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Gravity distorts the circular contours found for small-angle neutron scattering

data from azimuthally symmetric scattering systems when taken at long

wavelength and with large wavelength spreads. The resolution is calculated for a

Debye–Scherrer ring and compared with results from measurements taken on a

sample of opal.

1. Introduction

The pinhole geometry for small-angle neutron scattering measure-

ments at the lowest values of scattering vector requires a long

secondary flight path and a long-wavelength beam. Since neutrons

are particles of mass m, the beam follows a parabolic trajectory on

account of gravity. At the detector the beam has fallen, relative to the

spectrometer axis defined by the source and sample apertures, by an

amount that varies with the square of the neutron wavelength �. The
incident beam has some breadth of wavelengths so that azimuthally

symmetric data are distorted at the smallest scattering angles. For

randomly oriented samples the iso-intensity contours are no longer

circular but oval on account of the extra gravitational contribution to

the resolution. Corrections to the resolution for azimuthally averaged

data as a function of scattering vector have been made relative to the

spectrometer axis (Boothroyd, 1989) or to the beam center of the

mean wavelength (Barker & Pedersen, 1995). Here we evaluate

quantitatively the resolution width of a Debye–Scherrer ring as a

function of azimuthal angle, showing how the wavelength and grav-

itational contributions are summed, and compare the results with

measurements on opal.

2. Scattering vector variance

The scattered intensity is measured as a function of the magnitude of

the scattering vector given by Q = |Q| = (4�/�)sin(�/2), where � is the
angle through which the neutron is scattered. At small scattering

angles the scattering vector may be written Q = k�, where k (= 2�/�)
is the neutron wavenumber. This gives rise to Debye–Scherrer rings

of constant Q. Whereas the secondary path length and the mean

wavelength determine the position of the scattering on the detector,

the resolution or uncertainty in the measurement of Q also involves

the collimation and the wavelength spread, and is given by

�2
Q ¼ k2�2

� þ ðQ=kÞ2�2
k ¼ ð2�=�Þ2�2

� þQ2ð��=�Þ2: ð1Þ

The first term depends on the angular resolution, independent of

both the direction and the magnitude of Q, and is determined by the

collimation and beam geometry of the spectrometer. The angular

contribution to the variance of the scattering vector for pinhole

geometry is given (Mildner & Carpenter, 1984) by

�2
geom ¼ k2�2

�

¼ k2
�ð1=4ÞðR1=L1Þ2 þ ð1=4ÞðR2=L

0Þ2 þ ð1=12Þð�d=L2Þ2
�
; ð2Þ

where L1 and L2 are the incident and scattered flight paths, respec-

tively, and 1/L0 = 1/L1 + 1/L2. R1 and R2 are the radii of the source and

sample apertures, and �d is the detector pixel width.

The second term represents the dispersion caused by the wave-

length spread of the incident radiation and varies directly with the

magnitude of Q. The wavelength contribution to the variance of the

scattering vector is given by

�2
wave ¼ Q2ð��=�Þ2 ¼ ðkR=L2Þ2ð��=�Þ2; ð3Þ

where the scattering angle � = R/L2 and R is the distance of the

detector element from the spectrometer axis. Often the incoming

wavelength distribution is a triangular function with a mean wave-

length �0, so that (��/�)
2 = (1/6)(��/�0)

2.

At the lowest values of scattering vectors there can be a significant

extra gravitational contribution to the resolution. Simple kinetics

shows that the change �yg in the vertical height of the beam of

neutrons of wavelength � at the detector is given by

�yg ¼ �L2ðL1 þ L2Þðg=2Þðm=hÞ2�2 ¼ �A�2; ð4Þ

where g = 9.81 m s�2, h is Planck’s constant and h/m = v� =

3956 Å m s�1, with v the neutron velocity. Therefore scattering

vectors must be determined relative to the displaced beam center of

the mean wavelength. Furthermore, the spread�� in the wavelength

results in a spread 2A�(��) in the vertical direction around that

mean position. Consequently the effect of gravity introduces a third

term, the gravitational contribution to the variance of the scattering

vector, given by

�2
grav ¼ ð2A�2Þ2ðk=L2Þ2ð��=�Þ2 ð5Þ

in the vertical direction only. This applies both to the incident beam

and to neutrons scattered through small angles.

The components �wave and �grav are not independent; both depend

on the wavelength resolution ð��=�Þ and therefore must first be

summed in the direction of Q before the addition in quadrature with

�geom. Note that �wave is always in the direction ofQ, whereas only the
component ��grav sin ’ is in the direction of Q, where ’ is the

azimuthal angle of Q relative to the horizontal, that is,

�2
Q ¼ �2

geom þ ð�wave � �grav sin ’Þ2 or

�2
Q ¼ �2

geom þ �
Q� 2A�2ðk=L2Þ sin ’

�2ð��=�Þ2:
ð6Þ
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This equation shows how the width of a diffraction peak varies with

azimuthal angle. It also applies to the incident beam at the detector

for which Q = 0.

3. Comparison with measurement

We apply this result to a neutron small-angle scattering measurement

on opal, a silica–water system of closest-packed noncrystalline silica

spheres of approximately 2000 Å in diameter. Opal gives a powder

diffraction pattern at low scattering vectors, with the 111 and 220

Bragg reflections from the face-centered cubic lattice of these

amorphous silica spheres (Graetsch & Ibel, 1997; Sosnowska &

Shiojiri, 1999). Fig. 1 shows the scattering pattern taken on the D11

spectrometer (Lindner & Schweins, 2010) at a wavelength �0 = 10 Å,

displaying the oval shape of the diffraction ring and the narrow

resolution at the top (’ = �/2) compared to the larger width at the

bottom (’ = 3�/2). The diffraction shows some degree of texture.

Also shown is the faint second-order diffraction ring.

We first analyze the incident beam spot (Q = 0). The path lengths

used for the measurements are L1 = 40.5 m and L2 = 39 m, so thatA =

0.972 mm Å�2. Consequently the drop of the beam at the detector is

�yg = �97.2 mm (or 12.96 pixels for �d = 7.5 mm). The radii of the

two apertures are R1 = 5 mm and R2 = 4 mm, so the spatial variance in

the horizontal direction is �x
2 = �r

2 = 25.90 mm2. The incident beam has

a triangular wavelength distribution, which may be described by a

Gaussian with an FWHM given by ��/� = 10%, so that (��/�)
2 =

0.18(��/�)2. The extra spatial variance in the vertical direction is �g
2 =

½2A�2ð��=�Þ�2 = 68.14 mm2, so that �2
y ¼ �2

r þ �2
g = 94.03 mm2. These

values give beam spot dimensions of �Qx � �Qy = (1.93 � 3.68) �
10�4 Å�1, which are comparable to the measured values of [2.06 (2)�
3.68 (2)] � 10�4 Å�1.

We now consider the position of the diffraction ring relative to the

beam center defined by the mean wavelength �0. The magnitude of

the scattering vector at ’ = ��/2 is Q ¼ Q0 � ð2�=L2ÞA�0ð��=�Þ2.
The difference between the two, 5.6 � 10�6 Å�1, is an order of

magnitude smaller than that found experimentally (see Table 1).

However, regardless of any error in the determination of the beam

center, the mean value of Q0 is 3.83 (2) � 10�3 Å�1. Also the mean

magnitude of the scattering vector at ’ = 0 and �, averaged over the

wavelength spectrum, will be less than Q0. Hence under gravity the

circular ring becomes oval, flattened at the top and elongated at the

bottom, with a narrower width in the horizontal. At larger scattering

vectors such a ring becomes more circular, as observed in the second-

order ring.

Finally we determine the width of the diffraction ring that occurs at

a scattering vector Q = 3.83 � 10�3 Å�1 for opal. We find that the

magnitudes of the three contributions to the variance of the scat-

tering vector are comparable: �2
geom = 6.71 � 10�9 Å�2, �2

wave = 2.65 �
10�8 Å�2 and �2

grav = 1.77 � 10�8 Å�2. Using equation (6) we calcu-

late the width of the diffraction ring as a function of azimuth ’,
assuming Gaussian fits. The width of the ring for ’ = 3�/2 is greater

than that for ’ = �/2. The longer wavelengths, relative to the shorter

wavelengths, fall more at the bottom of the diffraction ring than at the

top, such that the distribution is less concentrated at the bottom. In

practice the measurements were computed over a 20� sector, so that

the calculations also include similar averages over the azimuth.

Table 1 shows the measured and calculated widths at different

azimuths. (We observe that, for this spectrometer geometry and � =

10 Å, the width at ’ = �/2 is narrowest at Q = 3.13 � 10�3 Å�1 for

which �wave = �grav. Conversely, the diffraction width for opal is

narrowest at the top for � = 12.2 Å with the same wavelength reso-
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Figure 1
The two-dimensional neutron scattering pattern from opal taken at a wavelength of
10 Å, showing the variation in the resolution of the 111 peak. The weak second
diffraction peak at a scattering vector that is (8/3)1/2 ’ 1.61 times that of the first-
order peak is consistent with a system of close-packed lattice of noncrystalline silica
spheres (Sosnowska & Shiojiri, 1999). (The incident beam without the sample is
superimposed on the beam stop.)

Table 1
Values of the measured and calculated width�Q (FWHM) for the Debye–Scherrer
ring for opal shown in Fig. 1.

Azimuth ’
Measurement hQi
(10�3 Å�1)

Variance �2
Q†

(10�8 Å�2)
Calculated �Q†
(10�4 Å�1)

Measurement �Q†
(10�4 Å�1)

0 3.76 (1) 3.33 4.30 5.4 (2)
�/2 3.81 (1) 0.77 2.06 3.5 (2)
� 3.78 (1) 3.33 4.30 4.7 (2)
3�/2 3.85 (2) 9.37 7.21 8.6 (4)

† Averaged over a �’ = 20� sector.

Figure 2
The variation of the FWHM of the diffraction peak for opal using � = 10 Å
neutrons as a function of azimuthal angle ’. The line is the calculation and the
points are the measured data. Both are averaged over 20�. The statistical error bars
correspond to one standard deviation.
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lution.) Fig. 2 shows these widths as a function of azimuth. These

results suggest that there is some extra width of approximately 3 �
10�4 Å�1 caused by polydispersity.

4. Conclusions

We have calculated the gravitational distortion of the Debye–

Scherrer ring in the scattering pattern of opal and shown reasonable

agreement with experimental data. This is the first time that the

theory has been compared with measurements. We note the differ-

ence between the result given by equation (6) and that given earlier

for a single-crystal measurement at low scattering vectors (Mildner et

al., 2011). For the latter (what we may call a vector Q measurement)

the two contributions to the resolution that depend on wavelength

spread are both vectors. They need to be summed as vectors, so that

the variance along the direction of the major axis of the diffraction

ellipse at Q0 is given by

ð�Qk Þ2 ¼ �2
geom þ �

Q0 � 2A�2
0ðk=L2Þŷy

�2ð��=�Þ2; ð7Þ
where ŷy is the unit vector in the vertical direction, so that

Q0 	 ŷy ¼ jQ0j sin ’. While the center of the diffraction pattern is

�A�2
0 vertically below the spectrometer axis, the major axes of the

diffraction spots intersect at a point þA�2
0 above the origin. For the

azimuthally symmetric scattering data that we have discussed here

(and may call a scalar Q measurement), the component of the

gravitational contribution along the scattering vector is added to the

magnitude of Q. Hence the equivalent variance is given by equation

(6), with the origin of the scattering vectors at�A�2
0, the beam center

corresponding to the mean wavelength. This result may be used to

smear the scattering from a model function that would have azimu-

thal symmetry in the absence of gravity for comparison with

experiment.
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