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ABSTRACT 
This paper presents a new image-based approach for 3D mapping the 

locations of the rebar and embedded components in a railway bridge deck prior to 
placement of concrete. Our approach enables practitioners to quickly and 
automatically identify where the rebar and other underlying components are within 
the bridge decks, locate safe and unsafe drilling area, and create a valuable 
documentation for future retrofit or rehabilitation of the concrete bridge decks. In the 
proposed method, digital images collected along the rebar cage prior to placement of 
concrete are processed to automatically generate a 3D point cloud. Using a set of 
control points, the reconstructed point cloud is transformed into the site coordinate 
system. Next, a pattern recognition algorithm identifies the rebar locations. A cell-
based map of the underlying structure is generated and the occupancies of the cells 
are automatically detected and visualized using color. Impact of the number of 
images and control points on the accuracy and density of the image-based 3D 
reconstruction, registration, and automated recognition of the rebar locations and 
safe/unsafe cells are studied in detail. Results of our experiments show the promise of 
applying this low-cost approach in practice. 

INTRODUCTION 
Placing embeds into a reinforced concrete structure after concrete is poured 

without damaging the reinforcement bars (rebar) is an industry wide challenge. In 
concrete structures such as bridge decks and post-tensioned concrete floors, damaging 
rebar may compromise structural integrity, may initiate a point for reinforcement 
corrosion, and result in considerable rework. Although negative impressions for the 
embeds can be made by placing various objects such as wooden dowels or steel rods 
into the rebar cage prior to pouring the concrete (and removing them once the 
concrete has partially or fully set), this practice is labor intensive, time consuming, 
and may jeopardize worker safety. Not only does inserting wooden dowels or other 
negatives into the rebar increase the congestion during placement of concrete by 
creating honeycombs and voids, but they may also move due to work crews walking 
on them and to the hydrostatic pressure of the concrete. Moreover, removing the 
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BACKGROUND ON PRE-CONCRETE MAPPING TECHNIQUES 
Laser Scanning 

The use of laser scanning to locate rebar prior to pouring concrete does not 
appear to be common practice or it has not been widely documented. Little published 
research (Whitfield 2010) was identified during the literature review. However, the 
use of laser scanning in construction for other applications has been documented 
extensively in various studies (Tang et al. 2010, Cheok 2006). The laser scanners can 
produce high density point clouds that can be extremely useful for 3D mapping. 
However, the main limitations of laser scanners include the time to acquire the data 
and their size which limits their mobility (although newer laser scanners are more 
compact, it is still problematic to locate the scanner within the rebar cage to capture 
the lower rebar layers) and hence may not generate a dense point cloud of the lower 
rebar layers which is critical in our study. Other limitations of the 3D imaging laser 
scanning method are mixed pixel phenomenon, range errors for thin structures, range 
jumps at reflectance and color boundaries, and large errors due to specular reflection 
(Golparvar-Fard et al. 2011b, and Tang et al. 2010). 

Image-based 3D Reconstruction and Conventional Photogrammetry 
Image-based 3D reconstruction or photogrammetry has been applied to 

various construction scenarios and recently at a more accelerated pace due to 
advances in digital photography, the low cost of memory, and the increasing network 
bandwidths. Conventional photogrammetric techniques use high-resolution analog 
cameras and provide accurate models comparable to those of laser scanning systems, 
but their spatial point density is more limited and may initially require application of 
markers for calibration (Golparvar-Fard et al. 2011a).  These conventional techniques 
can be restricted in camera rotations, range of the focal length, and analysis of the 
orientation data.  

Due to recent developments in automated feature detection and matching 
techniques such as Scale Invariant Feature Transforms (SIFT) (Lowe 2004) and based 
on structure from motion (SfM) techniques, several research groups have developed 
systems which aim to automatically recover camera calibration information and 
reconstruct a sparse 3D representation of the scene geometry. An example of such 
techniques is the Phototour algorithm of Snavely et al. (2006), which is the backbone 
of the Microsoft Photosynth1 system. The SfM techniques not only reconstruct a 
sparse representation of the scene, but also calibrate cameras up to an unknown 
scaling factor. Using calibration information derived from the SfM algorithm, several 
techniques such as Golparvar-Fard et al. (2011) and Furukawa and Ponce (2010) have 
proposed a new image-based 3D modeling pipeline which takes a collection of 
unordered and uncalibrated images and generates dense point clouds. Given the 
availability of unordered photo collections on construction sites, and the need for 
fully automated systems, such 3D reconstruction techniques have the potential to be  

  

                                                 
1 Certain trade names and company products are mentioned in the text or identified in an illustration in order to adequately 
specify the experimental procedure and equipment used. In no case does such an identification imply recommendation or 
endorsement by NIST, nor does it imply that the products are necessarily the best available for the purpose. 
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the most useful approach for 3D construction applications. Hence, in this study, the 
proposed pipeline is used as part of the overall process to generate the necessary 
initial point cloud. 

RESEARCH OBJECTIVES 
This research explores application of unstructured collections of digital images to 

automatically map rebar and embedments in 3D and visualize rebar location and 
occupied/empty spaces for post-concrete identification of safe vs. unsafe drilling 
locations. Given a collection of uncalibrated and unstructured imagery, our goal is to 
automatically reconstruct a 3D point cloud model and transform it to the site coordinate 
system using a control-based registration process. A new method is created to detect 
rebar location and identify safe/unsafe drilling areas. The safe/unsafe drilling areas are 
visualized using an IFC-based BIM along with the point cloud model in an augmented 
reality environment. The results of this visualization process can be projected on the 
concrete surface by laser projector. In this paper, the impact of the number of images and 
control points per unit of area on the accuracy and completeness of the point cloud, and 
the accuracy of registration and identification of safe/unsafe drilling areas are tested and 
demonstrated in the National Institute of Standards and Technology (NIST) Intelligent 
and Automated Construction Job Site Testbed (IACJS) (Saidi et al. 2011). 

IMAGE-BASED 3D MAPPING AND SAFE DRILLING IDENTIFICATION 
In our work, we assume a collection of uncalibrated and unstructured images 

are available. Using a streamlined image-based 3D reconstruction (Golparvar-Fard et 
al. 2011a) which consists of Structure-from-Motion (SfM), Multi-View Stereo 
(MVS), and Voxel Coloring/Labeling (VCL), a dense 3D point cloud of the rebar and 
embedments are initially created. Next, using a control-based registration process the 
dense point cloud is transformed into the Euclidean site coordinate system. Figure 2 
shows the registration targets that can be used in practice. In this case, the site 
coordinates of these targets are predefined using surveying techniques. 

Since the scale of the point cloud reconstructed using uncalibrated imagery is 
unknown, this transformation includes Rotation (ܴ), Translational offset (ܶ), and a 
uniform Scale (ݏ) (i.e.,seven degree-of-freedom (DOF)). Three points known in both 
coordinate systems are theoretically sufficient to determine these seven unknowns. 
However, in practice, these measurements are not always exact and using more than three 
points can reduce the registration error. Let ݊ be the number of rebar targets that will be 
used for registration of the point cloud into the site coordinate system. The points in 
these coordinate systems can be denoted by ݎ௣,௜ and ݎ௦௜௧௘,௜, respectively, where ݅ is the 
number of corresponding targets which ranges from 1 to ݊. The transformation can be 
written as follows:                     ݎ௦௜௧௘ ൌ ௣൯ݎ൫ܴݏ ൅ ܶ                             (1) 
where ܴሺ݌ݎሻ is the transformed version of the initially reconstructed point cloud. 
Minimization of the sum of the squared errors is formulated as: 
                                             ∑ ‖݁௜‖ଶ ൌ௡ଵ ∑ ฮݎ௦௜௧௘,௜ െ ௣,௜൯ݎ൫ܴݏ െ ܶฮଶ௡ଵ                                    (2) 
To solve for this transformation, similar to Golparvar-Fard et al. (2009), the approach 
proposed in Horn (1987) is used which gives a closed-form solution to the least square 
problem of absolute orientation. To extract the rebar intersections and calculate the safe 
drilling depth within each rebar cell, an algorithm (Saidi et al. 2011) was developed to 
automatically perform this step and reduce the data processing time. 
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Figure 7: D1AR model of the expected and actual mapping of the site

Impact of Number of Images and Control Points on the Method Accuracy
In order to systematically study the impact of the number of images per unit of

area on the accuracy of the reconstruction as well as the rebar and safe unsafe cell
detection, we initially diyided the rebar cage plan uno 4 equilaterals (11 k). For each,
we looked Ulto the Yisibility of e",ery reronstructed POUlt 0) and calcu1a.ted the
number of cameras that obser,e the point (Ci ). Next, for each equilateral (11 k), the,
tolal number of cameras that obserye all reconstructed pOUlts Ul 11k (IfC;)k is
computed, The outcome is clustered into a 4-bin histogram, each bin clustering
images UltO categories of similar contribution. In order to systematically and
uniformly reduce the number ofimages per unit of area, in each step a percentage of
images from each category was selected. As a result, several subsets of 18, 23, 127,
195, and 246 images are automatically sdttted. Each dataset was processed to
generate a 3D point cloud. Each poill! cloud was transfonned to the global coordinate
system of the IACJS testbed and it was segmellled to retain the rebar cage and
remove the surfOl.Ilning scene. The refined point clouds were fed into an algoritlull to
extract the rebar intersection and an algorithm to identify the safe unsafe cells.

,.,
Figure 8: (a) Ground truth: (b) Undetttted and detected safe. unsafe cells

Figure 9a and Figure 9b show the results of the point cloud density for the
IOtal number of images used and per unit of area (considering the Yisibility
measuremell! mentioned above). In our initial experimell!, we synthetically reduced
the spatial resolution of images by a factor of2 before the 1VfVS and VCL steps. In
these experiments we used the original 2 :MPixd images which resulted in a
significantly higher density (e.g" for 246 images per 9,3 square meter (100 square
foot) of unit area, the point cloud had a density ofabout 50 mi11ionpoints). As seen in
Figure 9, the density of the point cloud increases rapidly up to 127 images; howeyer,
after 127 images, increasing the number of images may not necessarily add to the
density ofthe point cloud. This may indicate that for up to about 130 images per 9,3
square meter(100 square foot), the majority ofthe detail (data) is collected from the
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conducted to find the practical number of images required per unit of area to guide 
field engineers when collecting the imagery necessary for a proper detailed 3D 
mapping of rebar and embedded objects prior to placement of concrete. 

CONCLUSIONS AND FUTURE WORK 
In this paper we present a new image-based approach for 3D mapping the 

locations of the rebar and embedded objects prior to placement of concrete on a 
railway bridge deck. The result of our experiments shows that by only using digital 
images, practitioners can identify where the rebar and other embedded objects are 
within the bridge decks, locate safe and unsafe drilling areas, and can use the 
resulting 3D map to document the embedded objects for future retrofit or 
rehabilitation of the concrete bridge decks. We studied the impact of the number of 
images and control points on the accuracy and density of the image-based 3D 
reconstruction, registration, and automated recognition of the rebar locations and 
safe/unsafe cells in detail. Our result shows that this approach has the potential to 
bypass the need for expensive and labor-intensive laser scanning approaches.  

As part of a larger study, we have looked into benchmarking the accuracy of 
the proposed image-based approach against the state-of-the-art laser scanners. These 
comprehensive experiments and their results are documented in (Saidi et al. 2011). 
We also need to study the impact of the camera distance and baseline between every 
pair of images and the applicability of video cameras on the accuracy of the proposed 
method. Also, developing an accurate plan for comprehensive and complete data 
collection needs to be explored in future work. Moreover, in future we will use 
precision-recall curves for evaluating the performance of our algorithm. We also need 
to create a new machine learning algorithm to automatically learn the threshold on the 
point cloud density for automated rebar and safe/unsafe cell detection. This can 
facilitate future data collections that may suffer from low point cloud density. 
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