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Abstract 

Traditional criteria used in biometric performance eval
uation do not cover all the performance aspects of biometric 
template protection (BTP) and the lack of well-defined met
rics inhibits the proper evaluation of such methods. Pre
vious work in the literature focuses, in general, on a lim
ited set of criteria and methods. This paper provides the 
first holistic approach to the evaluation of biometric tem
plate protection that is able to cover a whole range of meth
ods. We present a selection of well-defined criteria and 
some metrics that are compliant with the reference archi
tecture for template protection as defined in the recently 
adopted standard ISO/IEC 24745 (2011), which is appli
cable to nearly all known BTP methods. The criteria have 
been grouped in three categories of performance: technical, 
protection, and operational. 

1. Introduction 

Biometrics provide an alternative to passwords and other 
token-based authentication because they do not require 
users to memorize or carry a credential, and they are more 
tightly-bound form factors for identification than identity 
documents. However, privacy issues, which are a direct 
consequence of the properties that are desired from bio
metric characteristics, e.g., uniqueness or permanence, have 
been raised repeatedly [25, 27]. Biometric data may reveal 
sensitive, e.g., medical, information and they uniquely iden
tify an individual. This implies that a biometric sample or 
template can be used as a unique identifier to link informa
tion across different applications. Moreover, once biometric 
data have been compromised they can be used for spoof
ing by constructing artificial samples. Furthermore, bio

metric characteristics are limited in number and cannot be 
renewed. Because of these issues biometric data should be 
protected, i.e., made uninterpretable and unlinkable with
out authorization, but without losing the capability to iden
tify a person or to verify a person’s identity. These are 
the main objectives of biometric template protection (BTP) 
methods. Cavoukian and Stoianov [12] summarize this in 
their white paper on biometric encryption by stating that 
this is a positive-sum technology: both privacy and security 
can be assured without giving in on one or the other. 
Despite the variety1 of template protection schemes that 

have been proposed in the literature [5, 13, 18, 19, 21, 24, 
26, 32, 35] there is still a lack of well-established metrics 
for evaluating BTP methods. This lack makes it impossible 
to perform a proper evaluation or direct comparison of BTP 
methods. Previous works in the literature focus mainly on 
the security and privacy aspects or only on a particular type 
of algorithm. Scheirer and Boult [29] proposed several at
tacks on the fuzzy vault scheme [17] and biometric encryp
tion [32]. Simoens et al. evaluated the irreversibility and 
unlinkability of schemes based on error-correcting codes, 
Nagar, Nandakumar, and Jain [22] analysed similar proper
ties for cancelable fingerprint transformations[26] and the 
biohashing method [34]. In addition, some initiatives [1] 
focus only on the technical performance aspect, i.e., the ac
curacy and efficiency of BTP algorithms. Finally, a number 
of frameworks [10, 13, 21, 27] have been proposed to model 
template protection. However, so far none of these has been 
able to cover all known BTP methods. 

1.1. Objectives and contributions 

The primary goal of this work is to progress towards 
ranking and independent benchmarking of different BTP al
gorithms. We identify and select criteria that are relevant 
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by NIST. F. Beato is supported by FCT Grant SFRH/BD/70311/2010. Nandakumar and Nagar [16] and the work of Rathgeb and Uhl [28]. 



Figure 1. Reference architecture for template protection [2]. 

for BTP performance assessment. However, criteria do not 
tell us how well an algorithm actually performs. Tools are 
needed that measure the performance on these criteria and 
that produce numbers or values that allow comparison of al
gorithms on a particular criterion. This paper proposes a set 
of relevant criteria, consistently defined in a generic archi
tecture, and its main contribution is a consolidation in the 
evaluation of BTP methods. In addition, metrics are pre
sented for some of the criteria, based on the literature or 
new ideas. 

1.2. Organization 

The criteria and metrics are defined in the ISO reference 
architecture for template protection (ISO/IEC 24745 [2]). 
The architecture and corresponding terminology are briefly 
summarized in Section 2. The criteria and metrics have 
further been grouped in three categories. Section 3 dis
cusses technical performance. Section 4 is dedicated to how 
well BTP protects biometric data. Section 5 discusses op
erational performance, which relates to modality indepen
dence, interoperability and quality of performance. Sec
tion 6 provides a summary of conclusions. 

2. Preliminaries 
Before presenting the performance metrics, we describe 

the framework in which the metrics have been defined. 
Figure 1 shows the reference architecture for the protec
tion of biometric information that has been standardized in 
ISO/IEC 24745 [2]. In this generic architecture, which ap
plies to nearly all known methods2, a biometric sample is 
transformed during enrolment into a renewable biometric 
reference, which is defined in [2] as a “Revocable or re
newable identifier that represents an individual or data sub
ject within a certain domain by means of a protected binary 
identity (re)constructed from the captured biometric sam
ple.” The main idea behind a renewable reference is that an 
individual can be enrolled in different applications with the 
same characteristic, e.g., face, but through different secure 
references that cannot be linked to each other. The term 

2The standard [2] includes a mapping of the BTP methods in [36, 18, 
32, 17, 21, 13, 6, 9, 26, 33, 34, 14, 5, 20, 37] to the reference architecture. 

protected template (PT) is used as a synonym for renewable 
biometric reference in this paper. 

2.1.	 Pseudonymous identifier (PI) and auxiliary 
data (AD) 

A protected template, as defined in [2], consists of 
a pseudonymous identifier (PI) and possibly auxiliary 
data (AD). The PI represents the individual in an applica
tion context and is used as a reference for verification, but 
does not allow the retrieval of the enrolment data. Multiple 
unlinkable PIs can be derived from the same characteristic. 
The AD is the part of the PT that helps to reconstruct the PI 
during verification. It mostly depends on the enrolment data 
and may contain elements that allow diversification, i.e., the 
creation of multiple PIs. The AD is not necessarily stored 
along with the PI but both are needed during verification. 
In general it is assumed that the AD is public because it 

is part of the PT. It is discouraged to have secret AD, how
ever, it is not strictly required by the standard. It is tolerated 
that some schemes require secrecy of the AD, e.g., if plain 
encryption is used the encryption key is considered AD. As 
a consequence, the secrecy of the AD cannot be considered 
as an evaluation criterion on its own. However, it can be 
the conclusion of an evaluation that some property, e.g., ir
reversibility, cannot be satisfied unless the AD is secret. 

2.2. Functional components 

During enrolment features are extracted from a captured 
biometric sample and fed into a pseudonymous identifier en
coder (PIE). The PIE is a system, process or algorithm that 
produces a renewable biometric reference, which consists 
of a PI and, possibly, AD. During verification a new PI∗ 

is recoded by the pseudonymous identifier recoder (PIR) 
from a freshly captured sample and auxiliary data, which 
was generated during enrolment. The recoded PI∗ is com
pared with a reference PI by the pseudonymous identifier 
comparator (PIC), which outputs a comparison score. 

3. Technical performance 

In biometric systems widely-deployed today, e.g. by law  
enforcement and border control, the technical performance 
is of primary interest, and is widely tested operationally. 
Technical performance includes the following aspects: ac
curacy of the recognition algorithm (error rates), through
put, and storage requirements. Besides these common as
pects, BTP has some unique technical performance aspects: 
performance degradation (compared to unprotected algo
rithms), diversity, and the error rate of failing to generate 
a PT. We give concise definitions for these criteria and dis
cuss them in detail below. 

http:duringverification.It


3.1. Accuracy 
Definition 1 (Accuracy). Statistical reflection of trustwor
thiness of the decisions (match and non-match) made by a 
biometric system, represented by standardized error rates. 

The common and standardized metrics for measuring the 
accuracy of biometric recognition algorithms are defined 
in [3]. These metrics apply to both unprotected and pro
tected template algorithms. Obviously, to be able to com
pare different algorithms, both protected and unprotected, 
the same database and testing protocols should be used. The 
most well known accuracy metrics are the false-match-rate 
(FMR) and false-non-match-rate (FNMR), which reflect 
the accuracy of the comparison algorithm, and the false
acceptance-rate (FAR) and the false-rejection-rate (FRR), 
which reflect the accuracy at system level. The differ
ence between the two levels is determined by the failure-to-
acquire-rate (FTA). An additional measure for BTP is the 
failure to encode a PI, e.g., due to low entropy in a sample. 

3.2. Accuracy degradation 

Definition 2 (Accuracy degradation). The accuracy perfor
mance decrease caused by BTP algorithms. 

Suppose we observe the accuracy results from a biomet
ric system in two cases - with and without template protec
tion - with the rest of the testing context being the same. 
In most existing BTP algorithms some accuracy degrada
tion will occur. If we observe an error rate E (e.g., FMR, 
FNMR, EER, etc.) from an accuracy performance test over 
the unprotected templates, and observe the same error rate 
in a different value Ep from a test over the protected tem
plates, then we can define two accuracy degradation repre
sentations: the absolute accuracy degradation rate (Ep −E) 
and the relative accuracy degradation rate (Ep − E)/E . 

3.3. Throughput 
Definition 3 (Throughput). The number of biometric trans
actions processed continuously by an individual biometric 
processing unit (e.g., feature extractor, feature comparator, 
PIE, PIR, and PIC) in a defined time interval. 

These processing units are the BTP algorithm compo
nents (PIE, PIR, PIC) that can be implemented in the same 
hardware and software development environment for com
parison. In terms of time consumed per transaction, both 
the creation (encoding / recoding) and the comparison time 
for PTs are required for evaluation. 
Besides a BTP algorithm’s efficiency, throughput is also 

related to both the biometric system’s efficiency (data pro
cessing, communication time and system stability) and hu
man factors, i.e., whether subjects (and system operators, if 
any) are well-trained at the human-machine interface or not, 
whether they are in a hurry, or nervous or taking time, etc. 

A fair evaluation in throughput of different BTP algorithms 
requires approximately the same implementation and test
ing environment 3. Unlike the accuracy degradation defined 
in Section 3.2 throughput is not necessarily influenced neg
atively by BTP in an interoperable biometric system. 

3.4. Storage requirements 
Definition 4 (Storage requirements). Requirements im
posed by biometric systems in different applications on the 
size of PTs and the implementation of BTP algorithms. 

The storage requirements are highly dependent on the 
applications. While PCs and central databases can provide 
enough storage capacity, embedded systems or small per
sonal tokens such as smart cards or RFID chip are very lim
ited in storage resources. In the latter case, the size of the 
implementation of the PIE, the PIR and the PIC has to be 
taken into account. Obviously, the code size (footprint) of 
the implementation of the BTP algorithm can only be com
pared when it is evaluated on the same target platform. Be
cause BTP algorithms have not been standardized yet, they 
may have template sizes that are distinctly different from 
unprotected templates. In some of the BTP algorithms, 
the length of protected templates can even be adjusted to 
achieve expected effects in accuracy, security / privacy, and 
other performance aspects. 

3.5. Diversity 
Definition 5 (Diversification capacity). Maximum number 
of independent protected templates that can be generated 
from the same biometric feature by a BTP algorithm. 

The renewability requirement to protecting a biometric 
template implies that PIs can be diversified. The ability to 
diversify is measured in the first place by the theoretical 
maximum number of PIs that can be generated. Secondly, 
a theoretical analysis should investigate the degradation in 
irreversibility, unlinkability, etc. as a function of the number 
of PTs issued. 

4. Protection performance 
This section presents a list of criteria related to the pro

tection properties of BTP. We start with a discussion on the 
concepts of security and privacy and the interpretation of 
these concepts in [2]. Then we define and elaborate the cri
teria related to these concepts. 

4.1. Concepts of security and privacy 
In the context of biometrics, security is often interpreted 

as the probability of an impostor managing to impersonate 
3The NIST SHA-3 competition is an example of such equal-condition 

evaluation activity (http://csrc.nist.gov/groups/ST/hash/ 
sha-3/Submission_Reqs/ref_and_optim.html). 
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a genuine user, which is measured by the false-acceptance
rate (FAR) of a system. Security is, however, more fre
quently used in a much broader sense because a system can 
and will be attacked in manymore ways. As such, biometric 
security and privacy refer to a combination of measures at 
different levels (system, procedures, information, devices). 
In [2] security is expressed as requirements at the sys

tem level and privacy as requirements on the information 
level. Security refers to the confidentiality of (biometric) 
information that is achieved from system-level countermea
sure such as access control, the integrity of biometric refer
ences, and renewability and revocability as requirements to 
solve the issue of compromised references. Privacy refers 
to the irreversibility of PTs, the unlinkability of PTs, and 
the confidentiality of PTs achieved by applying, e.g., data 
separation or plain encryption. 
The scope of this paper is on the evaluation of algo

rithms that provide protection at the information-level. The 
underlying principle of biometric template protection (at 
template-level) is that protected templates must be self
protecting. Because the terms security and privacy are quite 
broad and are often used in different ways we will not use 
them here. Instead we will refer to the specific properties 
of irreversibility and unlinkability. It should also be noted 
that there are issues, e.g., spoofing, that cannot be solved by 
BTP algorithms. 

4.2. Irreversibility 
Generally speaking, irreversibility refers to the secrecy 

of the biometric data from which the renewable biometric 
reference was created. The PI in the renewable reference 
is often randomly generated, i.e., independent of the enrol
ment data. The AD is used to diversify PTs but also, in 
some cases, to assist in compensating for the noise. There-
fore, AD are often adjusted to the enrolment data to achieve 
a higher accuracy. Because of this there is an unavoidable 
leakage of information about the enrolment data through the 
AD. It has been proved theoretically by Smith [31] in the 
fuzzy extractor framework [13] that information leakage, 
which is modeled as a loss in min-entropy, is unvoidable. 
This was later exploited in [8] and [30] to link PTs. 
Based on these observations we conclude that it is not 

a criterion if or how much information is leaked by a PT. 
What is relevant, is the purpose for which this leakage 
can be exploited. Therefore, we define the following irre
versibility criterion, which holds for all BTP methods. 

Definition 6 (Full-leakage irreversibility). The difficulty of 
determining, exactly or with tolerable margin, from a PT, 
the biometric sample(s) or features used during enrolment 
to generate that PT. 

This criterion is particularly relevant in systems where 
exact secrecy of the enrolment data is required. For exam-

Figure 2. Simplified visualization of a scheme with pseudo
authorized inputs. The enrolment sample is denoted by the dot 
labeled b. The grey-shaded circle represents the authorized inputs 
and the pseudo-authorized inputs are represented by the region in 
the dashed rectangle minus the grey shaded circle. 

ple, in [7] a cryptographic key is derived directly from an 
enrolment sample and the entropy of that key depends on 
the variability of biometric data. 
In most systems the main concern is to prevent an at

tacker to produce a biometric sample that would pass a ver
ification test. Therefore we define the following criterion. 

Definition 7 (Authorized-leakage irreversibility). The diffi
culty of determining a biometric sample(s) or features from 
a PT that would ”match” the unprotected enrolment data in 
a disjoint unprotected system. 

Informally, this means that an attacker should not be able 
to find a sample that is close to the enrolment sample, where 
close refers to a certain measure of similar, e.g., a distance 
function, and threshold as defined in an unprotected sys
tem. Unfortunatly, due to the inevitable false-match-rate, 
there will always be a proportion of PTs that are suscepti
ble to offline FMR attacks, i.e., when an attacker runs an 
entire database against a stolen PT until a matching sample 
is found. These attacks can to some extent be prevented by 
data separation. 
Some methods accept a larger part of the input space than 

what an unprotected comparison algorithm would tolerate. 
This is represented by the dashed rectangle in Figure 2. This 
“widening” of the authorized input region enhances the full
leakage irreversibility (unconditionally). This phenomenon 
is typically observed in cancelable biometrics [27] or re
lated methods based on projection [34]. To address this 
phenomenon we define a third notion of irreversibility. 

Definition 8 (Pseudo-authorized-leakage irreversibility). 
The difficulty of determining, exactly or to a high degree 
of similarity, from a PT, the biometric sample(s) or features 
that match the PT but would not ”match” the unprotected 
enrolment data in a disjoint unprotected system. 

Informally, this means that an attacker is able to distin
guish pseudo-authorized inputs as shown in Figure 2 from 
the authorized inputs. Protected templates that reveal their 
(widened) matching input range make a biometric system 
susceptible to spoofing. However, this is a system-level 
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issue and should not result in a negative evaluation of the 
method. 

Unconditional versus conditional. The term difficulty, 
as used in the definitions, can be interpreted in two ways. 
On the one hand irreversibility can be achieved uncondi
tionally. This means that irrespective of the efforts that are 
put in trying to reverse a PT, there will be always be an 
amount of uncertainty about the biometric data. In this case, 
irreversibility can be measured using information-theoretic 
properties such as conditional min-entropy (cf. [13]), condi
tional entropy or guessing entropy [11] (See also Ignatenko 
and Willems [15]). On the other hand, it is sometimes im
possible to protect biometric data against an adversary with 
infinite resources (computing power and time). However, 
the required resources may be so large, that it is practically 
infeasible to reverse a PT. In this case irreversibilty should 
be expressed in terms of computational complexity. A prac
tical and empirical approach to this problem was proposed 
by Nagar and Jain [22] who defined the “coverage and ef
fort” metric to evaluate non-invertible transformations. 

Multi-reference irreversibility. Irreversibility must hold 
when two or more mated protected templates, i.e., originat
ing from the same characteristic, are available to an attacker. 
This multi-reference dimension must be taken into account 
when analyzing irreversibility. This has been demonstrated 
to be an issue for fuzzy commitment [18] when using differ
ent error-correcting codes [30], but also for schemes based 
on random projections [35] as shown in [38]. 

4.3. Unlinkability 
Unlinkability refers to the classification of renewable ref

erences. This is sometimes refered to as cross-matching, 
but we will use the term cross-comparison. In essence, this 
means that there should not exist an algorithm that performs 
well on classifying PTs. If, theoretically, such algorithm 
exists, it should not be efficiently computable. Hence, un
linkability may not be achieved theoretically, but in practice 
the classification of PTs is believed to be intractable. The 
notion of unlinkability is defined as follows. 

Definition 9 (Unlinkability). The difficulty of classifying 
PTs over time and accross applications. 

Unlinkability is in the first place measured by verifying 
that two mate PTs, i.e., originating from the characteris
tic, differ considerably. In the second place, an attacker 
can try to invert the PT and use the partial information that 
is revealed about the enrolment data as input to a conven
tional comparison algorithm. These two approaches were 
proposed in [23]. Setting the parameters of the comparison 
algorithm to particular values will result in a certain classifi
cation accuracy. Consequently, performance rates called the 

”false cross-match rate” and ”false non cross-match rate” 
were defined in [23]. We will adopt these names. 
More generically, unlinkability should be evaluated us

ing a classification algorithm that works on PTs instead of 
a conventional algorithm and that uses specific information 
revealed by the PT as a heuristic. A similar approach of 
heuristic-based classification of PTs was proposed in [30]. 
The best heuristic is a function that fully exploits the in
formation that is leaked by the PT. In case this leakage is 
large, an attacker may be able to construct a very accurate 
cross-comparison algorithm. The actual metric for evaluat
ing the unlinkablity is a pair of error rates, which reflect the 
accuracy of the PT classification algorithm. 
Let PT1 and PT2 denote two protected templates de

rived from samples b1 and b2, respectively. In first instance, 
b1 = b2. However, some schemes cannot provide unlinka
bility if two enrolment samples are equal, hence two differ
ent measurements from the same characteristic should be 
used. Let the binary operator ∼ denote that two PTs are 
a mate pair and  r that they are not. Let f be the heuris
tic function used for evaluation by a cross-comparatorCCf . 
The CCf takes as input two PTs and some parameters p, like 
a decision threshold, and outputs 1 if the input templates are 
evaluated by CCf as a mate pair and zero otherwise. 
Let DB be a particular database over which a cross-

comparator CCf is evaluated. Then MDB denotes the sub
set of all mate pairs from DB and NMDB the subset of non
mate pairs: 

MDB = {(i, j) | i, j ∈ DB ∧ i ∼ j}
 
NMDB = {(i, j) | i, j ∈ DB ∧ i r j} .
 

Then we define the false cross-match rate (FCMR) and the 
false non-cross-match rate (FNCMR) as 

FCMRf = #{x ∈NMDB : CCf (x) = 1} / #NMDB 

FNCMRf = #{x ∈ MDB : CCf (x) = 0} / #MDB . 

We define the equal cross-comparison rate ECCRf as 
the point where FCMRf = FNCMRf . Figure 3 demon
strates the expected behaviour of a cross-comparator, i.e., 
FCMR+FNCMR≈ 1. 
This empirical approach to evaluating unlinkability pro

vides an estimate of the unconditional unlinkability under 
a certain heuristic. However, it might also be impossible 
to efficiently evaluate a heuristic function. Although the
oretically an excellent heuristic may exist, it is practically 
infeasible to compute it and to conduct the practical experi
ment described above. In this case, unlinkability is achieved 
only conditionally. 

4.4. Additional properties and remarks 
Additional aspects can be considered for the criteria that 

have been defined above. Instead of defining new crite
ria for these, we consider them as additional dimensions in 
which the above defined criteria should be evaluated. 
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Figure 3. False cross-match rate (FCMR) versus false non-cross
match rate (FNCMR) of a cross-comparator exhibiting expected 
behaviour. 

Confidentiality and integrity. Confidentiality and in
tegrity are defined in [2] as the properties that information 
is protected against unauthorized access or disclosure and 
that the accuracy and completeness of assets is safeguarded, 
respectively. However, as mentioned in Section 4.1 these 
properties do not directly relate to the BTP algorithm. For 
example, integrity or authenticity of PTs cannot be achieved 
at the information level without reference to a larger infra
structure, e.g. a PKI, a trusted entity or a key management 
solution. Confidentiality and integrity are, therefore, not se
lected as criteria for the evaluation of BTP algorithms. 

Revocability. Revocability refers to the ability to prevent 
verification against a PT in the future [2]. This is in general 
achieved through system-specific countermeasure, e.g., by 
removing a compromised reference from the system or by 
blacklisting it. As such, this is not a criteria for the evalua
tion of BTP methods. 

Renewability. Renewability is defined in [2] as an um
brella term for the diversification capacity, and the irre
versibility and the unlinkability aspects. Sometimes, re
newability is also interpreted as the ability to update PTs, 
i.e., the ability to generate a new PT from an existing PT 
without enrolment data. In that case, the two PTs should 
have the same properties as PTs that are both generated 
from the same (or close) enrolment data. The ability to up
date a PT is not considered as an independent criterion, but 
an additional dimension in which the other criteria, such as 
diversification or unlinkability, should be evaluated. 

Data separation. Evaluation of the criteria defined above 
implies the assumption that the full PTs are known by the at
tacker. Besides PI and AD, the PI encoding, recoding, com
parison and decision procedures are assumed to be known 
by the attacker. This is the whitebox attack model. How
ever, a potential separation of the AD and PI cannot be 
ignored and the BTP criteria should be evaluated in func
tion of the data available to an attacker: the PI alone; the 

AD alone; and the combination of the PI and the AD. Also, 
parts of the AD can be separated, e.g., a random seed stored 
separately in a physical token (e.g. [34]). 

Strong and weak variants. Some BTP methods involve 
some secret during the enrolment and verification proce
dures and in many schemes the PI is the cryptographic hash 
of this secret. In correspondence with the properties pro
posed by Ballard et al. [4], we will refer to strong variants 
of the evaluation criteria if the secret is known to an adver
sary and weak variants if the secret is not known. 

5. Operational performance 
Having defined a set of criteria with regards to technical 

performance and protection performance, we now look at 
the operational aspects of BTP algorithms. 

5.1. Modality independence 

Depending on the biometric modality different data rep
resentations may be used in a system. This has an im
pact on the applicability of BTP algorithms. While a fixed
length binary string lends itself easily to be used in combi
nation with traditional cryptographic algorithms and error
correcting codes, many modalities cannot easily be quan
tized or transformed in a fixed-length vector without a drop 
in accuracy. We define the following criterion to reflect this. 

Definition 10 (Modality Independence). The flexibility of 
dealing with different biometric modalities or data repre
sentations 

The metric to evaluate this is a simple checklist that 
presents the supported biometric modalities together with 
a reference to a proof of implementation. 

5.2. Interoperability 

Definition 11 (Interoperability). The degree to which stan
dardized biometric data interchange formats are supported 
by the BTP algorithm 

At the PT level it is difficult to realize interoperability 
since BTP algorithms are different in feature extraction and 
protecting steps. A typical existing standardized biometric 
data interchange format is the minutiae feature set for fin
gerprint modality. The metric for interoperability is again a 
simple checklist. 

5.3. Variation of criteria 

The performance of certain criteria in a biometric system 
may vary in function of algorithm parameters and influen
tial (biological, social or environmental) factors in different 
ways. We define the following criterion to reflect this. 
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Figure 4. Granularity of performance in the EER range R. 

Figure 5. Stability of performance in the EER range R. 

Definition 12 (Quality of performance (QoP)). The ability 
to obtain fine granular and stable performances. 

The variation in performance due to algorithm parame
ters and influential factors may have two types of quality of 
performance aspects: granularity of performance (GoP) and 
stability of performance (SoP). 

Definition 13 (Granularity of performance). Density of the 
points in a performance curve in a defined dynamic range of 
an algorithm parameter or influential factor, with the con
tinuous curve as the finest case . 

Granularity of performance can be a criterion for the 
BTP algorithm’s ability to obtain fine performance points 
(e.g., error rate, template size, security level, etc.) over the 
target set of biometric subjects. In most applications, a finer 
curve of performance is desired to make the algorithmmore 
adaptable to variable system requirements, e.g., to achieve a 
target Equal Error Rate more accurately, or to achieve a pre
cise template size that fully exploits the available storage re
sources. The main problemwith certain BTP methods, such 
as biometric cryptosystems, is that they operate at a single 
(or a few disjoint) operating points, e.g. FRR/FAR points. 
Because they do not output a comparison score it may be 
impossible to generate a continuous ROC curve. For exam
ple, schemes based on error-correcting codes are limited by 
the number of available codes. Figure 4 illustrates GoP. 

Definition 14 (Stability of performance). Degree to which 
a performance curve varies in a defined dynamic range of 
an algorithm parameter or influential factor. 

Stability of performance can be a criterion for the BTP 
algorithm’s ability to obtain stably changing performance 
points (e.g., error rate, template size, security level, etc.) 
over the target set of biometric subjects. In most appli
cations, a more stable curve of performance is desired to 
make the algorithm more robust to variable parameter set
ting or environmental factors, e.g., to achieve a robust ac
curacy over a wide dynamic range of sample quality, or to 
achieve a stable thus predictable irreversibility score curve 
over the interested accuracy range. Figure 5 illustrates SoP. 

5.4. Criteria dependencies 

The variation of criterion as a function of algorithm pa
rameters can be used to tune a system in function of some 
application requirements. The best known example is the 
choice of comparison thresholds to reach a certain FAR. 
As a consequence, the typical tradeoff is observed between 
FAR and FRR. In a similar way, tradeoffs could be ob
served between other criteria and visualized using tradi
tional Detection Error Trade-off (DET) and Receiver Oper
ating Characteristics (ROC) curves. The extension of such 
approach to the protection performance criteria, like irre
versibility and unlinkability, provides insights on the per
formances that can be achieved. 

6. Conclusion 

In order to assess BTP algorithms, which claim to be ca
pable of protecting biometric templates, technical efforts for 
the evaluation of such algorithms are needed. These efforts 
include the definition of evaluation criteria, metrics and test
ing methodologies. In this paper we have presented a list of 
criteria and some metrics that are relevant for BTP and we 
have defined them in a standardized reference architecture. 
It should be noted that metrics for the proposed crite

ria would only provide a distance function to measure the 
BTP algorithms’ differences in each criterion but do not in
dicate utility, which should be based on the goals of par
ticular application. Hence, no good or bad evaluation con
clusion should be drawn solely by the performance value or 
score measured using the metrics for each criterion. A score 
unification strategy may be useful to facilitate direct rank
ing of different algorithms. The strategy would then pro
vide a final score based on target performances and weights 
that depend on a particular application context. The further 
elaboration of metrics and the definition of particular ap
plication profiles are the next steps towards benchmarking 
activities for template protection. 
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