
The Common Misuse Scoring
System (CMSS): Metrics for
Software Feature Misuse
Vulnerabilities

Elizabeth LeMay

Karen Scarfone
Peter Mell

NIST Interagency Report 7864

http://dx.doi.org/10.6028/NIST.IR.7864

The Common Misuse Scoring System
(CMSS): Metrics for Software Feature
Misuse Vulnerabilities

Elizabeth LeMay
University of Illinois at Urbana-Champaign

Karen Scarfone
Scarfone Cybersecurity

Peter Mell
Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD

C O M P U T E R S E C U R I T Y
Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8930

July 2012

U.S. Department of Commerce

Rebecca M. Blank, Acting Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary of Commerce for
Standards and Technology and Director

NIST Interagency Report 7864

http://dx.doi.org/10.6028/NIST.IR.7864

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 ii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of
concept implementations, and technical analyses to advance the development and productive use of
information technology. ITL’s responsibilities include the development of management, administrative,
technical, and physical standards and guidelines for the cost-effective security and privacy of other than
national security-related information in Federal information systems.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 iii

Authority

This publication has been developed by NIST to further its statutory responsibilities under the Federal
Information Security Management Act (FISMA), Public Law (P.L.) 107-347. NIST is responsible for
developing information security standards and guidelines, including minimum requirements for Federal
information systems, but such standards and guidelines shall not apply to national security systems
without the express approval of appropriate Federal officials exercising policy authority over such
systems. This guideline is consistent with the requirements of the Office of Management and Budget
(OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A-
130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A-130,
Appendix III, Security of Federal Automated Information Resources.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory
and binding on Federal agencies by the Secretary of Commerce under statutory authority. Nor should
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of
Commerce, Director of the OMB, or any other Federal official. This publication may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States.
Attribution would, however, be appreciated by NIST.

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930), Gaithersburg, MD 20899-8930

National Institute of Standards and Technology Interagency Report 7864
39 pages (July 2012)

Certain commercial entities, equipment, or materials may be identified in this document in order to
describe an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST
in accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by Federal agencies even before the completion of such
companion publications. Thus, until each publication is completed, current requirements, guidelines,
and procedures, where they exist, remain operative. For planning and transition purposes, Federal
agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and
provide feedback to NIST. All NIST publications, other than the ones noted above, are available at
http://csrc.nist.gov/publications.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 iv

Acknowledgments

The authors, Dr. Elizabeth LeMay of the University of Illinois at Urbana-Champaign, Karen Scarfone of
Scarfone Cybersecurity, and Peter Mell of the National Institute of Standards and Technology (NIST),
wish to thank their colleagues who reviewed drafts of this report and contributed to its technical content,
particularly Celia Paulsen, Harold Booth, and Tim Grance of NIST, Sasha Romanosky of Carnegie
Mellon University, Steven Christey of the MITRE Corporation, Adam Shostack of Microsoft, and Anton
Chuvakin.

Portions of this report are based on the official Common Vulnerability Scoring System (CVSS) standard1
from the Forum of Incident Response and Security Teams (FIRST) CVSS Special Interest Group; NIST
Interagency Report (IR) 7435, The Common Vulnerability Scoring System (CVSS) and Its Applicability to
Federal Agency Systems; and NIST IR 7502, The Common Configuration Scoring System (CCSS):
Metrics for Software Security Configuration Vulnerabilities.2

Abstract

The Common Misuse Scoring System (CMSS) is a set of measures of the severity of software feature
misuse vulnerabilities. A software feature is a functional capability provided by software. A software
feature misuse vulnerability is a vulnerability in which the feature also provides an avenue to compromise
the security of a system. Such vulnerabilities are present when the trust assumptions made when
designing software features can be abused in ways that violate security. Misuse vulnerabilities allow
attackers to use for malicious purposes the functionality that was intended to be beneficial. CMSS can
provide measurement data to assist organizations in making sound decisions on addressing software
feature misuse vulnerabilities and in conducting quantitative assessments of the overall security posture of
a system. This report defines proposed measures for CMSS and equations to be used to combine the
measures into severity scores for each vulnerability. The report also provides examples of how CMSS
measures and scores would be determined for selected software feature misuse vulnerabilities.

Keywords

Common Configuration Scoring System (CCSS); Common Misuse Scoring System (CMSS); Common
Vulnerability Scoring System (CVSS); security metrics; vulnerabilities; vulnerability scoring

Audience

This report is directed primarily at information security researchers, particularly those interested in
vulnerability measurement or security automation; security product vendors; and vulnerability analysts.

1 http://www.first.org/cvss/cvss-guide.html
2 http://csrc.nist.gov/publications/PubsNISTIRs.html

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 v

Table of Contents

1. Overview of Vulnerability Measurement and Scoring...1

1.1 Categories of System Vulnerabilities ... 1
1.2 The Need for Vulnerability Measurement and Scoring ... 2
1.3 Vulnerability Measurement and Scoring Systems .. 3

2. CMSS Metrics ..6

2.1 Base Metrics ... 7
2.1.1 Exploitability ...7
2.1.2 Impact ..10

2.2 Temporal Metrics ... 12
2.2.1 General Exploit Level (GEL) ...13
2.2.2 General Remediation Level (GRL) ...13

2.3 Environmental Metrics ... 14
2.3.1 Local Exploit Level ...14
2.3.2 Local Remediation Level (LRL) ..15
2.3.3 Local Impact ...16

2.4 Base, Temporal, and Environmental Vectors ... 18

3. Scoring ...20

3.1 Guidelines ... 20
3.1.1 General ..20
3.1.2 Base Metrics ..20

3.2 Equations .. 21
3.2.1 Base Equation ..21
3.2.2 Temporal Equation ...22
3.2.3 Environmental Equation ...22

4. Examples ...25

4.1 Example One: ARP Cache Poisoning .. 25
4.2 Example Two: Malicious File Transfer Via Instant Messaging Software................... 26
4.3 Example Three: User Follows Link to Spoofed Web Site ... 27

5. Comparing CMSS to CVSS and CCSS ...29

6. Appendix A—Additional Resources ..30

7. Appendix B—Acronyms and Abbreviations ..31

List of Tables

Table 1. Access Vector Scoring Evaluation ...8

Table 2. Authentication Scoring Evaluation ...8

Table 3. Access Complexity Scoring Evaluation ..10

Table 4. Confidentiality Impact Scoring Evaluation ..11

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 vi

Table 5. Integrity Impact Scoring Evaluation ...12

Table 6. Availability Impact Scoring Evaluation ...12

Table 7. General Exploit Level Scoring Evaluation ..13

Table 8. General Remediation Level Scoring Evaluation ...14

Table 9. Local Vulnerability Prevalence Scoring Evaluation ..15

Table 10. Perceived Target Value Scoring Evaluation ...15

Table 11. Local Remediation Level Scoring Evaluation ...16

Table 12. Collateral Damage Potential Scoring Evaluation ...17

Table 13. Confidentiality, Integrity, and Availability Requirements Scoring Evaluation18

Table 14. Base, Temporal, and Environmental Vectors ...18

List of Figures

Figure 1. CMSS Metric Groups ...7

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 1

1. Overview of Vulnerability Measurement and Scoring

This section provides an overview of vulnerability measurement and scoring. It first defines the major
categories of system vulnerabilities. Next, it discusses the need to measure the characteristics of
vulnerabilities and generate scores based on those measurements. Finally, it discusses existing
vulnerability and measurement scoring systems.

1.1 Categories of System Vulnerabilities

There are many ways in which the vulnerabilities of a system can be categorized. For the purposes of
vulnerability scoring, this report uses three high-level vulnerability categories: software flaws, security
configuration issues, and software feature misuse.3 These categories are described below.

A software flaw vulnerability is caused by an unintended error in the design or coding of software. An
example is an input validation error, such as user-provided input not being properly evaluated for
malicious character strings and overly long values associated with known attacks. Another example is a
race condition error that allows the attacker to perform a specific action with elevated privileges.

A security configuration setting is an element of a software’s security that can be altered through the
software itself. Examples of settings are an operating system offering access control lists that set the
privileges that users have for files, and an application offering a setting to enable or disable the encryption
of sensitive data stored by the application. A security configuration issue vulnerability involves the use of
security configuration settings that negatively affect the security of the software.

A software feature is a functional capability provided by software. A software feature misuse
vulnerability is a vulnerability in which the feature also provides an avenue to compromise the security of
a system. These vulnerabilities are caused by the software designer making trust assumptions that permit
the software to provide beneficial features, while also introducing the possibility of someone violating the
trust assumptions to compromise security. For example, email client software may contain a feature that
renders HTML content in email messages. An attacker could craft a fraudulent email message that
contains hyperlinks that, when rendered in HTML, appear to the recipient to be benign but actually take
the recipient to a malicious web site when they are clicked on. One of the trust assumptions in the design
of the HTML content rendering feature was that users would not receive malicious hyperlinks and click
on them.

Software feature misuse vulnerabilities are introduced during the design of the software or a component
of the software (e.g., a protocol that the software implements). Trust assumptions may have been
explicit—for example, a designer being aware of a security weakness and determining that a separate
security control would compensate for it. However, trust assumptions are often implicit, such as creating a
feature without first evaluating the risks it would introduce. Threats may also change over the lifetime of
software or a protocol used in software. For example, the Address Resolution Protocol (ARP) trusts that
an ARP reply contains the correct mapping between Media Access Control (MAC) and Internet Protocol
(IP) addresses. The ARP cache uses that information to provide a useful service—to enable sending data
between devices within a local network. However, an attacker could generate false ARP messages to
poison a system’s ARP table and thereby launch a denial-of-service or a man-in-the-middle attack. The

3 There are other types of vulnerabilities, such as physical vulnerabilities, that are not included in these categories.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 2

ARP protocol was standardized over 25 years ago4, and threats have changed a great deal since then, so
the trust assumptions inherent in its design then are unlikely to still be reasonable today.

It may be hard to differentiate software feature misuse vulnerabilities from the other two categories. For
example, both software flaws and misuse vulnerabilities may be caused by deficiencies in software design
processes. However, software flaws are purely negative—they provide no positive benefit to security or
functionality—while software feature misuse vulnerabilities occur as a result of providing additional
features.

There may also be confusion regarding misuse vulnerabilities for features that can be enabled or
disabled—in a way, configured—versus security configuration issues. The key difference is that for a
misuse vulnerability, the configuration setting enables or disables the entire feature and does not
specifically alter just its security; for a security configuration issue vulnerability, the configuration setting
alters only the software’s security. For example, a setting that disables all use of HTML in emails has a
significant impact on both security and functionality, so a vulnerability related to this setting would be a
misuse vulnerability. A setting that disables the use of an antiphishing feature in an email client has a
significant impact on only security, so a vulnerability with that setting would be considered a security
configuration issue vulnerability.

1.2 The Need for Vulnerability Measurement and Scoring

No system is 100% secure: every system has vulnerabilities. At any given time, a system may not have
any known software flaws, but security configuration issues and software feature misuse vulnerabilities
are always present. Misuse vulnerabilities are inherent in software features because each feature must be
based on trust assumptions—and those assumptions can be broken, albeit involving significant cost and
effort in some cases. Security configuration issues are also unavoidable for two reasons. First, many
configuration settings increase security at the expense of reducing functionality, so using the most secure
settings could make the software useless or unusable. Second, many security settings have both positive
and negative consequences for security. An example is the number of consecutive failed authentication
attempts to permit before locking out a user account. Setting this to 1 would be the most secure setting
against password guessing attacks, but it would also cause legitimate users to be locked out after
mistyping a password once, and it would also permit attackers to perform denial-of-service attacks against
users more easily by generating a single failed login attempt for each user account.

Because of the number of vulnerabilities inherent in security configuration settings and software feature
misuse possibilities, plus the number of software flaw vulnerabilities on a system at any given time, there
may be dozens or hundreds of vulnerabilities on a single system. These vulnerabilities are likely to have a
wide variety of characteristics. Some will be very easy to exploit, while others will only be exploitable
under a combination of highly unlikely conditions. One vulnerability might provide root-level access to a
system, while another vulnerability might only permit read access to an insignificant file. Ultimately,
organizations need to know how difficult it is for someone to exploit each vulnerability and, if a
vulnerability is exploited, what the possible impact would be.

If vulnerability characteristics related to these two concepts were measured and documented in a
consistent, methodical way, the measurement data could be used by quantitative risk assessment
methodologies for determining which vulnerabilities are most important for an organization to address
using its limited resources. For example, when planning the security configuration settings for a new
system, an organization could use vulnerability measurements as part of determining the relative

4 David Plummer, Request for Comments (RFC) 826, An Ethernet Resolution Protocol (http://www.ietf.org/rfc/rfc826.txt)

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 3

importance of particular settings and identifying the settings causing the greatest increase in risk.
Vulnerability measurement is also useful when evaluating the security of software features, such as
identifying the vulnerabilities in those features that should have compensating controls applied to reduce
their risk (for example, antivirus software to scan email attachments and awareness training to alter user
behavior) and determining which features should be disabled because their risk outweighs the benefit that
they provide.

Having consistent measures for all types of system vulnerabilities has additional benefits. Organizations
can compare the relative severity of different vulnerabilities from different software packages and on
different systems. Software vendors can track the characteristics of a product’s vulnerabilities over time
to determine if its security is improving or declining. Software vendors can also use the measures to
communicate to their customers the severity of the vulnerabilities in their products. Auditors and others
performing security assessments can check systems to ensure that they do not have unmitigated
vulnerabilities with certain characteristics, such as high impact measures or high overall severity scores.

Although having a set of measures for a vulnerability provides the level of detail necessary for in-depth
analysis, sometimes it is more convenient for people to have a single measure for each vulnerability. So
quantitative measures can be combined into a score—a single number that provides an estimate of the
overall severity of a vulnerability. Vulnerability scores are not as quantitative as the measures that they
are based on, so they are most helpful for relative comparisons, such as a vulnerability with a score of 10
(on a 0 to 10 scale) being considerably more severe than a vulnerability with a score of 4.5 Small scoring
differences, such as vulnerabilities with scores of 4.8 and 5.1, do not necessarily indicate a significant
difference in severity because of the margin of error in individual measures and the equations that
combine those measures.6

1.3 Vulnerability Measurement and Scoring Systems

To provide standardized methods for vulnerability measurement and scoring, three specifications have
been created, one for each of the categories of system vulnerabilities defined in Section 1.1. The first
specification, the Common Vulnerability Scoring System (CVSS), addresses software flaw
vulnerabilities. The first version of CVSS was introduced in 2004, and the second version became
available in 2007.7 CVSS has been widely adopted by the Federal government, industry, and others.
CVSS was originally intended for use in prioritizing the deployment of patches, but there has been
considerable interest in applying it more broadly, such as using its measures as inputs to risk assessment
methodologies.

The second vulnerability measurement and scoring specification is the Common Configuration Scoring
System (CCSS).8 CCSS was designed for measuring and scoring software security configuration issue
vulnerabilities. CCSS uses the basic components of CVSS and adjusts them to account for the differences
between software flaws and security configuration issues.

5 CMSS is ordinal scoring, not cardinal. For example, a score of 10 isn’t twice as bad as a score of 5.
6 See http://www.first.org/cvss/history (current as of May 31, 2012) for more information on the margin of error and the

origin of the equations. To summarize, scoring differences less than 0.5 are not intended to be statistically significant. The
scores were arrived at heuristically with the intention of providing an even spread of scores across the possible range.

7 The official CVSS version 2 specification is available at http://www.first.org/cvss/cvss-guide.html. NIST has also published
a Federal agency-specific version of the specification in NIST IR 7435, The Common Vulnerability Scoring System (CVSS)
and Its Applicability to Federal Agency Systems (http://csrc.nist.gov/publications/PubsNISTIRs.html).

8 NIST IR 7502, The Common Configuration Scoring System (CCSS): Metrics for Software Security Configuration
Vulnerabilities

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 4

The Common Misuse Scoring System (CMSS), the third of the vulnerability measurement and scoring
specifications, is defined in this report. CMSS addresses software feature misuse vulnerabilities. CMSS is
largely based on CVSS and CCSS, and it is intended to complement them.

The three vulnerability measurement and scoring systems are similar. They all use the same six core
measures to capture the fundamental characteristics of vulnerabilities. They all generate vulnerability
severity scores in the range of 0 (lowest severity) to 10 (highest severity). However, there are also some
significant differences in the details of the three specifications. These differences are discussed in Section
5, after the CMSS specification has been defined and illustrated in Sections 2, 3, and 4.

At a conceptual level, the CMSS specification can be more challenging to understand than the CVSS and
CCSS specifications because of the open-endedness of misuse vulnerabilities. The vulnerabilities
addressed by CVSS and CCSS are concrete: known software flaws and security configuration settings.
They are defined in vulnerability dictionaries.9 However, as of this writing there is not yet a dictionary of
software feature misuse vulnerabilities. Creating such a dictionary will require systematic identification of
the types of the trust assumptions that, if violated, could permit the flow of malicious code into a system,
the flow of confidential data out of the system, or other consequences such as denial of service conditions
or destruction of data. Consider the analysis of instant messaging (IM) software that allows a user to send
and receive text. The user may trustingly assume that when text appears to come from a friend, the text
was sent by that friend and can be trusted. However, an attacker may violate that trust when, for example,
he gains control of the friend’s IM client and sends the user a message containing the URL of a malicious
website. This is a misuse vulnerability: that an attacker can masquerade as the user’s IM friend, exploit
the user’s trust, and lead the user to compromise the security of his computer.

While some misuse vulnerability exploits begin with the attacker initiating contact, other exploits rely on
the victim to seek them out. For example, a user may trust that the files downloaded from a peer-to-peer
network are safe, but a misuse vulnerability exists if an attacker is able, for example, to misrepresent an
infected file to users who naively download the file and infect their computers. Also, when a misuse
vulnerability involves abusing the trust assumptions of people, an attack may include social engineering
tactics that prey on aspects of human nature such as curiosity, greed, fear, or trust of authority. Social
engineering can play an important role in exploiting misuse vulnerabilities; however, the discussion of
specific social engineering techniques is beyond the scope of this report.

The primary purpose of this document is to define CMSS, and not to explain in detail how organizations
can use CMSS. Unlike CVSS data, which can be used by itself to aid in prioritizing vulnerability
remediation efforts, as of this writing CMSS data is not yet directly useful to organizations for decision
making. This document is an early step in a long-term effort to provide standardized vulnerability
measurement data sources and corresponding methodologies for conducting quantitative risk assessments
of system security. Additional information will be published in the future regarding CMSS and how
organizations will be able to take advantage of it. Currently, the focus is on reaching consensus on the
definition of CMSS and creating initial sets of CMSS measures and scores for the purposes of validating
the CMSS specification and identifying any necessary adjustments to the specification.

Additional work will be needed before CMSS is ready for organizations to adopt. The most important
missing element is a dictionary of misuse vulnerabilities. Once such a dictionary has been developed, then
measures and scores need to be assigned to each entry and shared with the security community. This data
could be used in conjunction with the CVSS and CCSS measures as a consistent set of measures for

9 The software flaw dictionary is Common Vulnerabilities and Exposures (CVE) (http://cve.mitre.org/), and the security

configuration issue dictionary is Common Configuration Enumeration (CCE) (http://cce.mitre.org/).

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 5

system vulnerabilities. In turn, this will provide opportunities for using the data in threat models, risk
assessments, and other security analysis activities.

Also, a way will need to be developed to relate data on various vulnerabilities to each other—there are
many dependencies among vulnerabilities that affect their exploitability and impact. For example, one
vulnerability might only be exploitable if a second vulnerability is also present or if a second vulnerability
can grant user-level access. These dependencies need to be captured in a standardized way to facilitate the
data’s use for security modeling and analysis. Also, a mechanism has not yet been developed for
measuring the security characteristics of a system using CVSS, CCSS, and CMSS together. Another
important problem to resolve is how local policy, security controls, and other system and environment-
specific elements that affect vulnerabilities should be taken into account.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 6

2. CMSS Metrics

This section defines the metrics comprising the CMSS specification. The CMSS metrics are organized
into three groups: base, temporal, and environmental. Base metrics describe the characteristics of a
misuse vulnerability that are constant over time and across user environments. Temporal metrics describe
the characteristics of misuse vulnerabilities that can change over time but remain constant across user
environments. Environmental metrics are used to customize the base and temporal scores based on the
characteristics of a specific user environment. Figure 1 shows how the base, temporal, and environmental
scores are calculated from the three groups of metrics.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 7

Figure 1. CMSS Metric Groups

2.1 Base Metrics

This section describes the base metrics, which measure the characteristics of a software feature misuse
vulnerability that are constant with time and across user environments. The base metrics measure two
aspects of vulnerability severity: Exploitability and Impact.

2.1.1 Exploitability

The Exploitability of a software feature misuse vulnerability can be captured using the Access Vector,
Authentication, and Access Complexity metrics. These metrics are adapted from the CVSS and CCSS
specifications and reinterpreted in the context of software feature misuse.

2.1.1.1 Access Vector (AV)

The Access Vector metric reflects the access required to exploit the vulnerability. To produce an Access
Vector score for a software feature misuse vulnerability, consider what access to the system the attacker
must possess in order to exploit the feature. The possible values for this metric are listed in Table 1. The
more remote an attacker can be, the greater the vulnerability score.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 8

Table 1. Access Vector Scoring Evaluation

Metric
Value

Description

Local (L) A vulnerability exploitable with only local access requires the attacker to have either physical
access to the vulnerable system or a local (shell) account. An example of a locally exploitable
misuse vulnerability is the use of synchronization software to transfer malicious code from a
docked mobile device to the system.

Adjacent
Network (A)

A vulnerability exploitable with adjacent network access requires the attacker to have access to
either the broadcast or collision domain of the vulnerable software. Examples of local networks
include local IP subnet, Bluetooth, IEEE 802.11, and local Ethernet segment. An example of a
misuse vulnerability exploitable using adjacent network access is a system with a Bluetooth
interface that offers no security features (the interface can only be enabled or disabled). An
attacker within range of the system’s enabled Bluetooth interface could connect to the system
through that interface and perform actions such as maliciously accessing and modifying files.

Network (N) A vulnerability exploitable with network access means that the attacker does not require local
network access or local access. An example of a network attack is the distribution of an email with
an infected attachment that the recipients are tempted to open (which would be a misuse of the
email file attachment feature).

2.1.1.2 Authentication (Au)

The Authentication metric measures the number of times an attacker must authenticate to a target in order
to exploit a vulnerability. This metric does not gauge the strength or complexity of the authentication
process, only that an attacker is required to provide credentials before an exploit may occur. The possible
values for this metric are listed in Table 2. The fewer authentication instances that are required, the higher
the vulnerability score.

It is important to note that the Authentication metric is different from Access Vector. Here, authentication
requirements are considered once the system has already been accessed. Specifically, for locally
exploitable vulnerabilities, this metric should only be set to “Single” or “Multiple” if authentication is
needed beyond what is required to log into the system. An example of a locally exploitable vulnerability
that requires authentication is one affecting a database engine listening on a UNIX domain socket (or
some other non-network interface). If the user10 must authenticate as a valid database user in order to
exploit the vulnerability, then this metric should be set to “Single.”

Table 2. Authentication Scoring Evaluation

Metric
Value

Description

Multiple
(M)

Exploiting the vulnerability requires that the attacker authenticate two or more times, even if the same
credentials are used each time. An example is an attacker authenticating to an operating system in
addition to providing credentials to access an application hosted on that system.

Single (S) One instance of authentication is required to access and exploit the vulnerability.

None (N) Authentication is not required to access and exploit the vulnerability.

10 For the purposes of this report, a user is a person or entity whose direct actions misuse the software feature. A user may be

malicious or non-malicious. In contrast, an attacker is always malicious.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 9

The metric should be applied based on the authentication the attacker requires before launching an attack.
For example, if a network service is vulnerable to a command that can be issued before a user
authenticates to the service, the metric should be scored as “None” because the attacker can launch the
exploit before credentials are required. If the vulnerable command is only available after successful
authentication, then the vulnerability should be scored as “Single” or “Multiple,” depending on how many
instances of authentication must occur before issuing the command.

2.1.1.3 Access Complexity (AC)

The Access Complexity metric reflects the complexity of the attack required to exploit the software
feature misuse vulnerability. When the misuse vulnerability is manifest by user action, the complexity of
a software feature misuse attack depends both on the number of misuse actions the user must be
persuaded to perform and the level of sophistication of the social engineering such persuasion requires.
Otherwise, the complexity more generally depends on the level of sophistication required of the attacker
to be able to exploit the misuse vulnerability. Access Complexity can be influenced by factors such as the
ease of implementing and launching the attack and the likelihood of a user misusing the software feature
in the manner desired by the attacker. Access Complexity increases when an attack depends on additional
system requirements, such as using a particular type of web browser or a web browser with a particular
type of active content enabled.

For example, first consider an enticing email containing malicious scripts that execute when the user
views the email. The Access Complexity is medium because attack success requires a single user action
that is relatively likely to occur. Other misuse vulnerabilities may require additional steps in order to be
exploited. For example, an email may include a hyperlink to a website containing malicious code for the
user to download and install. This indirect infection method would require the user to follow several steps
to complete the exploit. To be successful, this attack would likely require sophisticated social
engineering. Thus, the Access Complexity would be rated as high.

In contrast to the previous two examples, some vulnerability exploits require no direct user interaction,
such as when an email client automatically displays emails (including rendering any malicious code they
contain) without user consent and without the option to disable the feature. The Access Complexity of
this vulnerability would be rated as low because the attacker can exploit the vulnerability essentially at
will. Although the exploit requires that the victim run the email client, the user will presumably run the
email client at some point in time.

The possible values for this metric are listed in Table 3. The lower the required complexity, the higher the
vulnerability score.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 10

Table 3. Access Complexity Scoring Evaluation

Metric
Value

Description

High (H) Specialized access conditions exist. For example:

 For misuse vulnerabilities dependent on user actions, the misuse actions required of the user
are unlikely to be performed.

o To enable the exploit, the user must perform complex or unusual steps, possibly within
a sequence of steps (e.g., the user receives an instant message with a link to a
website that contains a Trojan horse program that the user would have to select,
download, and install).

o The attack depends on elaborate social engineering techniques that would be easily
detected by knowledgeable people. For example, the user must be persuaded to
perform several suspicious or atypical actions.

 The attacker must perform a complex, difficult sequence of steps to exploit the trust
assumptions of programs running on the target system (e.g., the attacker must first
compromise another program that the vulnerable program trusts).

Medium
(M)

The access conditions are somewhat specialized. For example:

 For misuse vulnerabilities dependent on user actions, the misuse actions required of the user
are at least somewhat likely to be performed.

o The user must perform easy or seemingly ordinary steps to enable the exploit (e.g.,
the user runs the executable file attached to an email, the user clicks on a link to a
website).

o The attack depends on a small amount of social engineering that might occasionally
fool cautious users (e.g., phishing attacks that modify a web browser’s status bar to
show a false link, having to be on someone’s “buddy” list before sending an IM
exploit).

 The attacker must perform somewhat difficult steps to exploit the trust assumptions of
programs running on the target system (e.g., the attacker must create a customized email
message containing a malicious script).

Low (L) Specialized access conditions or extenuating circumstances do not exist. For example:

 The attack bypasses user consent mechanisms, if any exist; no user action is required.

 The attacker must perform simple steps to exploit the trust assumptions of programs running
on the target system (e.g., the attacker crafts a malicious Address Resolution Protocol (ARP)
reply message to poison an ARP table with incorrect address mappings).

2.1.2 Impact

The impact of a software feature misuse vulnerability can be captured using the Confidentiality Impact,
Integrity Impact, and Availability Impact metrics. These metrics are adapted from the CVSS specification
and reinterpreted in the context of software feature misuse. These three Impact metrics measure how a
misuse vulnerability, if exploited, could directly affect a targeted system. The Impact metrics
independently reflect the degree of loss of confidentiality, integrity, and availability. For example,
exploitation of a particular vulnerability could cause a partial loss of integrity and availability but no loss
of confidentiality.

For many misuse vulnerabilities, the possible impact from exploitation is dependent on the privileges held
by the user or application (including services). For example, a user account could have restricted
privileges or full root-level privileges; exploiting many misuse vulnerabilities would cause a greater
impact if full privileges were available. However, the privileges available through exploitation are
environment-specific. CMSS prevents environment-specific privileges from affecting the base impact

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 11

metrics by assuming for those metrics that the generally accepted best practices for the privileges are
being employed.11

CMSS allows organizations to take into account different privileges that they may provide in their
environments. This is done through a combination of base and environmental metrics. The base metric,
Privilege Level (PL), indicates the level of unauthorized access that an attacker could gain, such as
impersonating a user or gaining full access to an application or an operating system. Possible values for
Privilege Level are Root Level (R), User Level (U), Application Level (A), and Not Defined (ND). The
environmental metrics that use the Privilege Level are described in Section 2.3.3.1.

2.1.2.1 Confidentiality Impact (C)

The Confidentiality Impact metric measures the potential impact on confidentiality of a successfully
exploited misuse vulnerability. Confidentiality refers to limiting information access and disclosure and
system access to only authorized users, as well as preventing access by, or disclosure to, unauthorized
parties. The possible values for this metric are listed in Table 4. The greater the potential impact, the
higher the score.

Table 4. Confidentiality Impact Scoring Evaluation

Metric
Value Description

None (N) There is no impact to the confidentiality of the system.

Partial (P) There is considerable information disclosure. Access to some system files is possible, but the
attacker does not have control over what is obtained, or the scope of the loss is constrained. An
example is a vulnerability that divulges only certain tables in a database.

AND/OR

There is considerable unauthorized access to the system. Examples include an authorized user
gaining access to certain prohibited system functions, an unauthorized user gaining access to a
network service offered by the system, and an unauthorized user gaining user or application-level
privileges on the system (such as a database administration account).

Complete
(C)

There is total information disclosure, resulting in all system files being revealed. The attacker is able
to read all of the system's data (memory, files, etc.) An example is someone who is not authorized to
act as a system administrator gaining full administrator privileges to the system.

2.1.2.2 Integrity Impact (I)

The Integrity Impact metric measures the potential impact to integrity of a successfully exploited misuse
vulnerability. Integrity refers to the trustworthiness and guaranteed veracity of information. The possible
values for this metric are listed in Table 5. The greater the potential impact, the higher the score.

11 In cases where it is unclear what the best practice is for privileges, a default configuration is assumed.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 12

Table 5. Integrity Impact Scoring Evaluation

Metric
Value Description

None (N) There is no impact to the integrity of the system.

Partial (P) Modification of some system files or information is possible, but the attacker does not have control
over what can be modified, or the scope of what the attacker can affect is limited. For example,
system or application files may be overwritten or modified, but either the attacker has no control over
which files are affected or the attacker can modify files within only a limited context or scope, such as
for a particular user or application account.

AND/OR

The system’s security configuration can be altered. An example is a misuse vulnerability that would
allow an unauthorized file (such as one containing malware) to be stored on the system or allow an
unauthorized program to be installed on the system.

Complete
(C)

There is a total compromise of system integrity. There is a complete loss of system protection,
resulting in the entire system being compromised. The attacker is able to modify any files on the
target system. An example is someone who is not authorized to act as a system administrator
gaining full administrator privileges to the system.

2.1.2.3 Availability Impact (A)

The Availability Impact metric measures the potential impact to availability of a successfully exploited
misuse vulnerability. Availability refers to the accessibility of information resources. Attacks that
consume network bandwidth, processor cycles, or disk space all impact the availability of a system. The
possible values for this metric are listed in Table 6. The greater the potential impact, the higher the score.

Table 6. Availability Impact Scoring Evaluation

Metric
Value Description

None (N) There is no impact to the availability of the system.

Partial (P) There is reduced performance or interruptions in resource availability. An example is a network-
based flood attack that permits a limited number of successful connections to an Internet service.

Complete
(C)

There is a total shutdown of the affected resource. The attacker can render the resource completely
unavailable.

2.2 Temporal Metrics

The threat posed by a misuse vulnerability may change over time. The base metrics are limited to the
characteristics of a software feature misuse vulnerability that are constant over time and across user
environments. To incorporate the time-variant aspect of threats, the temporal metrics produce a scaling
factor that is applied to the Exploitability components of the base metric. Temporal metrics describe the
characteristics of misuse vulnerabilities that can change over time but remain constant across user
environments.

The two components of CMSS temporal metrics are the General Exploit Level and the General
Remediation Level. Since temporal metrics are optional, each includes a default metric value that has no
effect on the score. This value is used when the scoring analyst wishes to ignore a particular metric
because it does not apply or the analyst does not have sufficient data to determine the appropriate metric
value.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 13

2.2.1 General Exploit Level (GEL)

The General Exploit Level metric measures the prevalence of attacks against a misuse vulnerability—how
often any vulnerable system is likely to come under attack. If a misuse vulnerability could be exploited
more widely with the use of exploit code, the prevalence of attacks may be related to the current state of
exploit techniques or exploit code availability. Public availability of easy-to-use exploit code increases the
number of potential attackers by including those who are unskilled, thereby increasing the severity of the
vulnerability. The availability of automated exploit code also increases the number of attacks each
attacker can launch. However, note that attacks may not require exploit code. For example, consider a
misuse vulnerability that can be attacked by sending a user an email with instructions to perform actions
that result in an exploit. The prevalence of this type of attack would be measured by the frequency with
which the exploit email is received by users on a typical vulnerable system.

The possible values for this metric are listed in Table 7. The more frequently exploitation attempts occur
for a vulnerability, the higher the score.

Table 7. General Exploit Level Scoring Evaluation

Metric Value Description

None (N) Exploits have not yet been observed.

Low (L) Exploits are rarely observed. Expected time-between-exploits for a vulnerable system is
measured in months or years.

Medium (M) Exploits are occasionally observed. Expected time-between-exploits for a vulnerable system is
measured in days.

High (H) Exploits are frequently observed. Expected time-between-exploits for a vulnerable system is
measured in hours, minutes, or seconds.

Not Defined (ND) Assigning this value to the metric will not influence the score. It is a signal to the equation to
skip this metric. The default value is Medium.

2.2.2 General Remediation Level (GRL)

The General Remediation Level metric measures the availability of remediation measures that can
mitigate the vulnerability other than rendering the misused software feature useless (e.g., disabling the
affected feature, removing the software). Remediation measures may restrict the usage of the feature to
minimize or prevent misuse. One example of a remediation measure available against users opening
infected email attachments is the antivirus check in an email client that restricts which attachments a user
is able to open. Similarly, an antispam or antiphishing filter in an email client can mitigate the effects of a
phishing email by restricting which incoming email messages are placed in the inbox for the user to view
and by alerting the user about suspected phishing sites. Also, users can be made aware of phishing threats
and how they should handle emails that could be phishing attacks. These measures restrict the usage of
the email client in an attempt to prevent misuse of the capabilities to view emails and open attachments.
The effectiveness of the available remediation measures determines the General Remediation Level.

The possible values for this metric are listed in Table 8. The less effective the available remediation
measures, the higher the score.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 14

Table 8. General Remediation Level Scoring Evaluation

Metric Value Description

High (H) Remediation measures are available to significantly restrict feature use in such a way as to
collectively decrease the incidence of misuse by between 76% and 100%. (A decrease of
100% means that the available remediation measures are able to entirely prevent misuse.)

Medium (M) Remediation measures are available to partially restrict feature use in such a way as to
collectively decrease the incidence of misuse by between 26% and 75%.

Low (L) Remediation measures are available to slightly restrict feature use in such a way as to
collectively decrease the incidence of misuse by between 1% and 25%.

None (N) Remediation measures are not available.

Not Defined (ND) Assigning this value to the metric will not influence the score. It is a signal to the equation to
skip this metric. The default value is None.

2.3 Environmental Metrics

Differences between environments can have a large effect on the risk that a vulnerability poses to a
particular organization and its stakeholders. The CMSS environmental metrics capture the characteristics
of a vulnerability that are associated with a particular IT environment. Each organization computing
CMSS metrics can determine an appropriate definition of IT environment, such as the entire enterprise or
a logical or physical subset of the enterprise (e.g., a facility, a division, a small group of related systems).
Since environmental metrics are optional, each includes a metric value that has no effect on the score.
This value is used when the analyst feels the particular metric does not apply and wishes to ignore it.

The environmental metrics customize the previously computed base and temporal metrics. The
environmental metrics measure three aspects of vulnerability severity: Local Exploit Level, Local
Remediation Level, and Local Impact. Similar to the General Exploit Level and General Remediation
Level temporal metrics, the Local Exploit Level and Local Remediation Level environmental metrics
produce a scaling factor that is applied to the Exploitability components of the base metric. The Local
Impact environmental metric comprises several metrics that adjust the base impact metrics to take
environment-specific characteristics into account.

The environmental metrics are intended to measure deviations from the assumptions about environments
that were used to compute the base and temporal metrics. Therefore, environmental metrics should be
scored relative to those assumptions.

2.3.1 Local Exploit Level

The local exploit level can be captured using two environmental metrics: Local Vulnerability Prevalence
and Perceived Target Value.

2.3.1.1 Local Vulnerability Prevalence (LVP)

The Local Vulnerability Prevalence metric measures the prevalence of vulnerable systems in a specific
environment. It is intended to approximate the percentage of systems that could be affected by the
vulnerability. The Local Vulnerability Prevalence depends both on the prevalence of the misused feature
under scrutiny and the prevalence of its misuse. For misuse vulnerabilities dependent on user actions, the
prevalence of misuse depends on the probability that users in this environment will perform the actions
required for vulnerability exploitation. For example, if 80% of the systems contain a particular potentially
misused feature but only half of the users of those systems are expected to engage in misuse behavior,
then 40% of the total environment is at risk. Thus, the Local Vulnerability Prevalence would be rated as

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 15

medium. The Local Vulnerability Prevalence also takes into account, when appropriate, how frequently
the vulnerability is relevant for targets, such as how often the vulnerable software is run, how many hours
per day the vulnerable software is running, and how much usage exposes the software to threats (for
example, how many web sites or emails a user accesses). The possible values for this metric are listed in
Table 9. The greater the approximate percentage of vulnerable systems, the higher the score.

Table 9. Local Vulnerability Prevalence Scoring Evaluation

Metric Value Description

None (N) No target systems exist, or targets are so highly specialized that they only exist in a laboratory
setting. Effectively 0% of the environment is at risk.

Low (L) Targets exist inside the environment, but on a small scale. Between 1% and 25% of the total
environment is at risk.

Medium (M) Targets exist inside the environment, but on a medium scale. Between 26% and 75% of the
total environment is at risk.

High (H) Targets exist inside the environment on a large scale. Between 76% and 100% of the total
environment is considered at risk.

Not Defined (ND) Assigning this value to the metric will not influence the score. It is a signal to the equation to
skip this metric. The default value is Medium.

2.3.1.2 Perceived Target Value (PTV)

The Perceived Target Value metric measures the likelihood of attack using the misuse vulnerability in an
environment relative to vulnerable systems in other environments. The metric indicates the level of
motivation for an attacker to attempt to exploit the misuse vulnerability in the environment relative to
other environments. The possible values for this metric are listed in Table 10. The higher the Perceived
Target Value, the higher the score.

Table 10. Perceived Target Value Scoring Evaluation

Metric Value Description

Low (L) The targets in this environment are perceived as low value by attackers. Attackers have low
motivation to attack the target system relative to other systems with the same vulnerability.

Medium (M) The targets in this environment are perceived as medium value by attackers. Attackers are
equally motivated to attack the target system and other systems with the same vulnerability.

High (H) The targets in this environment are perceived as high value by attackers. Attackers are highly
motivated to attack the target system relative to other systems with the same vulnerability.

Not Defined (ND) Assigning this value to the metric will not influence the score. It is a signal to the equation to
skip this metric. The default value is Medium.

2.3.2 Local Remediation Level (LRL)

The Local Remediation Level metric measures the level of protection against a misuse vulnerability
within the local IT environment and captures both how widespread mitigation implementation is and how
effective such mitigation is. To calculate the environmental score, the Local Remediation Level metric
replaces the temporal General Remediation Level metric, which measures only the availability of
remediation measures, not the implementation.

The possible values for this metric are listed in Table 11. The less thorough or effective the
implementation of remediation measures, the higher the score.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 16

Table 11. Local Remediation Level Scoring Evaluation

Metric Value Description

High (H) Remediation measures are implemented to restrict feature use in such a way as to collectively
decrease the incidence of misuse by between 76% and 100%. (A decrease of 100% means
that the implemented remediation measures entirely prevent misuse.)

Medium (M) Remediation measures are implemented to partially restrict feature use in such a way as to
collectively decrease the incidence of misuse by between 26% and 75%.

Low (L) Remediation measures are implemented to slightly restrict feature use in such a way as to
collectively decrease the incidence of misuse by between 1% and 25%.

None (N) Remediation measures are not implemented.

Not Defined (ND) Assigning this value to the metric will not influence the score. It is a signal to the equation to
skip this metric. The default value is None.

2.3.3 Local Impact

The Local Impact can be captured using seven environmental metrics. The first three—Environment
Confidentiality Impact, Environment Integrity Impact, and Environment Availability Impact—take the
place of the corresponding base impact metrics (Confidentiality Impact, Integrity Impact, and Availability
Impact). The fourth, Collateral Damage Potential, augments the three Environment Impact metrics. The
remaining three environmental metrics (Confidentiality Requirement, Integrity Requirement, and
Availability Requirement) are used to compute scaling factors that are applied to the three Environment
Impact metrics.

2.3.3.1 Environment Confidentiality, Integrity, and Availability Impact (EC, EI, EA)

The Environment Confidentiality, Integrity, and Availability Impact metrics enable the analyst to
customize the environmental score if the privileges in the environment differ significantly from best
practices related to the misuse vulnerability. For example, suppose that a vulnerability permitted an
attacker to gain unauthorized access to a system with the user’s privileges. In the base impact metrics, this
would have been recorded as a partial impact to confidentiality, integrity, and availability, under the
assumption that the user was running with limited user privileges. However, if a particular environment
permitted users to run with full, root-level privileges, then this could be taken into account through the
Environment Impact metrics.

The Environment Impact metrics include all the same definitions as the base impact metrics; each can be
set to None, Partial, or Complete. Additionally, each Environment Impact metric also includes a Not
Defined (ND) value. The definition of ND is: “Assigning this value to the metric will not influence the
score. It is a signal to the equation to skip this metric. The default value is the value assigned to the
corresponding base impact metric.”

2.3.3.2 Collateral Damage Potential (CDP)

The Collateral Damage Potential metric measures the potential for loss of life or physical assets through
damage or theft of property or equipment. The metric may also measure economic loss of productivity or
revenue. This metric can adjust the local impact score to account for application importance. For example,
a vulnerability that permits an attacker to gain user-level access to an application (e.g., DNS server,
database server) can be scored differently on a system that uses the application in a trivial way versus
another system that uses the application in a critical way. The possible values for this metric are listed in
Table 12. The greater the damage potential, the higher the vulnerability score. Each organization must

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 17

determine for itself the precise meaning of “slight,” “moderate,” “significant,” and “catastrophic” in the
organization’s environment.

Table 12. Collateral Damage Potential Scoring Evaluation

Metric Value Description

None (N) There is no potential for loss of life, physical assets, productivity or revenue.

Low (L) Successful exploitation of this vulnerability may result in slight physical or property damage or
loss. Or, there may be a slight loss of revenue or productivity.

Low-Medium
(LM)

Successful exploitation of this vulnerability may result in moderate physical or property
damage or loss. Or, there may be a moderate loss of revenue or productivity.

Medium-High
(MH)

Successful exploitation of this vulnerability may result in significant physical or property
damage or loss. Or, there may be a significant loss of revenue or productivity.

High (H) Successful exploitation of this vulnerability may result in catastrophic physical or property
damage or loss. Or, there may be a catastrophic loss of revenue or productivity.

Not Defined (ND) Assigning this value to the metric will not influence the score. It is a signal to the equation to
skip this metric. The default value is None.

2.3.3.3 Confidentiality, Integrity, Availability Requirements (CR, IR, AR)

The Confidentiality Requirement, Integrity Requirement, and Availability Requirement metrics enable the
analyst to customize the environmental score depending on the importance of the affected IT asset to an
organization, measured in terms of confidentiality, integrity, and availability. That is, if an IT asset
supports a business function for which availability is most important, the analyst can assign a greater
value to availability, relative to confidentiality and integrity. Each security requirement has three possible
values: “Low,” “Medium,” or “High,” with “Medium” being the default.

The full effect on the environmental score is determined by the corresponding Environment Impact
metrics. That is, these metrics modify the environmental score by reweighting the Environment
Confidentiality, Integrity, and Availability Impact metrics. For example, the Environment Confidentiality
Impact (C) metric has increased weight if the Confidentiality Requirement (CR) is “High.” Likewise, the
Environment Confidentiality Impact metric has decreased weight if the Confidentiality Requirement is
“Low.” The Environment Confidentiality Impact metric weighting is neutral if the Confidentiality
Requirement is “Medium.” This same logic is applied to the Environment Integrity and Availability
Requirements.

Note that the Confidentiality Requirement will not affect the environmental score if the Environment
Confidentiality Impact is set to “None.” Also, increasing the Confidentiality Requirement from
“Medium” to “High” will not change the environmental score when all of the Environment Impact
metrics are set to “Complete” because the Impact subscore (the part of the score that calculates impact) is
already at a maximum value of 10.

The possible values for the security requirements are listed in Table 13. For brevity, the same table is used
for all three metrics. The greater the security requirement, the higher the score.

In many organizations, IT resources are labeled with criticality ratings based on network location,
business function, and potential for loss of revenue or life. For example, the U.S. government assigns
every unclassified IT asset to a grouping of assets called a System. Every System must be assigned three
“potential impact” ratings to show the potential impact on the organization if the System is compromised
according to three security objectives: confidentiality, integrity, and availability. Thus, every unclassified

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 18

IT asset in the U.S. government has a potential impact rating of low, moderate, or high with respect to the
security objectives of confidentiality, integrity, and availability. This rating system is described within
Federal Information Processing Standards (FIPS) 199.12 CMSS follows this general model of FIPS 199,
but does not require organizations to use a particular methodology for assigning the low, medium, and
high impact ratings.

Table 13. Confidentiality, Integrity, and Availability Requirements Scoring Evaluation

Metric Value Description

Low (L) Loss of [confidentiality | integrity | availability] is likely to have only a limited adverse effect on
the organization or individuals associated with the organization (e.g., employees, customers).

Medium (M) Loss of [confidentiality | integrity | availability] is likely to have a serious adverse effect on the
organization or individuals associated with the organization (e.g., employees, customers).

High (H) Loss of [confidentiality | integrity | availability] is likely to have a catastrophic adverse effect on
the organization or individuals associated with the organization (e.g., employees, customers).

Not Defined (ND) Assigning this value to the metric will not influence the score. It is a signal to the equation to
skip this metric. The default value is Medium.

2.4 Base, Temporal, and Environmental Vectors

The CMSS vector facilitates CMSS’s open nature. This vector contains the values assigned to each
metric, and it is used to communicate exactly how the score for each vulnerability is derived. Therefore,
the vector should always be presented with the score.

Each metric in the vector consists of the abbreviated metric name, followed by a “:” (colon), then the
abbreviated metric value. The vector lists these metrics in a predetermined order, using the “/” (slash)
character to separate the metrics. If a temporal or environmental metric is not to be used, it is given a
value of “ND” (not defined). The base, temporal, and environmental vectors are shown below in Table
14.

Table 14. Base, Temporal, and Environmental Vectors

Metric Group Vector

Base AV:[L,A,N]/AC:[H,M,L]/Au:[M,S,N]/C:[N,P,C]/I:[N,P,C]/A:[N,P,C]/PL:[R,U,A,ND]

Temporal GEL:[N,L,M,H,ND]/GRL:[H,M,L,N,ND]

Environmental LVP:[N,L,M,H,ND]/PTV:[L,M,H,ND]/LRL:[N,L,M,H,ND]/EC:[N,P,C,ND]/EI:[N,P,C,ND]/

EA:[N,P,C,ND]/CDP:[N,L,LM,MH,H,ND]/CR:[L,M,H,ND]/IR:[L,M,H,ND]/AR:[L,M,H,ND]

For example, a vulnerability with base metric values of “Access Vector: Low, Access Complexity:
Medium, Authentication: None, Confidentiality Impact: None, Integrity Impact: Partial, Availability
Impact: Complete, Privilege Level: Not Defined” would have the following base vector:
“AV:L/AC:M/Au:N/C:N/I:P/A:C/PL:ND.” Temporal metric values of “General Exploit Level: Medium,
General Remediation Level: Medium” would produce the temporal vector: “GEL:M/GRL:M.”
Environmental metric values of “Local Vulnerability Prevalence: High, Perceived Target Value: Medium,
Local Remediation Level: Low, Environment Confidentiality Impact: Not Defined, Environment Integrity
Impact: Full, Environment Availability Impact: Not Defined, Collateral Damage Potential: Not Defined,

12 See http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 19

Confidentiality Requirement: Medium, Integrity Requirement: High, Availability Requirement: Low”
would produce the following environmental vector:
“LVP:H/PTV:M/LRL:L/EC:ND/EI:C/EA:ND/CDP:ND/CR:M/IR:H/AR:L.”

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 20

3. Scoring

This section explains how CMSS scoring is performed. It first provides guidelines on performing scoring.
Next, it defines the equations used for base, temporal, and environmental score generation. Section 4
provides scoring examples to help illustrate the scoring process and the use of the equations.

3.1 Guidelines

Below are guidelines that should help analysts when scoring misuse vulnerabilities. These guidelines are
intended primarily for analysts who are creating base scores, although they may be of interest to many
others because of the insights they provide into the significance of the base scores and the assumptions
made when performing scoring.

The current versions of CMSS, CCSS, and CVSS are all based on sets of assumptions regarding system
security, configuration, use, and management. An example is assuming that a software flaw affecting
multiple operating systems should be scored based on the security characteristics of the most widely used
of those operating systems. These assumptions are made to simplify the scoring process and ensure
consistency among analysts. However, to make CMSS, CCSS, and CVSS more valuable for use in
quantitative risk assessment and other complex methodologies, these assumptions should be documented
in a standardized way. It is hoped that, in the future, all three specifications will be updated to add a
unified convention for documenting these assertions.

3.1.1 General

SCORING TIP #1: Misuse vulnerability scoring should not take into account any interaction with other
vulnerabilities. That is, each vulnerability should be scored independently.

SCORING TIP #2: When scoring the base metrics for a vulnerability, consider the direct impact to the
target system only.

SCORING TIP #3: When scoring the impact of a vulnerability that has multiple exploitation methods, the
analyst should create a vector and calculate a score for each method. The organization using the data
would select the appropriate base vector and score for each situation based on the organization’s policy
and actual system settings.

3.1.2 Base Metrics

3.1.2.1 Access Vector

SCORING TIP #4: When a misuse vulnerability can be exploited both locally and from the network, the
“Network” value should be chosen. When a vulnerability can be exploited both locally and from adjacent
networks, but not from remote networks, the “Adjacent Network” value should be chosen. When a
vulnerability can be exploited from the adjacent network and remote networks, the “Network” value
should be chosen.

SCORING TIP #5: Many client applications and utilities have local vulnerabilities that can be exploited
remotely either through user-complicit actions or via automated processing. For example, decompression
utilities and virus scanners automatically scan incoming email messages. If misuse caused these to ignore
certain types of content that they should be examining, analysts should score the Access Vector of these
vulnerabilities as “Network”.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 21

3.1.2.2 Authentication

SCORING TIP #6: If the vulnerability exists in an authentication scheme itself (e.g., Pluggable
Authentication Module [PAM], Kerberos) or an anonymous service (e.g., public FTP server), the
Authentication metric should be scored as “None” because the attacker can exploit the vulnerability
without supplying valid credentials. Presence of a default user account may be considered as “Single” or
“Multiple” Authentication (as appropriate), but would have Access Complexity of “Low” if the
credentials are publicized (which is usually the case).

3.1.2.3 Confidentiality, Integrity, Availability Impacts

SCORING TIP #7: Vulnerabilities that give root-level access should be scored with complete loss of
confidentiality, integrity, and availability, while vulnerabilities that give lesser degrees of access, such as
user-level, should be scored with only partial loss of confidentiality, integrity, and availability. For
example, a vulnerability that allows an attacker to modify an operating system password file as desired
(which would permit the attacker to change the root password or create a new root-level account) should
be scored with complete impact of confidentiality, integrity, and availability. On the other hand, an issue
that enables an attacker to impersonate a valid user who has limited privileges should be scored with a
partial impact of confidentiality, integrity, and availability.

SCORING TIP #8: Vulnerabilities that permit a partial or complete loss of integrity often also permit an
impact to availability. For example, an attacker who is able to modify records can probably also delete
them.

3.2 Equations

Scoring equations and algorithms for the CMSS base, temporal, and environmental metric groups are
described below. Further information on the origin and testing of the original CVSS equations, which the
CMSS equations are based on is available at http://www.first.org/cvss/.

3.2.1 Base Equation

The base equation is the foundation of CMSS scoring. The CMSS base equation is identical to the CVSS
base equation:

BaseScore = round_to_1_decimal(((0.6 * Impact) + (0.4 * Exploitability) – 1.5) * f(Impact))

Impact = 10.41 * (1 - (1 - ConfImpact) * (1 - IntegImpact) * (1 - AvailImpact))

Exploitability = 20 * AccessVector * Authentication * AccessComplexity

f(Impact) = 0 if Impact = 0, 1.176 otherwise

AccessVector = case AccessVector of
 requires local access: 0.395
 adjacent network accessible: 0.646
 network accessible: 1.0
Authentication = case Authentication of
 requires multiple instances of authentication: 0.45
 requires single instance of authentication: 0.56
 requires no authentication: 0.704
AccessComplexity = case AccessComplexity of
 high: 0.35
 medium: 0.61

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 22

 low: 0.71
ConfImpact = case ConfidentialityImpact of
 none: 0.0
 partial: 0.275
 complete: 0.660
IntegImpact = case IntegrityImpact of
 none: 0.0
 partial: 0.275
 complete: 0.660
AvailImpact = case AvailabilityImpact of
 none: 0.0
 partial: 0.275
 complete: 0.660

The base equation does not include one of the base metrics, Privilege Level. Privilege Level is used by
analysts when calculating certain environmental metrics.

3.2.2 Temporal Equation

If employed, the temporal equation will combine the temporal metrics with the base metrics to produce a
temporal score ranging from 0 to 10. Note that the Impact component is not changed from the base score.
The temporal equation modifies the Exploitability component of the base equation:

TemporalScore = round_to_1_decimal(((0.6 * Impact) + (0.4 * TemporalExploitability) – 1.5) * f(Impact))

TemporalExploitability = min(10, Exploitability * GeneralExploitLevel * GeneralRemediationLevel)

GeneralExploitLevel = case GeneralExploitLevel of
 none: 0.6
 low: 0.8
 medium: 1.0
 high: 1.2
 not defined: 1.0

GeneralRemediationLevel = case GeneralRemediationLevel of
 none: 1.0
 low: 0.8
 medium: 0.6
 high: 0.4
 not defined: 1.0

3.2.3 Environmental Equation

If employed, the environmental equation will combine the environmental metrics with the temporal and
base metrics to produce an environmental score ranging from 0 to 10. The temporal GeneralExploitLevel
metric is included in the environmental equation; however, the temporal GeneralRemediationLevel metric
is not, because it is replaced by the environmental LocalRemediationLevel metric. The temporal
remediation metric examines availability of remediation measures; the environmental remediation metric
examines the implementation of remediation measures in the local environment. The environmental
equation is computed using the following:

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 23

EnvironmentalScore = round_to_1_decimal(((0.6 * EnvironmentalImpact) + (0.4 * EnvironmentalExploitability) – 1.5) *
f(Impact))

EnvironmentalImpact = min(10, 10.41 * (1 - (1 – EnvConfImpact * ConfReq) * (1 – EnvIntegImpact * IntegReq) *
(1 – EnvAvailImpact * AvailReq)) * CollateralDamagePotential)

EnvironmentalExploitability = min(10, Exploitability * GeneralExploitLevel * LocalExploitLevel *
LocalRemediationLevel)

LocalExploitLevel = LocalVulnerabilityPrevalence * PerceivedTargetValue

EnvConfImpact = case EnvironmentConfidentialityImpact of
 none: 0.0
 partial: 0.275
 complete: 0.660
 not defined: ConfImpact
EnvIntegImpact = case EnvironmentIntegrityImpact of
 none: 0.0
 partial: 0.275
 complete: 0.660
 not defined: IntegImpact
EnvAvailImpact = case EnvironmentAvailabilityImpact of
 none: 0.0
 partial: 0.275
 complete: 0.660
 not defined: AvailImpact

ConfReq = case ConfReq of
 low: 0.5
 medium: 1.0
 high: 1.51
 not defined: 1.0
IntegReq = case IntegReq of
 low: 0.5
 medium: 1.0
 high: 1.51
 not defined: 1.0
AvailReq = case AvailReq of
 low: 0.5
 medium: 1.0
 high: 1.51
 not defined: 1.0

CollateralDamagePotential = case CollateralDamagePotential of
 none: 1.0
 low: 1.25
 low-medium: 1.5
 medium-high: 1.75
 high: 2.0
 not defined: 1.0

LocalVulnerabilityPrevalence = case LocalVulnerabilityPrevalence of
 none: 0.6
 low: 0.8
 medium: 1.0
 high: 1.2
 not defined: 1.0

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 24

PerceivedTargetValue = case PerceivedTargetValue of
 low: 0.8
 medium: 1.0
 high: 1.2
 not defined: 1.0

LocalRemediationLevel = case LocalRemediationLevel of
 none: 1.0
 low: 0.8
 medium: 0.6
 high: 0.4
 not defined: 1.0

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 25

4. Examples

The examples below show how CMSS would be used to score software feature misuse vulnerabilities.

4.1 Example One: ARP Cache Poisoning

The Address Resolution Protocol (ARP) trusts that each ARP reply contains the correct mapping between
Media Access Control (MAC) and Internet Protocol (IP) addresses. The ARP cache uses that information
to provide a useful service—to enable sending data between devices within a local network. However, a
misuse vulnerability exists when an attacker can poison the ARP table with incorrect address mappings
and thereby launch a denial-of-service or a man-in-the-middle attack.

Since the attacker must have access to the local subnetwork to send malicious ARP replies, the Access
Vector is “Adjacent Network.” No authentication is required to broadcast ARP replies, so the
Authentication is scored as “None.” The Access Complexity is “Low” because exploitation of the
vulnerability requires little skill on the part of the attacker. The attacker must craft a message in valid
ARP reply format; the ARP reply message may contain arbitrary IP and MAC addresses.

The impact metrics measure only the direct impact of exploitation of the vulnerability. The
Confidentiality Impact of this misuse vulnerability is “None” because there is no direct impact on the
confidentiality of the system. The Integrity Impact is “Partial” because the attacker can override valid
ARP cache entries and can add false entries. The attacker can only modify data in this limited context.
The Availability Impact is “Partial” because ARP cache poisoning can create a denial of service that
impacts the availability of network functions, yet non-network functions remain available. The Privilege
Level is “Not Defined.”

The base vector is AV:A/AC:L/Au:N/C:N/I:P/A:P/PL:ND. This vector produces an impact subscore of
4.9, an exploitability subscore of 6.5, and a base score of 4.8.

Temporal metrics describe the general prevalence of attacks against this vulnerability and the general
availability of remediation measures. The General Remediation Level for the ARP cache poisoning
vulnerability would be considered “Low” because there are limited mitigation techniques available. For
very small networks, administrators can configure static IP addresses and static ARP tables, but this
approach quickly becomes unmanageable as the network grows in size. For larger networks, switches can
be configured to allow only one MAC address for each physical port. ARP cache poisoning attacks occur
against typical systems rarely, so the General Exploit Level is scored as “Low”. The temporal vector is
GEL:L/GRL:L. The temporal exploitability subscore is 4.1, as opposed to the base exploitability subscore
of 6.5, and the temporal score is 3.7, compared to the base score of 4.8. In general, the temporal score can
be lower than the base score when the General Exploit Level is lower than “Medium” or the General
Remediation Level is higher than “None.”

Environmental metrics describe the vulnerability severity with respect to a particular organization.
Consider an organization in which the Local Vulnerability Prevalence is “High,” the Perceived Target
Value is “Medium”, and the Local Remediation Level is rated “None.” Because the Local Vulnerability
Prevalence is higher than the default value and the Local Remediation Level is lower than the General
Remediation Level, the environmental exploitability subscore, 6.2, is higher than the temporal
exploitability subscore, 4.1.

Now consider the impact subscore of the environmental score. Suppose that the Collateral Damage
Potential in this case is “None”; this metric would not then modify the impact subscore in the
environmental score calculation. The organization follows recommended practices, so it sets the three

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 26

Environmental Impact metrics to “Not Defined”, which causes no change to the impact subscore. Scores
of “Medium” assigned to the Confidentiality Requirement and Availability Requirement also do not
modify the impact subscore. However, if the organization gives a score of “High” for the Integrity
Requirement because of the importance of integrity in the environment, then the impact subscore will
increase because this vulnerability happens to impact integrity. The environmental impact subscore, 6.2,
is slightly higher than the base impact subscore of 4.9.

The final environmental score is 5.4. The environmental vector is
LVP:H/PTV:M/LRL:N/EC:ND/EI:ND/EA:ND/CDP:N/CR:M/IR:H/AR:M.

4.2 Example Two: Malicious File Transfer Via Instant Messaging Software

Instant messaging (IM) software allows a user to send and receive files. The user may trustingly assume
that when a file appears to come from a friend, the file was sent by that friend and can be trusted.
However, an attacker may violate that trust by sending a malicious file that appears to come from the
friend. (This could be accomplished in several ways, such as the attacker gaining control of the friend’s
IM client, the attacker spoofing the friend’s IM user identity, or the attacker using social engineering to
trick the friend into sending the file. The method used to accomplish this is irrelevant in terms of the
user’s vulnerability.) This is a misuse vulnerability: an attacker can exploit the user’s trust and lead the
user to compromise the security of his computer.

Since an attacker can exploit this vulnerability remotely, the Access Vector is "Network." The
Authentication is scored as "None" because the attacker does not need to authenticate to the target
computer. To enable the exploitation of this vulnerability, the user must perform an easy, ordinary action
(accepting and downloading a file appearing to come from a friend). The success of this attack depends
on social engineering that could occasionally fool cautious users. Thus, the Access Complexity is rated
"Medium."

The direct impact of this vulnerability affects the integrity of the target computer. By exploiting this
vulnerability, the attacker can place a malicious file on the user's computer. Placing untrusted code on the
target computer results in a “Partial” impact on the computer’s integrity. There is no impact on
confidentiality because the attacker is not accessing any information or resources from the computer.
There is also no impact on availability because the transfer of untrusted code onto a machine does not
directly impact availability13. The Privilege Level is “Not Defined.”

The base vector is AV:N/AC:M/Au:N/C:N/I:P/A:N/PL:ND. This vector produces an impact subscore of
2.9, an exploitability subscore of 8.6, and a base score of 4.3.

Temporal metrics describe the prevalence of attacks against a misuse vulnerability and the availability of
remediation measures. Since attacks against this IM file transfer vulnerability are relatively infrequent,
the General Exploit Level would be rated as “Low.” The General Remediation Level would be “None”
because there are no remediation measures available besides uninstalling the vulnerable IM software. The
temporal vector is GEL:L/GRL:N. The temporal environmental subscore is 6.9, and the overall temporal
score is 3.5.

Environmental metrics describe the vulnerability severity with respect to a particular organization.
Consider an organization in which the Local Vulnerability Prevalence is “Medium,” the Perceived Target

13 Executing the untrusted code could overwrite a system or application file and make a service or application unavailable on

the user’s computer, but this is an indirect impact of the IM file transfer misuse vulnerability, not a direct impact, so it is not
included in the metrics for this vulnerability.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 27

Value is “Low”, and the Local Remediation Level is rated “None.” Because the Perceived Target Value is
less than the default value of “Medium” (and the other score components are at the default values), the
environmental exploitability subscore, 5.5, is lower than the temporal exploitability subscore, 6.9.

The environmental score also includes an impact subscore. Suppose that the organization scored the
Confidentiality Requirement and Integrity Requirement as “Medium,” which do not modify the impact
subscore, and the Availability Requirement is rated “Low”. The Low value has no effect on the impact
subscore because the IM file transfer vulnerability has no impact on availability (recall that the base
Availability Impact is “None”). The organization follows recommended practices and sets the three
Environmental Impact metrics to “Not Defined”. Collateral Damage Potential is set to “None” and does
not modify the base impact subscore. Since none of these metrics have affected the score, the
environmental impact score is 2.9, the same as the base impact subscore.

The final environmental score is 2.8. The environmental vector is
LVP:M/PTV:L/LRL:N/EC:ND/EI:ND/EA:ND/CDP:N/CR:M/IR:M/AR:L.

4.3 Example Three: User Follows Link to Spoofed Web Site

Emails, instant messages, and other forms of electronic communication frequently contain hyperlinks to
Web sites. An attacker may distribute a malicious hyperlink that surreptitiously leads a user to a spoofed
Web site. When the user clicks on the malicious link, the Web browser displays a look-alike imitation of a
legitimate site (often a banking or e-commerce site). The vulnerability is that a hyperlink purporting to
lead to a legitimate site instead takes the user to a malicious site. The hyperlink capability is misused.

The Access Vector for this misuse vulnerability is “Network” because the attacker providing the link and
operating the phishing site does not require local network access or local access to the user’s computer.
The Authentication is “None” because the attacker is not required to authenticate to exploit this
vulnerability. To enable the exploitation of this vulnerability, the user must perform an easy, ordinary step
(clicking on a hyperlink). The attack depends on social engineering that could occasionally fool cautious
users (when the link and the site look okay to the casual observer). Therefore, the Access Complexity is
“Medium.”

The impact subscore for this misuse vulnerability considers only the direct impact of a hyperlink exploit.
The direct Confidentiality Impact is “None.” Even though users may subsequently choose to enter
personal information at a phishing site, this loss of confidentiality is only an indirect impact from clicking
on a hyperlink to a spoofed site. The Integrity Impact is “Partial” because the link to the spoofed website
is not trustworthy. From the viewpoint of the user, the integrity of the hyperlink is compromised because
the link does not lead to the Web site to which it appears to lead. The Availability Impact is “None”
because the existence of a malicious hyperlink to a spoofed site does not prevent access to the legitimate
site using the correct URL. The Privilege Level is “Not Defined.”

The base vector is AV:N/AC:M/Au:N/C:N/I:P/A:N/PL:ND. This vector produces an impact subscore of
2.9, an exploitability subscore of 8.6, and a base score of 4.3.

Temporal metrics describe the prevalence of attacks against a misuse vulnerability and the availability of
remediation measures. The General Exploit Level would be “Medium” because exploits of this nature are
frequently observed. The General Remediation Level would be “Medium” because several technical
measures exist that can alert users about suspected spoofed Web sites or block emails containing links to
known phishing sites. Some Web browsers include antiphishing toolbars or maintain blacklists of known
phishing sites. The temporal vector is GEL:M/GRL:M. The temporal exploitability subscore is 5.2, and
the overall temporal score is 2.7.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 28

Environmental metrics describe the vulnerability severity with respect to a particular organization.
Consider an organization in which the Local Vulnerability Prevalence is “High,” the Perceived Target
Value is “High”, and the Local Remediation Level is rated “Medium.” Because the Local Vulnerability
Prevalence and the Perceived Target Value are higher than the default value of “Medium” (and the Local
Remediation Level is the same as the General Remediation Level), the environmental exploitability
subscore, 7.4, is higher than the temporal exploitability subscore, 5.2.

The environmental score also includes an impact subscore. Consider an organization that sets the
Collateral Damage Potential to “Low” (higher than the default value “None”), the Confidentiality
Requirement and Integrity Requirement to “High”, and the Availability Requirement to “Medium.” Since
this misuse vulnerability has a “Partial” score for Integrity Impact, the “High” Integrity Requirement will
boost the severity rating of the vulnerability in the portion of the score related to integrity impact. For this
vulnerability, the Collateral Damage Potential component will also increase the severity rating in the
impact subscore. The organization follows recommended practices and sets the three Environmental
Impact metrics to “Not Defined”. The environmental impact subscore is 5.4.

The final environmental score is 5.5. The environmental vector is
LVP:H/PTV:H/LRL:M/EC:ND/EI:ND/EA:ND/CDP:L/CR:H/IR:H/AR:M.

Note that the misuse vulnerabilities in examples two and three receive the same base score; however,
differences in the temporal metric components and environmental metric components produce different
temporal and environmental scores for the two vulnerabilities.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 29

5. Comparing CMSS to CVSS and CCSS

CMSS is based on CVSS and CCSS, so there are many similarities among the three specifications.
However, there are some important differences as well. This section provides a brief discussion of the
major differences between the specifications. Individuals interested in more details on the differences are
encouraged to compare the specifications side-by-side. The specifications have similar structures, making
such comparisons easy.14

For the base metrics, all three specifications use the same six metrics and the same equations for
calculating scores. The descriptions for each metric have been adjusted to fit the characteristics of the
category of vulnerabilities that they cover. The most notable difference is that CCSS also measures the
type of exploitation: active or passive. Active exploitation refers to an attacker performing actions to take
advantage of a weakness, while passive exploitation refers to vulnerabilities that prevent authorized
actions from occurring, such as a configuration setting that prevents audit log records from being
generated for security events. The Exploitability base metrics in CCSS are defined differently for active
and passive exploitation because of the differences in the ease of exploitation.

The temporal and environmental components of the three specifications are quite different. The temporal
and environmental components of CMSS and CCSS are based on those from CVSS, but have major
differences. The temporal metrics in CVSS measure the availability of exploit code, the level of available
remediations for the software flaw (e.g., patches), and the confidence in the existence of the vulnerability.
These are not relevant for the types of vulnerabilities addressed by CMSS and CCSS, because their
vulnerabilities can be used without exploit code and are already known to exist. Also, CMSS
vulnerabilities and many CCSS vulnerabilities do not have complete remediations. So CMSS and CCSS
have similar sets of temporal metrics, quite different from those of CVSS, that address the general
prevalence of attacks against the vulnerability and the general effectiveness of available remediation
measures, such as using antivirus software or conducting awareness activities.

CMSS and CCSS also offer similar sets of environmental metrics, which are considerably more complex
than CVSS’s metrics. CVSS has three: Collateral Damage Potential, Target Distribution, and Security
Requirements. These metrics are all part of CMSS and CCSS as well, although Target Distribution has
been renamed Local Vulnerability Prevalence. Two other metrics have been added to CMSS and CCSS:
Perceived Target Value, which measures how attackers value the targets in the environment as opposed to
other environments, and Local Remediation Level, which measures the effectiveness of mitigation
measures in the local environment. CMSS and CCSS also divide their environmental metrics into two
groups: Exploitability and Impact. This allows Exploitability and Impact environmental subscores to be
generated for CMSS and CCSS; such subscores are not available in CVSS.

14 The other specifications are NIST IR 7435 and NIST IR 7502 (http://csrc.nist.gov/publications/PubsNISTIRs.html).

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

 30

6. Appendix A—Additional Resources

The following are resources related to CMSS.

 CVSS calculators can be used to calculate base CMSS scores since they use the same metric
values and equations. The NIST CVSS calculator can be found at
http://nvd.nist.gov/cvss.cfm?calculator&adv&version=2.

 The CVSS version 2 specification is available at http://www.first.org/cvss/cvss-guide.html.
General information on CVSS’s development is documented at http://www.first.org/cvss/.

 NISTIR 7435, The Common Vulnerability Scoring System (CVSS) and Its Applicability to
Federal Agency Systems, describes the CVSS version 2 specification and also provides insights as
to how CVSS scores can be customized for Federal agency-specific purposes. The report is
available at http://csrc.nist.gov/publications/PubsNISTIRs.html.

 NISTIR 7502, The Common Configuration Scoring System (CCSS): Metrics for Software
Security Configuration Vulnerabilities, describes the CCSS specification. The report is available
at http://csrc.nist.gov/publications/PubsNISTIRs.html.

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

31

7. Appendix B—Acronyms and Abbreviations

This appendix contains selected acronyms and abbreviations used in the publication.

A Adjacent Network
A Application Level
A Availability Impact
AC Access Complexity
AR Availability Requirement
ARP Address Resolution Protocol
Au Authentication
AV Access Vector
C Complete
C Confidentiality Impact
CCE Common Configuration Enumeration
CCSS Common Configuration Scoring System
CDP Collateral Damage Potential
CMSS Common Misuse Scoring System
CR Confidentiality Requirement
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
DNS Domain Name System
EA Environment Availability Impact
EC Environment Confidentiality Impact
EI Environment Integrity Impact
FIPS Federal Information Processing Standards
FIRST Forum of Incident Response and Security Teams
FISMA Federal Information Security Management Act
FTP File Transfer Protocol
GEL General Exploit Level
GRL General Remediation Level
H High
HTML Hypertext Markup Language
I Integrity Impact
IM Instant Messaging
IP Internet Protocol
IR Integrity Requirement
IR Interagency Report
IT Information Technology
ITL Information Technology Laboratory
L Local
L Low
LM Low-Medium
LRL Local Remediation Level
LVP Local Vulnerability Prevalence
M Medium
M Multiple
MAC Media Access Control
MH Medium-High
N Network
N None

THE COMMON MISUSE SCORING SYSTEM (CMSS): METRICS FOR SOFTWARE FEATURE MISUSE VULNERABILITIES

32

ND Not Defined
NIST National Institute of Standards and Technology
NISTIR National Institute of Standards and Technology Interagency Report
P Partial
PAM Pluggable Authentication Module
PL Privilege Level
PTV Perceived Target Value
R Root Level
RFC Request for Comments
S Single
U User Level
URL Uniform Resource Locator

