our results
and conclusions. Finally, the appendices give derivations of a number of technical results used in
the paper.

II. OVERVIEW

We find the effective interactions of N ultracold bosons in the ground state of an isotropic
harmonic oscillator with pairwise interactions modeled by a zero-range δ-function pseudopotential

V2(ri − rj) = g2δ
(3)(ri − rj), (1)

where ri is the position vector of the ith boson. We assume there are no intrinsic three- or
higher-body interactions. The two-body coupling constant g2 is related to at(0), at first order
in perturbation theory, by g2 = 4π

(
~2/mA

)
at(0) +O([at(0)]2), where mA is the boson mass, at(0)

is the physical s-wave scattering length measured in the limit that the trap frequency and collision
energy go to zero, and O([at(0)]2) are terms of order [at(0)]2 and higher. At higher orders, the
relationship between g2 and at(0) is modified, and in Secs. IV and V we generalize the perturbation
theory as an expansion around the physical trap scattering length at(ω0) defined for a harmonic
potential with frequency ω0. In this overview, we summarize our results to third order in at(0),
i.e., the special case ω0 = 0.

We obtain the ground-state energy of N bosons as an expansion E =
∑

n=0E
(n), where E(n)

is proportional to [at(0)]n. Throughout this paper energies are expressed in units of the harmonic
oscillator energy ~ω. The zeroth-order (one-body) energy is E(0)(ω) = ε0N, where ε0 = 3/2 is
the dimensionless single-particle ground-state energy. The nth-order energies for n > 0 can be
expanded as

E(n) =
∑
m=2

(
N

m

)
U (n)
m (ω), (2)

where
(
N
m

)
is the binomial coefficient. The sum goes up to the minimum of N and n+ 1, and the
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Effective Interaction Energy Coefficients

Two-body

c
(1)
2 = (2/π)1/2 = +0.79788...

c
(2)
2 = (2/π)(1− log 2) = +0.19535...

c
(3)
2 = (2/π)3/2(1− π2

24
− 3 log 2 + 3

2
log2 2) = −0.39112...

d
(1,2)
2 = (3/4)(2/π)1/2 = +0.59841...

Three-body

c
(2)
3 = (2/π){−4

√
3 + 6[1− 2 log 2− log(2−

√
3)]}

= −0.85576...

c
(3)
3 = −12(2/π)1/2(1− log 2)α

(2)
3 + 12α

(3)
3 − 6α

(3)
4,3 − 18α

(3)
5

= +2.7921(1)

Four-body

c
(3)
4 = 48α

(3)
4,1 + 48α

(3)
4,2 − 72α

(3)
5 = +2.43317...

TABLE I: The coefficients c
(n)
m and d

(1,2)
2 , which give the nth-order correction to the m-body effective

interaction energies U
(n)
m (ω) [see Eqs. (3) and (8)] for neutral bosons in an isotropic harmonic potential.

The results for c
(1)
2 , c

(2)
2 , c

(3)
2 , d

(1,2)
2 , and c

(2)
3 are exact. The coefficients c

(3)
3 and c

(3)
4 are given in terms of

parameters a
(2)
3 , α

(3)
3 , etc., defined in Table II. We have obtained exact analytic expressions for α

(2)
3 , α

(3)
4,3,

and α
(3)
5 . The numerical approximations for α

(3)
4,1 and α

(3)
4,2 are obtained to very high precision, but slow

convergence of the expression giving α
(3)
3 is responsible for the uncertainty in the value of c

(3)
3 .

nth-order contributions to the m-body interaction energies (in units of ~ω) are

U (n)
m (ω) = c(n)

m

(
at(0)

σ(ω)

)n
, (3)

where the harmonic oscillator length for an isotropic potential with frequency ω is

σ(ω) =
√
~/mAω. (4)

Table I gives the values of c
(n)
m obtained in Secs. IV and V. The two-body coefficients c

(1)
2 , c

(2)
2 ,

and c
(3)
2 independently reproduce the results in [34], if the exact solution found there is expanded

through third order. The coefficient c
(3)
2 , in particular, is nontrivial and provides a strong consis-

tency check that the renormalized perturbation theory captures the two-body low-energy interac-
tions correctly.

The analytic value of the three-body coefficient c
(2)
3 was previously found in [18]. The coefficient

c
(3)
3 found here extends that result to third order in at(0). The value of c

(3)
3 given in Table I

combines both analytic and approximate numerical results, and the uncertainty is due to the slow
convergence of one of the numerically determined sums (see App. B 2).

We also obtain the coefficient c
(3)
4 , which gives the leading-order contribution to the effective

four-body energy. The coefficient c
(3)
4 combines numerical and analytic results, but unlike c

(3)
3 has

high precision because of the fast convergence of all the contributing terms. Note that c
(3)
3 and c

(3)
4

have similar magnitudes, and consequently we need to include the effective three-body corrections
when effective four-body effects are important or of interest. At the end of Sec. II, we show that
the correction from the third-order terms becomes significant for ultracold atoms in trap potentials

with relatively tight confinement. The coefficients c
(3)
3 and c

(3)
4 have not previously been reported

in the literature.
In Sec. III, we compare the predictions for zero-range interactions to numerical calculations

for a Gaussian boson-boson interaction potential and find significant effects from its finite-range
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nature. We show that these are accurately modeled by adding to the zero-range pseudopotential
V2 an energy-dependent (higher-derivative) pseudopotential [11]

V ′2(ri − rj) =
1

2
g′2[
←−
∇2
ijδ

(3)(ri − rj) + δ(3)(ri − rj)
−→
∇2
ij ], (5)

which has been symmetrized to make it Hermitian. The operators
←−
∇ ij and

−→
∇ ij are gradients with

respect to the relative separation ri − rj , acting to the left and right, respectively. The coupling
constant is

g′2 =

(
4π

~2

mA

)(
1

2
reff[at(0)]2

)
+O(reff[at(0)]3), (6)

where reff is the effective range [60]. To first-order in g′2, the shift to the N -body ground-state
energy is

E(1,2) =

(
N

2

)
U

(1,2)
2 (ω) (7)

with

U
(1,2)
2 (ω) = d

(1,2)
2

(
reff

σ(ω)

)(
at(0)

σ(ω)

)2

. (8)

The superscript (1, 2) indicates that the term is first order in reff and second order in at(0), and

d
(1,2)
2 is given in Table I.

The potential V ′2 is proportional to reff[at(0)]2/σ(ω)3 and we consider in this paper a regime

where at(0) ≈ reff � σ(ω), such that V ′2 and therefore U
(1,2)
2 (ω) can be treated as if the contribution

is third order in at(0). This approach is supported by the comparison between the perturbative
energies and the energies for the Gaussian potential with spatial widths r0 . 0.01σ(ω) in Sec. III.

Adding the contribution U
(1,2)
2 (ω) to the two-body interaction energy extends our results to more

realistic systems, like ultracold atoms that interact through finite-range van der Waals potentials.
Equation (2) organizes the N -body energy in powers of the free-space s-wave scattering length

at(0). Alternatively, combining our results, we can reorganize the energy in terms of m-body
contributions as

E = ε0N +
1

2!
U2(ω)N(N − 1) +

1

3!
U3(ω)N(N − 1)(N − 2) (9)

+
1

4!
U4(ω)N(N − 1)(N − 2)(N − 3) + ...,

where through third order the two-body interaction energy is

U2(ω) = c
(1)
2

(
at(0)

σ(ω)

)
+ c

(2)
2

(
at(0)

σ(ω)

)2

+ c
(3)
2

(
at(0)

σ(ω)

)3

+ d
(1,2)
2

(
reff

σ(ω)

)(
at(0)

σ(ω)

)2

(10)

+O
(

[at(0)]4

[σ(ω)]4

)
+O

(
reff[at(0)]3

[σ(ω)]4

)
,

the three-body interaction energy is

U3(ω) = c
(2)
3

(
at(0)

σ(ω)

)2

+ c
(3)
3

(
at(0)

σ(ω)

)3

+O
(

[at(0)]4

[σ(ω)]4

)
+O

(
reff[at(0)]3

[σ(ω)]4

)
, (11)
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and the four-body interaction energy is

U4(ω) = c
(3)
4

(
at(0)

σ(ω)

)3

+O
(

[at(0)]4

[σ(ω)]4

)
+O

(
reff[at(0)]3

[σ(ω)]4

)
. (12)

The four-body interaction energy U4(ω), although comparatively small, can lead to qualitatively
important effects, particularly for traps with stronger confinement. For example, for N = 4
87Rb atoms and at(0)/σ(ω) = 0.05, corresponding to a 104 Hz trap frequency, the four-body
energy should generate a distinct approximately 60 Hz beating frequency in collapse-and-revival
oscillations, using our harmonic trap results to estimate the energy in an optical lattice potential.
These effects should be measurable as long as tunneling and trap inhomogeneities are sufficiently
reduced [17].

Using the effective interaction energies in Eqs. (10) to (12), we can construct a single-orbital
effective Hamiltonian

Heff(ω) = ε0â
†â+

∑
m=2

1

m!
Um(ω)â†mâm, (13)

where â (â†) annihilates (creates) a boson in a renormalized single-particle ground state. The
effective Hamiltonian can be used to incorporate some higher-band physics, via effective multi-
body interactions, into a single-band Bose-Hubbard model [18].

The effective interaction energies can be tuned by changing either the scattering length at(0),
for example with a Feshbach resonance [2], or the trap frequency ω of the confinement [61, 62]. For
example, for a fixed at(0), this tuning follows from rewriting the Um(ω) in terms of the characteristic
scattering energy ~ωs = ~2/mA[at(0)]2. That is, we write Ũm(ω) = Um(ω)(ω/ωs) such that

Ũ2(ω) = c
(1)
2 (ω/ωs)

3/2 + c
(2)
2 (ω/ωs)

2 + (c
(3)
2 + d

(1,2)
2 [reff/at(0)])(ω/ωs)

5/2 +O[(ω/ωs)
3], (14)

Ũ3(ω) = c
(2)
3 (ω/ωs)

2 + c
(3)
3 (ω/ωs)

5/2 +O[(ω/ωs)
3], (15)

and

Ũ4(ω) = c
(3)
4 (ω/ωs)

5/2 +O[(ω/ωs)
3]. (16)

Figure 2 shows, for the case of a zero-range potential (i.e. reff = 0), the two-body energies

Ũ
(1)
2 (ω) (in the inset) and Ũ

(2)
2 (ω)+Ũ

(3)
2 (ω), the three-body energies Ũ

(2)
3 (ω) and Ũ

(2)
3 (ω)+Ũ

(3)
3 (ω),

and the four-body energy Ũ
(3)
4 (ω) versus ω/ωs. As expected, Ũ

(1)
2 (ω) is the largest contribution.

The line labeled Ũ
(2)
3 (ω) shows the second-order three-body result found previously in [18], due

to the c
(2)
3 coefficient, and the line Ũ

(2)
2 (ω) + Ũ

(3)
2 (ω) shows the scale of the correction from the

third-order coefficient c
(3)
3 . The effective three- and four-body energies have opposite signs and are

of similar magnitude. Finally, the line labeled Ũ exact
2 (ω)− Ũ (1)

2 (ω) shows the good agreement with
the exact two-body results from [34] for the regularized zero-range potential.

It is interesting to directly compare the relative sizes of the second- and third-order corrections
for 87Rb in a trap. For small magnetic field strengths, the 87Rb scattering length and effective
range are approximately 5.3 nm and 7.9 nm, respectively [2]. For a trap frequency of 102 Hz, and

thus at(0)/σ(ω) = 0.005 (“weak” confinement), the third-order two-body terms c
(3)
2 [at(0)/σ(ω)]3

and d
(1,2)
2 [at(0)/σ(ω)]2[reff(0)/σ(ω)] are 1% and 2% of the second-order two-body contribution

c
(2)
2 [at(0)/σ(ω)]2. Similarly, the third-order three- and four-body terms c

(3)
3 [at(0)/σ(ω)]3 and

c
(3)
4 [at(0)/σ(ω)]3 are each about 1.5% of the second-order three-body contribution c

(2)
3 [at(0)/σ(ω)]2.
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FIG. 2: (Color Online) Perturbative predictions for dimensionless effective interaction energies Ũm(ω) versus
ω/ωs for fixed scattering length at(0), in units of the energy ~ωs = ~2/mA[at(0)]2. The inset shows the first-

order two-body energy Ũ
(1)
2 (ω). The main figure shows the second- and third-order corrections to the two-,

three-, and four-body energies, assuming no finite-range corrections. The top and right axes in both figures
show the energies converted to frequency units by multiplying by ωs/2π, assuming 87Rb with at(0) = 5.3

nm, mA = 86.9 u, and ωs/2π = 4.14 MHz. The line labeled Ũ exact
2 (ω)− Ũ (1)

2 (ω) gives values using the exact
two-body results for Ũ2(ω) from [34].

For a trap frequency of 104 Hz, and thus at(0)/σ(ω) = 0.05 (“strong” confinement), the third-
order two-body terms increase giving approximately 10% and 20% corrections compared to the
second-order two-body contribution. Similarly, the third-order three- and four-body terms increase
giving approximately 15% corrections compared to the second-order three-body contribution. (No-
tice, however, that the third-order effective two-body coefficient and the finite-range coefficient have
opposite signs, and hence their contributions partially cancel.) In typical optical lattice collapse-
and-revival experiments with 87Rb the confinement is even stronger and the ratio at(0)/σ(ω) is
on the order of 0.05 − 0.10 [17, 20–22]. In this regime we expect non-perturbative effects to also
become increasingly important.

III. COMPARISON OF PERTURBATIVE ENERGIES WITH ENERGIES FOR FINITE-
RANGE INTERACTIONS

This section compares the predictions of the perturbative ground-state energies for a zero-
range δ-function interaction potential, summarized in Sec. II and derived in Secs. IV and V, and
numerically obtained energies for N -boson systems with finite-range interactions. We show that
the leading-order contribution of an energy-dependent pseudopotential accurately captures the
finite-range effects, and allows us to also validate the analytic and numerical coefficients found
from the zero-range perturbation theory.

We use a finite-range interaction model based on a Gaussian two-body potential Vg(r) =
V0 exp[−(r/r0)2/2] with depth (or height) V0 and width r0 [63, 64]. For a given width r0, we
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FIG. 3: (Color online) Free-space scattering quantities for the Gaussian model potential, with all lengths
expressed in units of σ(ω). Circles and squares show the volume reff[at(0)]2/[σ(ω)]3 (in the main figure)
and the effective range reff/σ(ω) (in the inset) as a function of at(0)/σ(ω) for the Gaussian potential with
r0 = 0.005σ(ω) and r0 = 0.01σ(ω), respectively.

adjust the depth V0 such that Vg(r) produces the physical free-space s-wave scattering length at(0)
at zero collision energy. We restrict ourselves to depths V0 for which Vg supports no two-body
s-wave bound state in free-space. This implies that V0 is positive for at(0) > 0 and negative for
at(0) < 0.

An energy-dependent free-space scattering length for two particles with relative energy Erel and
relative wave number krel =

√
mAErel/~ can be defined as

af(Erel) = −tan(δf(krel))

krel
, (17)

where δf(krel) is the free-space s-wave phase shift. The effect of a finite-range potential on the
free-space scattering of two ultracold bosons can be captured by Taylor-expanding δf(krel) [60, 65],
giving

af(Erel) = at(0) +
1

2
reff[at(0)]2k2

rel + · · · , (18)

where reff is the effective range parameter which describes the lowest-order energy dependence of
the phase shift [61, 62].

Figure III shows the effective range reff and the “volume” reff[at(0)]2 for two bosons interacting
with the Gaussian potential with two different choices of r0/σ(ω) � 1. (The volume factor here
characterizes the leading-order effective-range correction to s-wave scattering.) We extract reff by
fitting the numerically evaluated − tan(δf(krel))/krel to the right-hand-side of Eq. (18) for small
scattering energies. The effective range is positive for negative at(0), negative for small positive
at(0), and diverges as at(0)→ 0. Importantly, since at(0) = 0 implies V0 = 0 (no scattering poten-
tial), the volume reff[at(0)]2 also vanishes when at(0) = 0, as seen in the main part of Fig. III. The
divergent behavior of the effective range is also observed for realistic van der Waals potentials [66]
and indeed for any potential that falls off faster than 1/r5 [65], although for these potentials (unlike
the Gaussian) reff[at(0)]2 is finite but non-zero in the limit at(0)→ 0.

We determine the ground-state energy of N = 3 and N = 4 bosons interacting through the
Gaussian model potential under external spherically symmetric harmonic confinement using a basis
set expansion that expresses the relative N -body wave function in terms of explicitly correlated

9
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FIG. 4: (Color online) The quantity [EFR−E(0)−E(1)]×104 versus at(0)/σ(ω) for N = 3 and 4 in panel (a)
and (b), respectively. (Energies are in units of ~ω.) The finite-range energies EFR are numerically computed
with r0 = 0.01σ(ω) (blue squares) and r0 = 0.005σ(ω) (red circles). The solid line is [E(2) + E(3)] × 104

found from the perturbative theory with the zero-range potential.

Gaussians [64]

ψrel =

Nb∑
k=1

ukS exp

−1

2

∑
i<j

(
rij

v
(k)
ij

)2
 . (19)

The uk denote expansion coefficients, Nb is the number of basis functions, and S symmetrizes
the wave function under the exchange of any pair of bosons. The Nb × N(N − 1)/2 variational

widths v
(k)
ij , chosen stochastically from the interval [r0/5, 4σ(ω)], are optimized semi-stochastically

following the scheme outlined in Ref. [64]. In brief, the variational method works as follows. Assume
we have a basis set consisting of j − 1 basis functions that yields a ground-state energy estimate
Ej−1. To add the jth basis function (j ≤ Nb), we generate a few thousand trial functions. For
each trial function, we solve for a trial ground-state energy by diagonalizing a j × j dimensional
generalized eigenvalue problem. (It is a generalized eigenvalue problem because the basis functions
are nonorthogonal.) We choose as the jth basis function the one which makes Ej smallest, and
repeat this process for the (j + 1)th basis function until j = Nb. A key benefit of the explicitly
correlated basis functions is that the Hamiltonian and overlap matrix elements have compact
analytical expressions [64].

Convergence is analyzed by investigating the dependence of the energies on Nb and by perform-

ing calculations for different sets of widths v
(k)
ij . To meaningfully compare numerical three- and

four-body energies EFR for the finite-range (FR) interaction potential with perturbative results up
to order [at(0)]3, the numerical accuracy of the finite-range energies should be notably better than

10
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FIG. 5: (Color online) Analysis of the three-boson [panel (a)] and four-boson [panel (b)] energies including
scattering length and effective range effects. All energies are scaled by [σ(ω)/at(0)]2 to emphasize the
corrections due to finite range effects. The numerically determined finite-range energies EFR are calculated
for the Gaussian potential with spatial width r0 = 0.005σ(ω) (red circles) and r0 = 0.010σ(ω) (blue squares),
respectively. The dashed line shows the scaled perturbation theory prediction E(2) + E(3) for a zero-range,
delta-function potential. The divergence at at(0)/σ(ω) = 0 is due to the divergence of the effective range at
zero scattering length. The unscaled energy shift vanishes when at(0) = 0. The solid lines show the scaled
energies E(2) + E(3) + E(1,2), which include the perturbatively calculated finite-range correction E(1,2).

|at(0)/σ(ω)|3. For example, for |at(0)| = 0.001σ(ω) and |at(0)| = 0.01σ(ω), this implies numerical
accuracy better than 10−9 and 10−6, respectively. An analysis of the basis set error shows that our
N -body energies are sufficiently accurate to test the perturbative predictions up to order [at(0)]3

for |at(0)| & 0.1r0, using about 100 and 500 basis functions for N = 3 and N = 4, respectively.
Our numerical accuracy is insufficient to test the perturbative predictions for smaller |at(0)|.

Figure 4 shows the quantity [EFR − E(0) − E(1)]× 104 versus at(0)/σ(ω), with the finite-range
energies EFR numerically computed using r0 = 0.01σ(ω) (the blue squares) and r0 = 0.005σ(ω)
(the red circles). We have subtracted the energies E(0) and E(1) obtained from the perturbative
theory to better examine the physics beyond first order in at(0). The solid line is [E(2) +E(3)]×104

from the perturbative theory with reff = 0. Panels (a) and (b) give the energies for N = 3 and
4 bosons, respectively. For N = 3, we see that finite-range corrections to the zero-range theory
become more significant for increasing r0.

In Figs. 5(a) and (b), we multiply the N = 3 and 4 energies EFR−E(0)−E(1) by [σ(ω)/at(0)]2.
The perturbative predictions for (E(2) +E(3))[σ(ω)/at(0)]2 are straight lines. The nonperturbative
numerical results are for potentials with r0 = 0.005σ(ω) and r0 = 0.01σ(ω). The figures show
that the scaled numerical results are singular near zero scattering length, and only approach the
zero-range perturbative results with increasing |at(0)|. Moreover, by decreasing r0 the difference
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between the perturbative results and the scaled finite-range energies is reduced, and we conclude
that the divergences at at(0) = 0 are due to the finite range of the Gaussian potential. Multiplying
the energies by [σ(ω)/at(0)]2 has magnified the finite-range corrections, showing that an effective
field theory description for finite-range potentials requires corrections to the zero-range δ-function
potential.

We can calculate the leading-order influence of a finite-range potential by including the energy-
dependent zero-range pseudopotential of Eq. (5). For the N -boson ground state, the pseudopoten-
tial gives to first order in g′2 an energy shift E(1,2) [see Eq. (7)]. At this order, the addition of V ′2 is
equivalent to replacing at(0) by af(Erel), with Eq. (18) evaluated at the relative zero-point energy
Erel = 3/2 (in units of ~ω) of two non-interacting bosons in the trap.

The solid lines in Fig. 5 show (E(2) +E(3) +E(1,2))[σ(ω)/at(0)]2 as a function of at(0)/σ(ω) for
N = 3 and N = 4 trapped bosons, respectively. Combining the perturbative predictions for zero-
range contributions E(2) +E(3) and the effective-range correction E(1,2) gives excellent agreement
with the nonperturbative finite-range energies. The comparison validates the perturbation theory
and predictions derived in this paper for effective interactions including finite-range corrections,
through third order in at(0). It also shows that the divergences in Fig. 5 at at(0) = 0 are due to
the divergence of the effective range shown in the inset of Fig. III. Finally, we note that the energy
shift is proportional to the volume reff[at(0)]2 and goes to zero at at(0) = 0, as expected.

IV. FIRST- AND SECOND-ORDER EFFECTIVE INTERACTIONS

A. Hamiltonian and renormalization condition

The numerical results in Sec. III show that finite-range effects are important at third order in
perturbation theory for realistic bosons. We incorporate these corrections by modeling the pairwise
collisions of ultracold bosons by combining the zero-range pseudopotential

V2(r1 − r2) = 4π
~2

mA
abareδ

(3)(r1 − r2), (20)

where abare is now identified as the bare scattering length, and the effective-range potential

V ′2(r1 − r2) =
1

2
g′2,bare[

←−
∇2

12δ
(3)(r1 − r2) + δ(3)(r1 − r2)

−→
∇2

12], (21)

which has the bare coupling constant

g′2,bare =

(
4π

~2

mA

)(
1

2
reff[abare]

2

)
. (22)

The interactions of N ultracold neutral bosons can be described in quantum field theory with the
Hamiltonian H = H0 +HI, where H0 is the single-particle Hamiltonian and

HI =
1

2

∫
ψ̂†(r1)ψ̂†(r2)[V2(r1 − r2) + V ′2(r1 − r2)]ψ̂(r1)ψ̂(r2)dr1dr2. (23)

The field operators ψ̂(r) and ψ̂†(r) respectively annihilate and create a boson at position r. We
assume the absence of intrinsic three- or higher-body interactions.

The bosonic field is expanded over isotropic harmonic oscillator states with frequency ω as

ψ̂(r) =
∑
nlm

φnlm(r)ânlm =
∑
i

φi(r)âi, (24)
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with âi annihilating a boson in orbital φi(r). In the following we use the shorthand notation
i = {nlm}, denoting the (dimensionless) single-particle energies as εi = εnlm = (2n + l + 3/2),
where n, l = 0, 1, 2, ..., and i = 0 is the {nlm} = {000} single-particle vibrational ground state.
Substituting Eq. (24) into H and dividing by ~ω, we define the dimensionless Hamiltonian H =

H0 +HI +H ′I, where H0 =
∑

i εiâ
†
i âi,

HI =
1

2

(
abare

σ(ω)

)∑
ijkl

Kij;klâ
†
i â
†
j âkâl, (25)

and

H ′I =
1

2

(
1

2

reff[abare]
2

σ(ω)3

)∑
ijkl

K ′ij;klâ
†
i â
†
j âkâl. (26)

The matrix elements

Kij;kl = 4π[σ(ω)]3
∫
φ∗i (r)φ∗j (r)φk(r)φl(r)dr (27)

and

K ′ij;kl = 4π[σ(ω)]5
∫

[φ∗i (r)φ∗j (r)]
←→
∇ 2

r[φk(r)φl(r)]dr (28)

are normalized such that K00;00 =
√

2/π and K ′00;00 = (3/4)
√

2/π, with the semi-colon separating

initial and final states and
←→
∇ 2

r = (
←−
∇2

r +
−→
∇2

r)/2. The factors of [σ(ω)]3 and [σ(ω)]5 make the matrix
elements dimensionless and ω-independent. As explained in Sec. II, we assume a regime where H ′I
can be treated as third order in perturbation theory.

The noninteracting ground state containing N bosons in the i = 0 (i.e., nlm = 000) vibrational

ground state is |N〉 = â†N0 |0〉/
√
N !, with energy E(0) = Nε0 and ε0 = 3/2. First-order perturbation

theory in HI gives E(1)(ω) = (1/2)N(N − 1)U
(1)
2 with

U
(1)
2 = α

(1)
2

(
abare

σ(ω)

)
, (29)

using 〈N | a†0a
†
0a0a0 |N〉 = N(N−1) and recalling that |N〉 denotes N bosons in the non-interacting

vibrational state nlm = 000. The two-body, first-order coefficient is α
(1)
2 =

√
2/π.

At higher orders in HI, there are divergences due to the δ-function potential (see e.g. [67,
68]). We regulate these by either truncating sums over intermediate states at a high-energy cutoff
~ωc, or by using an exponential regulator function. The former is more convenient for numerical
approximations, while the latter is more convenient for analytic results. In either case, we find at

second order that U
(2)
2 diverges as

√
ωc and renormalization is required. Although this can be done

using bare perturbation theory, in which infinities are absorbed by appropriately redefining bare
parameters, we use the method of renormalized perturbation theory which provides a systematic
and self-consistent approach for calculations beyond second order involving multiple divergent
terms.

Renormalized perturbation theory (e.g., see [33]) re-expresses the bare scattering length as

abare = at(ω0) + act(ω0). (30)

A renormalization condition defines at(ω0) as the physical scattering length for two bosons in a
trap at frequency ω0. The cutoff dependent remainder act(ω0) is called a counterterm. For brevity,
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FIG. 6: The length scales of interacting, harmonically trapped, ultracold bosons. We assume a separation
of length scales lc � at(ω0) � σ(ω0), or equivalently a separation of energy scales ωc � ωs � ω0, where
ωs = ~/mAat(ω0)2. The harmonic oscillator lengths σ(ω) and σ(ω0) are of the same order, although σ(ω0)
is not necessarily larger than σ(ω). Similarly, we assume that at(ω0), at(0), reff, and the Gaussian width r0

are of the same order. The order of length scales within a group is arbitrary.

this notation suppresses the dependence of act(ω0) on ωc. In the following, we call at(ω0) the “trap
scattering length” at frequency ω0, to distinguish it from the energy-dependent free-space scattering
length af(Erel) defined in Eq. (17). In the limits of zero relative collision energy and ω0 = 0, the
trap and free-space scattering lengths are equal, i.e., at(0) = af(0). With the combination of V2

and V ′2, the trap scattering length at(ω0) includes both the effects of the ω0-dependent dressing
by quantum fluctuations to higher orbitals and finite-range effects. Note that the trap scattering
length at(ω0), does not, in general, equal the free-space scattering length af(Erel) defined in Eq. (18)
because the latter does not correctly capture the influence of the harmonic confinement on the
quantum fluctuations to higher orbitals.

Together with the renormalization condition, the other key ingredient in renormalized pertur-
bation theory is that the leading-order scattering length counterterm act(ω0) is proportional to
[at(ω0)]2; in other words, it is a second- and higher-order contribution. This, plus the renormal-
ization condition, systematically reorganizes the perturbation theory, order-by-order, so that it is
an expansion in the physical value at(ω0) instead of abare. Figure 6 summarizes the relationship
between the characteristic length and energy scales for our model system of trapped ultracold
bosons.

Substituting Eq. (30) into Eqs. (25) and (26) gives

HI(ω;ω0) = V (ω;ω0) + V ′(ω;ω0) + Vct(ω;ω0), (31)

where the zero-range and counterterm operators are

V (ω;ω0) =
1

2

(
at(ω0)

σ(ω)

)∑
ijkl

Kij;klâ
†
i â
†
j âkâl, (32)

Vct(ω;ω0) =
1

2

(
act(ω0)

σ(ω)

)∑
ijkl

Kij;klâ
†
i â
†
j âkâl, (33)

and the effective-range operator is

V ′(ω;ω0) =
1

2

(
1

2

reff[at(ω0)]2

[σ(ω)]3

)∑
ijkl

K ′ij;klâ
†
i â
†
j âkâl +O

(
reff[at(0)]3

[σ(ω)]4

)
. (34)
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The renormalized perturbation theory is then organized based on the observation that V (ω;ω0)
is proportional to at(ω0), Vct(ω;ω0) is proportional to [at(ω0)]2, and V ′(ω;ω0) is (for the regime
considered here) proportional to [at(ω0)]3. The single counterterm operator Vct(ω;ω0) cancels all
divergences from the operator V (ω;ω0), at all orders in perturbation theory. In contrast, the
effective-range operator V ′(ω;ω0) leads to a nonrenormalizable field theory with the consequence
that new counterterm operators are required at every order in perturbation theory beyond first
order in g′2; because we are only working to first order in g′2 in this paper, no additional counterterms
are needed.

Note that the frequency ω0 at which at(ω0) is defined and the trap frequency ω for which we
want to compute energies are independent. In the overview, we summarized our results for the
special case where ω0 = 0. The general case of arbitrary ω0 facilitates renormalization of the
perturbation theory. More importantly, the renormalized perturbation theory is “calibrated” to a
measured value of at(ω0) at a desired trap frequency ω0, and is then used to predict energies for
trap frequencies ω not generally equal to ω0.

We can now compute the ground-state energy

E(ω;ω0) = ε0N +
1

2!
U2(ω;ω0)N(N − 1) +

1

3!
U3(ω;ω0)N(N − 1)(N − 2) (35)

+
1

4!
U4(ω;ω0)N(N − 1)(N − 2)(N − 3) + ....

We have used the semi-colon notation in Eqs. (31) to (35) to distinguish between the roles of
the frequencies ω and ω0. Before renormalization, the interaction energies Um(ω;ω0), found from
perturbation theory in HI(ω;ω0), are functions of at(ω0) and act(ω0). The renormalization condition
can be expressed as

U2(ω = ω0;ω0) =

√
2

π

(
at(ω0)

σ(ω = ω0)

)
, (36)

which, in practice, is solved for act(ω0) to the desired order in perturbation theory. Another
way of describing the renormalization condition is that act(ω0) is tuned such that the first-order
result is exact and the second- and higher-order corrections to the two-body energy vanish when
evaluated for two bosons in a trap with ω = ω0. After renormalization, the interaction energies
Um(ω;ω0) depend only on at(ω0) and, moreover, the ω-dependence of the ground-state energy
satisfies E(ω;ω0) = E(ω;ω′0), for any pair of frequencies ω0 and ω′0.

B. Energy at first-order in scattering length

We use renormalized Rayleigh-Schrödinger (RS) perturbation theory to compute the N -boson
ground-state energy E =

∑
n=0E

(n), where E(n) is proportional to [at(ω0)]n. We separate the

contributions at each order into m-body energies, such that Um(ω;ω0) =
∑

n U
(n)
m (ω;ω0). The

zeroth-order term is E(0)(ω) = ε0N . The first-order energy shift is

E(1)(ω;ω0) = 〈N |HI(ω;ω0)|N〉 = 〈N |V (ω;ω0)|N〉 =
1

2

√
2

π

(
at(ω0)

σ(ω)

)
N(N − 1), (37)

using the fact that V , Vct, and V ′ are O(at(ω0)/σ(ω)), O([at(ω0)/σ(ω)]2), and O([at(ω0)/σ(ω)]3),

respectively, and 〈N | a†0a
†
0a0a0 |N〉 = N(N − 1).

Comparing to Eq. (35), we see that the two-body energy to first-order for any ω and ω0 is

U
(1)
2 (ω;ω0) = c

(1)
2

(
at(ω0)

σ(ω)

)
, (38)
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with

c
(1)
2 = α

(1)
2 =

√
2

π
. (39)

For a trap with ω = ω0, the renormalization condition says that U
(1)
2 (ω0;ω0) =

√
2/π[at(ω0)/σ(ω0)]

is the exact two-body energy. For ω 6= ω0, U
(1)
2 (ω 6= ω0;ω0) is the leading order contribution to

the full two-body energy U2(ω;ω0), but, as shown in the following sections, there are higher-order
corrections that become increasingly important the more ω differs from ω0.

C. Energy at second-order in scattering length

The second-order energy shift is given by

E(2) = Vct;00,00 −
ωc/ω∑
ij 6=00

V00,ijVij,00

∆εij
, (40)

where Vij,kl = 〈ij|V |kl〉 and Vct;ij,kl = 〈ij|Vct|kl〉. The notation |ij〉 = Zij â
†
i â
†
j â0â0 |N〉 denotes

the state with either one or two particles excited from the non-interacting ground state, ∆εij =
εi + εj − 2ε0, Zij is a normalization factor, and ij 6= 00 denotes summing over all i, j except
i = j = 0. Equation (40) is modified from the usual RS perturbation theory because of the
presence of the O([at(ω0)]2) interaction term Vct, which generates the counterterm contribution.

The sums over intermediate states |ij〉 exclude the ground state i = j = 0, and are regularized
using either a hard cutoff ∆εij < ωc/ω, or an exponential regulator ∆ε−1

ij → e−∆εijω/ωc∆ε−1
ij , where

~ωc is a high-energy cutoff. In the limit ωc/ω →∞, these regulators are equivalent.
Using Eqs. (32) and (33), we have

E(2)(ω;ω0) =
1

2
α

(1)
2

(
act(ω0)

σ(ω)

)
N(N − 1)− 1

4

(
at(ω0)

σ(ω)

)2

N(N − 1)

ωc/ω∑
ij 6=00,kl

K00;ijKkl;00

∆εij
〈âiâj â†kâ

†
l 〉,

(41)
and the expectation value is with respect to the non-interacting ground state |N − 2〉 ∝ â0â0|N〉.
The notation ij 6= 00, kl indicates that the sum is over all i, j, k, l except i = j = 0. Wick’s theorem
gives

〈âiâj â†kâ
†
l 〉 = 4〈:âiâj â†kâ

†
l :〉+ 2〈:âiâj â†kâ

†
l :〉

= 4δik(N − 2) + 2δikδjl, (42)

where :: denotes normal ordering, uncontracted indices are set to zero, and contractions âiâ
†
k = δik.

Also, we have used 〈:âiâj â†kâ
†
l :〉 = 0, 〈:â†M0 âM0 :〉 = (N − 2)(N − 3)...(N −M + 1), and combined

equivalent terms. Because of the factor N − 2, the first term of Eq. (42) can be understood
as leading to an effective three-body interaction, whereas the second term is a correction to the
two-body interaction.

The second-order interaction energies U
(2)
2 (ω;ω0) and U

(2)
3 (ω;ω0) can be extracted by evaluating

Eq. (41) and comparing with Eq. (35). This gives

U
(2)
2 (ω;ω0) = α

(1)
2

(
act(ω0)

σ(ω)

)
− β(2)

2 (ω)

(
at(ω0)

σ(ω)

)2

= − , (43)
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and

U
(2)
3 (ω;ω0) = −6α

(2)
3

(
at(ω0)

σ(ω)

)2

= −6 . (44)

The expressions for β
(2)
2 (ω) and α

(2)
3 are defined in Table II, which also shows the explicit values

calculated in Appendices A and B for an isotropic harmonic trap. We use the notation that α
(n)
m and

β
(n)
m (ω) are associated with nth-order, m-body processes. The sum that gives β

(2)
2 (ω) diverges with

cutoff as
√
ωc/ω, where ωc/ω is approximately the number of harmonic oscillator levels included

in the sum as a function of ω, for a fixed cutoff ωc. The coefficient α
(2)
3 is convergent and in the

limit ωc/ω →∞ is independent of ω. In the following, we only indicate the explicit ω dependence

for coefficients that remain sensitive to ω in the limit ωc/ω → ∞, e.g., we write β
(2)
2 (ω) but α

(2)
3 .

We use a hard cutoff to numerically evaluate the coefficients α
(3)
3 , α

(3)
4,1 and α

(3)
4,1 (see Sec. V for the

definitions of the third-order coefficients.) For the coefficients α
(2)
3 , α

(3)
4,3, and α

(3)
5 , we find analytic

results in the limit ωc/ω →∞. Finally, using the exponential regulator, we obtain analytic results

for the coefficients β
(2)
2 (ω), β

(3)
2 (ω), and β

(3)
3 (ω) for any ωc/ω.

Equations (43) and (44) have also been represented diagrammatically, with factors of

Kij;kl[at(ω0)/σ(ω)] assigned vertices , and contractions âiâ
†
k representing excited particles as-

signed dashed lines . Uncontracted operators â0 (or â†0) are assigned incoming (or outgoing
) lines. The counterterm is represented as Kij;kl[act(ω0)/σ(ω)] = . Intermediate states have one
or more excited particles and contribute an energy denominator 1/∆εij . For example, the diagram

is a graphical representation for the term α
(2)
3 [at(ω0)/σ(ω)]2, and U

(2)
3 (ω;ω0) = −6 .

We obtain combinatorial prefactors [e.g. −6 for U
(2)
3 (ω, ω0)] from Wick’s theorem by counting

the number of equivalent contractions, dividing by 2 for every factor of at(ω0) or act(ω0), and
multiplying by m! for an m-body term.

The renormalization condition through second order is U2(ω;ω0) = U
(1)
2 (ω0;ω0)+U

(2)
2 (ω0;ω0)+

O([at(ω0)]3) + O(reff[at(ω0)]2) = U
(1)
2 (ω0;ω0), and hence U

(2)
2 (ω0;ω0) = 0. Diagrammatically

|ω=ω0 = |ω=ω0 . Solving for the counterterm gives

act(ω0) =
β

(2)
2 (ω0)

α
(1)
2

(
at(ω0)

σ(ω0)

)2

σ(ω0). (45)

Substituting into Eq. (43) gives

U
(2)
2 (ω;ω0) = c

(2)
2 (ω, ω0)

(
at(ω0)

σ(ω)

)2

, (46)

where the function

c
(2)
2 (ω, ω0) =

√
ω0/ωβ

(2)
2 (ω0)− β(2)

2 (ω) (47)

can be used for any ω. (We have used σ(ω0)/σ(ω) =
√
ω/ω0 above to simplify the expressions.)

The form of the expression for the coefficient c
(2)
2 (ω, ω0) ensures that the divergent terms cancel.

For an isotropic harmonic oscillator, we show in App. B 6, using an exponential regulator, that

β
(2)
2 (ω) = (2/π) [

√
ωc/2ω − (1− log 2)] +O(1/ω1/2

c ), (48)

and thus

c
(2)
2 (ω, ω0) = (2/π) (1− log 2)

[
1−

√
ω0/ω

]
. (49)
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FIG. 7: Sequence of boson-boson interaction induced transitions to higher orbitals. This example generates
corrections to the ground state energy that can be viewed as an effective three-body interaction. The
process, which involves three interaction vertices, arises at third order in perturbation theory and gives the

energy shift α
(3)
3 [at(ω0)/σ(ω)]3 derived in the text. Links labelled Vij represent intrinsic 2-body interactions

between particles i and j. Black arrows represent virtual transitions to and from excited orbitals. Solid and
dashed lines represent atoms in ground and excited vibrational states, respectively. The diagram on the far
right shows the perturbation theory diagram for this process.

The renormalization condition is automatically satisfied since c
(2)
2 (ω0, ω0) = 0. For the special case

when ω0 = 0, we find

c
(2)
2 (ω, 0) = c

(2)
2 = (2/π) (1− log 2) = 0.19535.... (50)

For brevity, we define c
(n)
m without arguments as the coefficients c

(n)
m (ω, 0) for the special case when

ω0 = 0. In this limit, the coefficients c
(n)
m are independent of ω.

Combining the first- and second-order contributions for the two-body interaction energy gives

U2(ω;ω0) = c
(1)
2

(
at(ω0)

σ(ω)

)
+ c

(2)
2 (ω, ω0)

(
at(ω0)

σ(ω)

)2

+O
(

[at(ω0)]3

[σ(ω)]3

)
+O

(
reff[at(ω0)]2

[σ(ω)]3

)
. (51)

The coefficient α
(2)
3 in Eq. (44) is finite and does not require a regulator. For the three-body

interaction energy we obtain

U3(ω;ω0) = c
(2)
3

(
at(ω0)

σ(ω)

)2

+O
(

[at(ω0)]3

[σ(ω)]3

)
+O

(
reff[at(ω0)]2

[σ(ω)]3

)
, (52)

where c
(2)
3 = −6α

(2)
3 = −0.85576... This value was previously obtained in [18], and is also calculated

in App. B 1.

V. EFFECTIVE INTERACTIONS THROUGH THIRD ORDER

We now extend our analysis to third order in the scattering length at(ω0). This is necessary to
obtain the leading-order effective four-body interaction. Including the counterterm and effective-
range interaction, the formula for the third-order energy shift is

E(3)(ω;ω0) =

ωc/ω∑
ij 6=00,kl 6=00

V00,ijVij,klVkl,00

∆εij∆εkl
− V00,00

ωc/ω∑
ij 6=00

V00,ijVij,00

∆ε2
ij

− 2

ωc/ω∑
ij 6=00

Vct;00,ijVij,00

∆εij
+ V ′00,00.

(53)
The first term on the right-hand-side of Eq. (53) gives

1

8

(
at(ω0)

σ(ω)

)3

N(N − 1)

ωc/ω∑
ij 6=00,klqr,st6=00

K00;ijKkl;qrKst;00

∆εij∆εst
〈âiâj â†kâ

†
l âqârâ

†
sâ
†
t〉, (54)
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where the expectation value is with respect to the noninteracting ground state with (N−2) bosons.
Applying Wick’s theorem, Eq. (54) expands as

{ 1

2!
β

(3)
2 (ω)N(N − 1) +

1

3!
[12α

(3)
3 + 12β

(3)
3 (ω)]N(N − 1)(N − 2) (55)

+
1

4!
[48α

(3)
4,1 + 48α

(3)
4,2 + 6α

(3)
4,3]N(N − 1)(N − 2)(N − 3)

+
1

5!
60α

(3)
5 N(N − 1)(N − 2)(N − 3)(N − 4)}

(
at(ω0)

σ(ω)

)3

.

We find effective two-, three-, and four-body interactions from the terms with four,
three, and two contractions, respectively. The zero-contraction term vanishes since
〈:âiâj â†kâ

†
l âi′ âj′ â

†
k′ â
†
l′ :〉 = 0. Comparing to Eq. (35), we see that there is a two-body contribution

β
(3)
2 (ω)[at(ω0)/σ(ω)]3 = , there are two three-body contributions 12α

(3)
3 [at(ω0)/σ(ω)]3 =

12 and 12β
(3)
3 (ω)[at(ω0)/σ(ω)]3 = 12 , and so on. The definitions for the coefficients

β
(3)
2 , α

(3)
3 , β

(3)
3 , etc., are given in Table II, along with the associated diagrams, asymptotic behavior,

and explicit forms for an isotropic harmonic oscillator potential (calculated in Appendices A and

B). Figure 7 illustrates one of the sequences of virtual transitions giving rise to α
(3)
3 .

We next use Wick’s theorem to evaluate the second term on the right-hand-side of Eq. (53),
finding [

−1

4
α

(3)
4,3N

2(N − 1)2 − 1

2
α

(3)
5 N2(N − 1)2(N − 2)

](
at(ω0)

σ(ω)

)3

, (56)

where α
(3)
4,3 and α

(3)
5 already appear in Eq. (55). Equation (56) can be separated into m-body

contributions by expansion into terms proportional to N(N − 1), N(N − 1)(N − 2), etc.

It is surprising, at first sight, that α
(3)
4,3 and α

(3)
5 contribute to several effective multi-body

energies. From Table II, α
(3)
4,3[at(ω0)/σ(ω)]3 = and α

(3)
5 [at(ω0)/σ(ω)]3 = look like

processes requiring four and five distinct particles, respectively. They also appear to be composed
of “disconnected” sub-diagrams. In RS perturbation theory, however, the second term in Eq. (53)
can be reinterpreted in terms of particles going “backward” in time (right to left), or alternatively

an interpretation can be given in terms of holes. For example, the term −α(3)
4,3[at(ω0)/σ(ω)]3 gives

a two-body contribution if we view the two particles first going forward in time (left to right),
colliding to an excited intermediate state, colliding back to the ground state, and finally going
backward in time and colliding a third time. Diagrammatically, this can be represented by the
connected diagram . Similarly, if only one particle goes back in time, it can collide with

a third particle, giving the three-body contribution −6α
(3)
4,3[at(ω0)/σ(ω)]3 = −6 , which is

also connected. In this paper, these related two-, three-, and four-body diagrams have the same
numerical value: = = .

The third term on the right-hand-side of Eq. (53) gives the two- and three-body counterterm
contributions[

−1

2
β

(2)
2 (ω)N(N − 1) +

1

6
2α

(2)
3 N(N − 1)(N − 2)

](
act(ω0)

σ(ω)

)(
at(ω0)

σ(ω)

)
, (57)

or β
(2)
2 (ω)[at(ω0)act(ω0)/σ(ω)2] = and α

(2)
3 [at(ω0)act(ω0)/σ(ω)2] = . These countert-

erm contributions, shown in Table II, cancel the divergences from , , and . The
disconnected 5-body contribution from Eq. (56), generated by the term with a single contraction,
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Energies (Diagrams) Coefficients Asymp. Isotropic H.O. coefficients (ωc →∞)

1st-order in ξt = at(ω0)/σ(ω)

α
(1)
2 ξt = α

(1)
2 = K0000 N.A.

√
2
π

= +0.797885...

2nd-order in ξt

α
(2)
3 ξ2

t = α
(2)
3 =

∑ K000iKi000
∆εi0

a+ e−ωc/ω
(

2
π

)
[ 2
√

3
3

+ log(8− 4
√

3)− 1] = +0.142626...

β
(2)
2 (ω)ξ2

t = β
(2)
2 =

∑ K00ijKij00

∆εij

√
ωc
ω

(
2
π

)
[
√

ωc
2ω
− (1− log 2)− 3

2

√
ω

2ωc
]

3rd-order in ξt

β
(3)
2 (ω)ξ3

t = β
(3)
2 =

∑ K00ijKijklKkl00

∆εij∆εkl

(
ωc
ω

)
[β

(2)
2 (ω)]2/α

(1)
2

β
(3)
3 (ω)ξ3

t = β
(3)
3 =

∑ K00ijKij0kKk000

∆εij∆εk0

√
ωc
ω

β
(2)
2 (ω)α

(2)
3 /α

(1)
2

α
(3)
3 ξ3

t = α
(3)
3 =

∑ K00ijKj00kKik00

∆εij∆εik
a+

√
ω
ωc

+0.56494± 0.00001 (estimate)

α
(3)
4,1ξ

3
t = α

(3)
4,1 =

∑ K00ijKj000Ki000

∆εij∆εi0
a+ e−ωc/ω +0.077465... (numerical)

α
(3)
4,2ξ

3
t = α

(3)
4,2 =

∑ K000iKi00jKj000

∆εi0∆εj0
a+ e−ωc/ω +0.051099... (numerical)

α
(3)
4,3ξ

3
t = iα

(3)
4,3 =

∑ K00ijK0000Kij00

∆ε2ij
a+

√
ω
ωc

(
2
π

)3/2
[π

2

24
+ log 2− 1

2
(log 2)2] = +0.438946...

α
(3)
5 ξ3

t = α
(3)
5 =

∑ K000iK0000Ki000
∆εi02 a+ e−ωc/ω 3

4(2π)3/2 4F3 (1, 1, 1, 5/2; 2, 2, 2; 1/4) = +0.051916...

Counterterms through third order

χct = act(ω0)
σ(ω)

, α
(1)
2 χct = , β

(2)
2 (ω)χctξt = , α

(2)
3 χctξt =

Leading-order effective range terms

α
(1,2)
2

(
reff
σ(ω)

)
ξ2
t = , α

(1,2)
2 = K′0000 = 3

4

(
2
π

)1/2
= +0.598413...

Other relations:

(four-body) = (three-body) = (two-body) = α
(3)
4,3ξ

3
t

(five-body) = (four-body) = (three-body) = α
(3)
5 ξ3

t

TABLE II: The coefficients for all interaction processes contributing to the two-, three-, and four-body
interaction energies through third-order in perturbation theory in ξt = at(ω0)/σ(ω). The first column shows

the diagrams from which the m-body, nth-order coefficients α
(n)
m and β

(n)
m (ω) can be reconstructed. The

coefficients as multidimensional sums are given in the second column. Sums are over all indices i, j, k, ...
except combinations that give a zero energy term in the denominator. The third column gives the asymptotic
behavior of the coefficients in terms of the cutoff ωc and a constant a. The last column gives the explicit
values for the coefficients for an isotropic harmonic oscillator potential. These values are obtained in the
Appendices. The table also shows the counterterm processes, the leading-order effective-range contribution,
and other relations needed for the renormalized perturbation theory.

cancels with the disconnected five-body term in Eq. (55), and there is no effective five-body interac-
tion at third order. Finally, the last term on the right-hand-side of Eq. (53) gives the effective-range
contribution

E(1,2)(ω;ω0) =
1

2
α

(1,2)
2 N(N − 1)

(
reff

σ(ω)

)(
at(ω0)

σ(ω)

)2

, (58)

from which we extract the effective-range two-body interaction energy

U
(1,2)
2 (ω;ω0) = α

(1,2)
2

(
reff[at(ω0)]2

[σ(ω)]3

)
= . (59)

The coefficient α
(1,2)
2 is given in Table II. The special case ω0 = 0 gives Eq. (7) and Eq. (8).
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A. Two-body interaction energy

Adding all two-body contributions through third order, we obtain

U2(ω;ω0) = − + − + − 2 + +O(a4
t )

= α
(1)
2

(
at(ω0)

σ(ω)

)
− β(2)

2 (ω)

(
at(ω0)

σ(ω)

)2

+ α
(1)
2

(
act(ω0)

σ(ω)

)
− α(3)

4,3

(
at(ω0)

σ(ω)

)3

+ β
(3)
2 (ω)

(
at(ω0)

σ(ω)

)3

− 2β
(2)
2 (ω)

(
act(ω0)

σ(ω)

)(
at(ω0)

σ(ω)

)
+ α

(1,2)
2

(
reff

σ(ω)

)(
at(ω0)

σ(ω)

)2

+O(a4
t ). (60)

Note that all diagrams in Eq. (60) are connected, when interpreted in terms of both forward-
and backward propagating particles. All coefficients are given in Table II. For brevity, in
Eq. (60) and the following we adopt the convention that O(at

4) means O([at(ω0)/σ(ω)]4) +
O(reff[at(ω0)]3/σ(ω)4).

The counterterm, found in the previous section to second order, must now be recalculated
using the renormalization condition through third order. This adds a third-order term which

cancels the divergence from β
(3)
2 (ω)[at(ω0)/σ(ω)]3 = , as well as the effective range contribu-

tion U
(1,2)
2 (ω;ω0). Solving the renormalization condition U2(ω;ω0) = U

(1)
2 (ω0;ω0) + U

(2)
2 (ω0;ω0) +

U
(3)
2 (ω0;ω0) + U

(1,2)
2 (ω0;ω0) + O(a4

t ) = U
(1)
2 (ω0;ω0), and hence U

(2)
2 (ω0;ω0) + U

(3)
2 (ω0;ω0) +

U
(1,2)
2 (ω0;ω0) = 0, we find act(ω0) from

α
(1)
2

(
act(ω0)

σ(ω0)

)
= β

(2)
2 (ω0)

(
at(ω0)

σ(ω0)

)2

−
[
β

(3)
2 (ω0)− 2[β

(2)
2 (ω0)]2/α

(1)
2 − α

(3)
4,3

](at(ω0)

σ(ω0)

)3

(61)

− d(1,2)
2

(
reff

σ(ω0)

)(
at(ω0)

σ(ω0)

)2

+O(a4
t ). (62)

Diagrammatically, this can be expressed as − 2 = + − − , with

all diagrams evaluated at ω = ω0. By including U
(1,2)
2 (ω;ω0) in the counterterm equation, the

renormalization condition for at(ω0) includes both zero-range and effective-range contributions. If

we do not include U
(1,2)
2 (ω;ω0) in the renormalization condition, then at(ω0) is the trap scattering

length for zero-range potentials. Substituting the counterterm from Eq. (62) into Eq. (60) and

using α
(1)
2 β

(3)
2 (ω) = [β

(2)
2 (ω)]2, which is proven in Appendix B 7, we find after some algebra that

U2(ω;ω0) = c
(1)
2

(
at(ω0)

σ(ω)

)
+ c

(2)
2 (ω, ω0)

(
at(ω0)

σ(ω)

)2

+ c
(3)
2 (ω, ω0)

(
at(ω0)

σ(ω)

)3

+ d
(1,2)
2 (ω, ω0)

(
reff

σ(ω)

)(
at(ω0)

σ(ω)

)2

+O(a4
t ), (63)

where c
(3)
2 (ω, ω0) and d

(1,2)
2 (ω, ω0) are given in Table III.

Recall that in the formula U2(ω;ω0) the first argument ω is the trap frequency for which we are
interested in predicting the two-body energy, and the second argument ω0 is the trap frequency at
which the two-body trap scattering length at(ω0) is defined or measured. The coefficients for ω0 = 0
are given in Table I. If reff = 0, these values reproduce through third order the exact solution for the
ground state of two harmonically trapped bosons with zero-range interactions found in [34]. This
agreement between the quantum mechanical and quantum field theory solutions is a nice illustration
of how the renormalized effective field theory captures the correct low-energy physics. Interestingly,
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if reff 6= 0, our result for U2(ω, 0) still agrees with the solution in [34], if that solution is Taylor
expanded in at(0) and reff[at(0)]2 after making the substitution af(0)→ af(0)+(1/2)reff[af(0)]2k2

rel,
providing further evidence of the universality of the higher-order perturbative results derived here.

Another important special case is ω = ω0. Since c
(2)
2 (ω0, ω0) = c

(3)
2 (ω0, ω0) = d

(1,2)
2 (ω0, ω0) = 0,

the predicted two-body energy is

U2(ω = ω0;ω0) = c
(1)
2

(
at(ω0)

σ(ω0)

)
+O(a4

t ), (64)

reproducing the renormalization condition that at(ω0) is the physical trap scattering length for two
bosons at frequency ω0.

Frequency-Dependent Effective Interaction Coefficients

Two-body

c
(1)
2 (ω, ω0) = α

(1)
2 = (2/π)1/2

c
(2)
2 (ω, ω0) = (2/π) (1− log 2)

[
1−

√
ω0/ω

]
c
(3)
2 (ω, ω0) = (2/π)3/2 (1− log 2)2

[
1−

√
ω0/ω

]2
− (2/π)3/2 (π2/24 + log 2− 1

2
log2 2

)
[1− ω0/ω]

d
(1,2)
2 (ω, ω0) = α

(1,2)
2 [1− ω0/ω] = (3/4) (2/π)1/2 [1− ω0/ω]

Three-body

c
(2)
3 (ω, ω0) = −6α

(2)
3

c
(3)
3 (ω, ω0) = −12α

(2)
3 c

(2)
2 (ω, ω0)/α

(1)
2

+[12α
(3)
3 − 6α

(3)
4,3 − 18α

(3)
5 ]

Four-body

c
(3)
4 (ω, ω0) = 48α

(3)
4,1 + 48α

(3)
4,2 − 72α

(3)
5

TABLE III: The functions c
(n)
m (ω, ω0), which determine the nth-order contributions to the m-body effective

interaction energies, and d
(1,2)
2 (ω, ω0), which determines the leading-order effective-range correction, for

neutral bosons in a harmonic potential of frequency ω, in terms of the scattering length at(ω0) defined at
trap frequency ω0. The special case ω0 = 0 reduces to the results given in Table 1.

B. Three-body interaction energy

In [18], we obtained the effective three-body interaction energy to second order. We now
determine the next-order correction by combining all three-body contributions through third order,
giving

U3(ω;ω0) = −6 + 12 + 12 − 12 − 6 − 18 +O(a4
t ) (65)

= −6α
(2)
3

(
at(ω0)

σ(ω)

)2

+ 12α
(3)
3

(
at(ω0)

σ(ω)

)3

+ 12β
(3)
3 (ω)

(
at(ω0)

σ(ω)

)3

− 12α
(2)
3

(
act(ω0)

σ(ω)

)(
at(ω0)

σ(ω)

)
− 6α

(3)
4,3

(
at(ω0)

σ(ω)

)3

− 18α
(3)
5

(
at(ω0)

σ(ω)

)3

+O(a4
t ).

Representing the three-body contributions from α
(3)
4,3 and α

(3)
5 using reversed (left to right) particle

lines, as previously described, we again find that only connected diagrams contribute.
For the three-body energy, it is sufficient to use the second-order counterterm in Eq. (45). In

Appendix B 8, we show that β
(3)
3 (ω) = β

(2)
2 (ω)α

(2)
3 /α

(1)
2 . From these results it follows that the
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difference between the individually divergent contributions in Eq. (65), 12 and 12 , is
finite. After some algebra, we find that

U3(ω;ω0) = c
(2)
3

(
at(ω0)

σ(ω)

)2

+ c
(3)
3 (ω, ω0)

(
at(ω0)

σ(ω)

)3

+O(a4
t ), (66)

where c
(2)
3 and c

(3)
3 (ω, ω0) are given in Table III.

If ω0 equals zero, we find

c
(3)
3 = −12(1− log 2)α

(1)
2 α

(2)
3 + [12α

(3)
3 − 6α

(3)
4,3 − 18α

(3)
5 ] = +2.7921± 0.0001. (67)

The error reflects a one standard deviation uncertainty due to the extrapolation of the numerical

estimate for α
(3)
3 to the limit ωc →∞ (see App. B 2). Another special case is ω = ω0, giving

c
(3)
3 (ω, ω) = 12α

(3)
3 − 6α

(3)
4,3 − 18α

(3)
5 = +3.2112± 0.0001. (68)

C. Four-body interaction energy

Finally, we calculate the leading order contribution to the effective four-body interaction energy.
We find

U4(ω;ω0) = 48 + 48 − 72 +O(a4
t )

= c
(3)
4

(
at(ω0)

σ(ω)

)3

+O(a4
t ), (69)

with coefficient

c
(3)
4 = 48α

(3)
4,1 + 48α

(3)
4,2 − 72α

(3)
5 = +2.43317.... (70)

As anticipated, the two disconnected terms that depend on α
(3)
4,3 = cancel and, at this order,

c
(3)
4 is independent of ω and ω0. The leading-order contribution to the four-body energy does not

require renormalization, as is true for all leading-order m-body terms. Comparison of c
(3)
4 and c

(3)
3

reveals, however, that they are of similar magnitude and therefore for a consistent and accurate

treatment both corrections need to be included. Because c
(3)
3 requires renormalization, we see why

the systematic renormalization of divergences is needed even though the leading-order contribution
to the four-body interaction energy could be obtained without these considerations.

VI. SUMMARY

We have derived effective two-, three-, and four-body interaction energies for N bosons in
an isotropic harmonic trap of frequency ω. These energies are functions of the trap scattering
length at(ω0) and harmonic oscillator length σ(ω), and include both renormalization effects due to
quantum fluctuations to higher-orbitals and leading-order finite-range corrections. The frequency
ω0 at which the scattering length is defined plays a role closely analogous to the low-energy scale
at which coupling constants are defined in high-energy effective field theories (e.g., see [33]). The
formulas for the interaction energies are given in Eqs. (63), (65), and(69), and are expressed in

terms of the functions c
(n)
m (ω;ω0) given in Table III. In turn, these functions require the coefficients

α
(n)
m and β

(n)
m (ω) given in Table II. The special case when ω0 = 0 is summarized in Table I and
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Eqs. (10), (11), and (12). In Sec. III, we showed that these results give excellent agreement to
numerical simulations for ultracold bosons interacting through a Gaussian model potential.

We find at third-order in at(ω0) that the shifts to the effective three- and four-body interaction
energies are comparable, showing that the renormalized three-body interaction needs to be taken
into account when the leading-order four-body interactions are considered. In the future, we plan
to use this formalism to determine the effective multi-body interactions for other potentials, such as
anisotropic traps or the anharmonic sites of an optical lattice. The cross-over from the perturbative
small scattering length regime to the universal regime of Efimov physics is also very interesting
and diagrammatic resummation techniques can be used to study the onset of nonperturbative
behaviors. For example, collapse and revival experiments suggest that four- and higher-body
interactions may be present in the data [17], but our results also show that in these systems
at(0)/σ(ω0) is large enough for significant nonperturbative effects to be important, and we would
like to better understand this physics within our framework. A unified description of elastic and
inelastic interactions (e.g. three-body recombination physics [5, 57]) would also be useful.

More immediately, the results in this paper can be applied to investigations of finite-range in-
teractions, can be used for precision experiments probing for the possible existence of intrinsic
three- and higher-body interactions, and can enable explorations of fundamental concepts in ef-
fective field theory including renormalization and energy-dependent (running) coupling constants.
For example, the influence of intrinsic higher-body interactions would cause deviations from our
predictions, which are based on only intrinsic two-body interactions. Moreover, we can engineer
and exploit useful effective interactions using a combination of magnetic Feshbach resonances [2]
and the ability to tune the few-body interactions by controlling the trap parameters and shape
[53, 61]. One of our longer-term goals is to use this physics to develop nonlinear measurement
techniques. For example, the nonlinear dynamics seen in collapse-and-revival experiments can lead
to better than shot-noise measurements of the m-body interaction energies, or it may be possible
to exploit strongly correlated non-equilibrium states in lattices for new types of sensing. In this
way, the rich physics of renormalization and nonlinear quantum dynamics could be used to create
new types ultra-cold atom simulators, quantum information processors, or quantum sensors.
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APPENDIX A: δ-FUNCTION BOSON-BOSON INTERACTION MATRIX ELEMENTS
FOR AN ISOTROPIC HARMONIC TRAP

This appendix derives interaction matrix elements for bosons in an isotropic harmonic oscillator
trap with frequency ω and zero-range δ-function interactions. Alternative methods for obtaining
these matrix elements are given in [69, 70].
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1. Isotropic harmonic oscillator wavefunctions

The calculations are most conveniently performed in coordinates scaled by the harmonic os-
cillator length σ(ω). In spherical coordinates, the normalized, dimensionless isotropic harmonic
oscillator states |nlm〉 have wavefunctions φnlm (r) = 〈r|nlm〉 = χnl (r)Ylm (θ, φ), where Ylm (θ, φ)
are spherical harmonics. The radial functions are

χnl (r) = Nnlr
le−r

2/2L(l+1/2)
n

(
r2
)
, (A1)

where L
(α)
n (r) are associated Laguerre polynomials,

Nnl =

√
2Γ(n+ 1)

Γ(n+ l + 3/2)
(A2)

are normalization constants, and

L(l+1/2)
n (0) =

Γ (n+ l + 3/2)

Γ (n+ 1) Γ (l + 3/2)
. (A3)

The single-particle ground state is φ000(r) = π−3/4e−r
2/2. Recall that we use the shorthand notation

i = {nlm} for states with vibrational quantum number n, angular momentum l, and angular
momentum projection quantum number m. The single-particle energies are εi = εnlm = 2n+l+3/2.
A complete set of (un-symmetrized) two-particle wavefunctions is |ij〉 = |n1l1m1, n2l2m2〉. For
convenience, we define the (dimensionless) two-particle energy differences

∆εij ≡ ∆εn1l1m1,n2l2m2 = εn1l1m1 + εn2l2m2 − 2ε000 (A4)

= 2n1 + 2n2 + l1 + l2. (A5)

2. Matrix elements in the single-particle basis

The matrix elements Kij;kl defined in Eq. (27) correspond to transitions |kl〉 → |ij〉 with two-
boson basis functions |ij〉 and |kl〉 from the |n1l1m1, n2l2m2〉 basis. In this subsection, we evaluate
the subset Kij;00 of these matrix elements given by

Kn1l1m1,n2l2m2;000,000 = 4π

∫
φ∗n1l1m1

(r)φ∗n2l2m2
(r)φ000 (r)φ000 (r) dr (A6)

= δl1,l2δm1,−m2Ks.p.(n1, n2, l1), (A7)

where δa,b is the Kronecker-delta and

Ks.p.(n1, n2, l) =
4√
π
Nn1lNn2l

∫
L(l+1/2)
n1

(
r2
)
L(l+1/2)
n2

(
r2
)
e−2r2

r2l+2dr. (A8)

The subscript “s.p.” means single-particle basis, and we have used the orthonormality of the
spherical harmonics.

We next use the complex contour integral representation [71]

L(l+1/2)
n

(
r2
)

=
1

2πi

∮
e−r

2z/(1−z)

(1− z)l+3/2 zn+1
dz, (A9)
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with a clockwise contour circling the pole at z = 0. Substituting and then integrating over r gives

Ks.p.(n1, n2, l) =
2√
π
Nn1lNn2lΓ(l + 3/2)

1

2πi

∮
dz1

zn1+1
1

1

2πi

∮
dz2

zn2+1
2

1

(2− z1 − z2)l+3/2
. (A10)

Applying the Cauchy residue theorem twice, first integrating counter-clockwise around the pole at
z2 = 0, and then around z1 = 0, and substituting in the expressions for the normalization constants
Nnl gives

Ks.p.(n1, n2, l) =

√
2

π

2−n1−n2−lΓ(n1 + n2 + l + 3/2)√
Γ(n1 + 1)Γ(n2 + 1)Γ(n1 + l + 3/2)Γ(n2 + l + 3/2)

. (A11)

This expression also gives the matrix element for the transition |0i〉 → |0k〉.

3. Matrix elements in relative and center-of-mass particle basis

It is simpler to compute some matrix elements by switching to a basis of states |̃ıj̃〉 =
|nlm,NLM〉, with normalized relative and center-of-mass wavefunctions φ̃nlm(r)Φ̃NLM (R) defined
in terms of coordinates r = (r1 − r2)/

√
2 and R = (r1 + r2)/

√
2, and (dimensionless) two-particle

energy differences

∆εnlm,NLM ≡ 2n+ l + 2N + L. (A12)

Working in the |nlm,NLM〉 basis and using the fact that the interactions conserve the
center-of-mass motion, the matrix elements for the transitions |k̃l̃〉 → |̃ıj̃〉 are Kı̃j̃;k̃l̃ =

Knlm,n′l′m′;NLM,N ′L′M ′ = Krel(n, n
′)δl,0δm,0δl′,0δm′,0δN,N ′δL,L′δM,M ′ , where

Krel(n, n
′) =

√
2

π

φ̃∗n00(0)φ̃n′00(0)

|φ̃000(0)|2
(A13)

only depends on the principle quantum numbers for the relative motion. Below we use the fact
that Krel(n, n

′) factors as

Krel(n, n
′) =

√
π

2
Krel(n, 0)Krel(n

′, 0), (A14)

and

Krel(n, 0) =
2

π3/4

√
Γ(n+ 3/2)

Γ(n+ 1)
. (A15)

Also, Krel(0, 0) equals
√

2/π.

APPENDIX B: PERTURBATION THEORY COEFFICIENTS THROUGH THIRD OR-
DER

In this appendix, we compute for neutral bosons in an isotropic harmonic potential the m-body,

nth-order coefficients α
(n)
m and β

(n)
m (ω) needed for the perturbation theory through third order. We

first evaluate the coefficients α
(2)
3 , α

(3)
3 , α

(3)
4,1, α

(3)
4,2, α

(3)
4,3, and α

(3)
5 , which are finite and ω-independent

in the limit that ωc/ω →∞. Then we evaluate the coefficients β
(2)
2 (ω), β

(3)
2 (ω), and β

(3)
3 (ω), which

diverge as ωc/ω →∞.
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1. Three-body, second-order coefficient α
(2)
3

In the single-particle basis |n1l1m1, n2l2m2〉, the contribution has the coefficient

α
(2)
3 =

∑
i 6=0

K00;0iKi0;00

∆εi0
, (B1)

where the sum
∑

i 6=0 is over all allowed single-particle states excluding the ground state. Due to
angular momentum conservation only i = {nlm} with l = m = 0 contribute, and ∆εi0 = 2n.
Evaluating the sum gives the analytic result

α
(2)
3 =

∞∑
n=1

Ks.p.(n, 0, 0)2

2n
=

(
2

π

)(
2
√

3

3
+ log(8− 4

√
3)− 1

)
= 0.142626.... (B2)

The terms in the summand become smaller exponentially with n, and α
(2)
3 converges to the asymp-

totic form a+O(e−ωc/ω). This behavior will be true for all “tree diagrams” which, like , have
no closed loops.

2. Three-body, third-order coefficient α
(2)
3

Continuing to work in the single-particle basis, the contribution has the coefficient

α
(3)
3 =

∑
ij 6=00,ik 6=00

K00;ijKj0;0kKik;00

∆εij∆εik
, (B3)

with i = {n1l1m1}, j = {n2l2m2}, and k = {n3l3m3}. Due to angular momentum conservation,
we have l1 = l2 = l3 and m1 = −m2 = −m3. Using Eqs. (A7), (A11), and (A5), the coefficient is
given by

α
(3)
3 =

ωc/ω∑
n1n2n3l1

(2l1 + 1)Ks.p.(n1, n2, l1)Ks.p.(n2, n3, l1)Ks.p.(n1, n3, l1)

(2n1 + 2n2 + 2l1)(2n1 + 2n3 + 2l1)
, (B4)

where the sum is over 0 < 2n1 + 2n2 + 2l1 < ωc/ω and 0 < 2n1 + 2n3 + 2l1 < ωc/ω. The factor
(2l1 + 1) arises due to the sum over the quantum number m1.

We have not found an analytic expression for α
(3)
3 , and the sums in Eq. (B4) converge slowly,

making precise numerical determination demanding. We obtain an estimate by fitting numerical
approximations versus ω/ωc to the asymptotic form a+ b(ω/ωc)

1/2 + c(ω/ωc), dropping terms that

are O[(ω/ωc)
3/2]. The best-fit constants a, b, and c give the curve α

(3)
3 (ωc) shown in Fig. 8. The

best estimate for α
(3)
3 , found by extrapolating ωc/ω →∞, is

α
(3)
3 = 0.56494± 0.00001. (B5)

To determine the one-standard deviation uncertainty in α
(3)
3 associated with our extrapolation

method, we have compared the analytic value of α
(3)
4,3 given in Eq. (B11) to the value for α

(3)
4,3 found

by numerical extrapolation. The comparison is shown in Fig. 8.
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FIG. 8: (Color online.) Plot of numerical approximations to the sums which give the coefficients α
(3)
3 (red

circles) and α
(3)
4,3 (blue circles), with a hard cutoff ωc in the energy of the intermediate states. The data

is plotted versus (ω/ωc)
1/2 on the bottom axis (the top axis shows the corresponding value of ωc/ω). The

black lines are the least-square fits to the expected asymptotic behavior a+b(ω/ωc)
1/2 +c(ω/ωc). The values

for α
(3)
3 and a

(3)
4,3 are obtained by extrapolating to the y-intercept (ωc →∞). To estimate the one-standard

deviation uncertainty in α
(3)
3 , for which we do not have an analytic value, we use the difference between the

extrapolated and analytic values of α
(3)
4,3.

3. Four-body, third-order coefficients α
(3)
4,1 and α

(3)
4,2

The contributions and give the coefficients

α
(3)
4,1 =

∑
i 6=0,j

K00;ijKj0;00Ki0;00

∆εij∆εi0
(B6)

and

α
(3)
4,2 =

∑
i 6=0,j 6=0

K00;0iKi0;0jKj0;00

∆εi0∆εj0
, (B7)

respectively. Due to angular momentum conservation, only i, j with l = m = 0 contribute. Using
Eqs. (A7), (A11), and (A5), we obtain the numerical results

α
(3)
4,1 =

∑
n1 6=0,n2=0

Ks.p.(n1, 0, 0)Ks.p.(n2, 0, 0)Ks.p.(n1, n2, 0)

4n1(n1 + n2)
= 0.077465... (B8)

and

α
(3)
4,2 =

∑
n1 6=0,n2 6=0

Ks.p.(n1, 0, 0)Ks.p.(n1, n2, 0)Ks.p.(n2, 0, 0)

4n1n2
= 0.051099.... (B9)

These are tree-diagram processes, which, like α
(2)
3 , converge quickly, thereby making it is easy to

obtain a precise numerical approximation from a small number of excited orbitals.
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4. Four-body, third-order coefficient α
(3)
4,3

The two-, three-, and four-body contributions , , and have the same coeffi-
cient,

α
(3)
4,3 =

∑
ij 6=00

K00;ijK00;00Kij;00

∆ε2
ij

=
∑
ı̃j̃ 6=00

K00;̃ıj̃K00;00Kı̃j̃;00

∆ε2
ı̃j̃

, (B10)

where in the last expression, rather than evaluating the sums in the single-particle basis, we observe
that φ000(r1)φ000(r2) = φ̃000(r)Φ̃000(R) and sum over relative and center-of-mass bases states
|̃ıj̃〉 = |nlm,NLM〉, excluding ı̃j̃ = 00. The interactions conserve the center-of-mass motion,
implying j̃ = {NLM} = {000}. Angular momentum conservation gives ı̃ = {n00}. Finally, using
∆εn00,000 = 2n and Kı̃0;00 = Kn00,000;000,000 = Krel(n, 0) from Eq. (A15), we obtain the analytic
result

α
(3)
4,3 =

√
2

π

∑
n>0

[Krel(n, 0)]2

4n2
=

(
2

π

)3/2

[
π2

24
+ log 2− 1

2
(log 2)2] = 0.43894.... (B11)

If we include the exponential regulator, we confirm that α
(3)
4,3 converges as (ω/ωc)

1/2. Because the

sums for α
(3)
4,3 and α

(3)
3 have the same asymptotic behaviors, we use the exact result in Eq. (B11)

to determine the accuracy of the extrapolation for α
(3)
3 shown in Fig. 8.

5. Five-body, third-order coefficient α
(3)
5

The three-, four-, and five-body contributions , , and have the same coefficient

α
(3)
5 =

∑
i 6=0

K00;0iK00;00Ki0;00

∆εi02
. (B12)

Working in the single-particle basis |n1l1m1, n2l2m2〉, we obtain the analytic result

α
(3)
5 =

√
2

π

∑
n>0

[Ks.p.(n, 0)]2

4n2
=

3

4(2π)3/2 4F3(1, 1, 1, 5/2; 2, 2, 2; 1/4)

=

(
2

π

)3/2

[
1

2
Li2(1/2−

√
3/4)− log(1 +

√
3/2)− 1

4
(log(1 +

√
3/2)− log 2)2 + log 2]

= 0.051916..., (B13)

where pFq is a generalized hypergeometric function, and Li2(z) is the polylogarithm function.
Evaluation with a regulator function shows that this expression converges as (ω/ωc)

1/2.

6. Two-body, second-order coefficient β
(2)
2

The coefficients β
(n)
m (ω) diverge when ωc/ω → ∞. The two-body contribution has the

coefficient

β
(2)
2 (ω) =

ωc/ω∑
ij 6=00

K00;ijKij;00

∆εij
=

ωc/ω∑
ı̃ 6=0

K00;̃ı0Kı̃0;00

∆εı̃0
, (B14)
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where we have switched to the relative and center-of-mass basis |̃ıj̃〉 = |nlm,NLM〉 in the last
expression. Using the fact that only l = m = 0 and j̃ = 0 states contribute greatly simplifies

the evaluation of β
(2)
2 (ω) by reducing the multidimensional sum to a single summation. Using

Kn00,000;000,000 = Krel(n, 0) from Eq. (A15) and the exponential regulator 1/∆εı̃0 → e−2n(ω/ωc)/2n,
we obtain

β
(2)
2 (ω) =

∑
n>0

[Krel(n, 0)]2

2n
e−

2nω
ωc =

(
2

π

)(√
ωc
2ω
− (1− log 2)− 3

2

√
ω

2ωc

)
+O(1/ωc). (B15)

This coefficient diverges as
√
ωc/ω, but as shown in the main body of this paper, the divergence

cancels after renormalization, leaving a finite correction proportional to (2/π)(1− log 2).

7. Two-body, third-order coefficient β
(3)
2

Next we consider the contribution , with coefficient

β
(3)
2 (ω) =

∑
ij 6=00,kl 6=00

K00;ijKij;klKkl;00

∆εij∆εkl
=

∑
ı̃ 6=0,k̃ 6=0

K00;̃ı0Kı̃0;k̃0Kk̃0;00

∆εı̃0∆εk̃0

, (B16)

where we again switch to relative and center-of-mass basis states and use the selection rules.
Inserting exponential regulators for both energy denominators in Eq. (B16) and using Eq. (A14),
it follows that

β
(3)
2 (ω) =

∑
n>0,n′>0

Krel(n, 0)Krel(n, n
′)Krel(n

′, 0)

4nn′
e−

2(n′+n)ω
ωc

=

√
π

2

(∑
n>0

[Krel(n, 0)]2

2n
e−

2nω
ωc

)(∑
n′>0

[Krel(n
′, 0)]2

2n′
e−

2n′ω
ω

)
= [β

(2)
2 (ω)]2/α

(1)
2 . (B17)

This factorization result is important for the renormalization of the two-body interaction at third-
and higher-orders.

8. Three-body, third-order coefficient β
(3)
3 (ω)

The contribution gives the coefficient

β
(3)
3 (ω) =

∑
ij 6=00,k 6=0

K00;ijKij;0kKk0;00

∆εij∆εk
=

∑
ı̃ 6=0,k 6=0

K00;̃ı0Kı̃0;0kKk0;00

∆εı̃0∆εk0
. (B18)

In the last equality, we replaced the sum over single-particle intermediate states |ij〉 with a sum
over relative and center-of-mass states |̃ıj̃〉, and then used the selection rule j̃ = 0. The sum over
k remains over the single-particle basis. We therefore require the “mixed-basis” matrix elements
Kı̃0;0k. Using the selection rules l = m = 0 for the relative motion, and l1 = m1 = 0 for the
single-particle motion, we need only Kı̃0;0k = Kmixed(n, n1) with ı̃ = {n00} and k = {n100}, where

Kmixed(n, n1) =

√
2

π
(2π)3/2

∫
φ̃∗n00 (r) φ̃∗000(R)δ(3)(r)φn100(r1)φ000(r2)drdR

=

√
2

π
(2π)3/2φ̃n00 (0)

∫
φ̃∗000(R)φn100(

R√
2

)φ000(
R√

2
)dR, (B19)
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and r1,2 = (R± r)/
√

2. Substituting in harmonic oscillator wavefunctions gives

Kmixed(n, n1) = 16
√

2φ̃n00 (0)Nn10

∫ ∞
0

L(1/2)
n1

(
x2
)
e−2x2

x2dx, (B20)

where x = |R| /
√

2 and we have integrated over the angles. Noting that the remaining integral
over x is proportional to Ks.p.(n1, 0, 0) in Eq. (A8), we find that

Kmixed(n, n1) =

√
π

2
Krel(n, 0)Ks.p.(n1, 0, 0). (B21)

Inserting exponential regulators for each energy denominator in Eq. (B18), we obtain

β
(3)
3 (ω) =

∑
n>0,n1>0

Krel(n, 0)Kmixed(n, n1)Ks.p.(n1, 0, 0)

4nn1
e−

2(n+n1)ω
ωc

=

√
π

2

(∑
n1>0

[Ks.p.(n1, 0, 0)]2

2n1
e−

2n1ω
ωc

)(∑
n>0

[Krel(n, 0)]2

2n
e−

2nω
ωc

)
= α

(2)
3 β

(2)
2 (ω)/α

(1)
2 . (B22)

The factorization of β
(3)
3 in the finite part α

(2)
3 /α

(1)
2 and the divergent part β

(2)
2 (ω) is important for

the renormalization of the three-body interaction at third order.
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