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Chiral modulations and reorientation effects in MnSi thin films
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We present an experimental and theoretical investigation of the influence of a uniaxial magnetocrystalline
anisotropy on the magnetic textures that are formed in a chiral magnetic system. We show that the epitaxially
induced tensile stress in MnSi thin films grown on Si(111) creates an easy-plane uniaxial anisotropy. The
magnetoelastic shear stress coefficient is derived from SQUID magnetometry measurements in combination with
transmission electron microscopy and x-ray diffraction data. Density functional calculations of the magnetoelastic
coefficient support the conclusion that the uniaxial anisotropy originates from the magnetoelastic coupling.
Theoretical calculations based on a Dzyaloshinskii model that includes an easy-plane anisotropy predict a variety
of modulations to the magnetic order that are not observed in bulk MnSi crystals. Evidence for these states is
found in the magnetic hysteresis and polarized neutron reflectometry measurements.
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I. INTRODUCTION

Manganese silicide (MnSi) belongs to a group of magnetic
noncentrosymmeteric crystals with space group P 213 (B20-
type structures), called cubic helimagnets.1,2 In these materi-
als, antisymmetric Dzyaloshinskii-Moriya (DM) interactions
induce long-range helical modulations with a fixed sense of the
magnetization rotation.1–3 Recent theoretical work shows that
in magnetic materials with intrinsic or induced chirality, DM
interactions provide a unique mechanism to stabilize two- and
three-dimensional modulations of the magnetic order (chiral
skyrmions).4–7 Recently, skyrmionic states have been observed
in thin layers of cubic helimagnets8,9 and in ultrathin magnetic
films10 with surface- or interface-induced DM interactions.11

Chiral skyrmions have also been observed in thin layers
of MnSi.12 Similar skyrmionic states are predicted to exist
in other classes of noncentrosymmetric materials, e.g., in
chiral liquid crystals, ferroelectrics, multiferroics, and in
confined systems (e.g., nanolayers of magnetic metals)6,13,14

and are expected to find applications in emerging spintronic
technologies.10,15

MnSi is an interesting and convenient material to investigate
chiral magnetism as well as to explore this class of materials
in spintronic devices. In bulk MnSi at zero magnetic field,
the competition between the DM and the direct exchange
interactions produces helical magnetic order below a Curie
temperature of TC = 29.5 K with a wavelength of 2π/Q =
18 nm. The pitch vector Q points along 〈111〉 and the magnetic
moments lie perpendicular to it.16 If an external magnetic field
is applied in a direction other than 〈111〉, Q will rotate in the
direction of the magnetic field and become parallel to it at a
field μ0HC1 � 0.1 T, as shown theoretically by Plumer and
Walker,17 and confirmed more recently with small-angle neu-
tron scattering (SANS).18 Above HC1, the magnetic moments
form a conical phase, which collapses into a ferromagnetic
state at μ0HC2 = 0.6 T. In cubic helimagnets, there is a
narrow temperature interval between the paramagnetic phase

and the region of regular chiral modulations where a number
of complex multidimensional states and numerous physical
anomalies have been observed.19–27 These unconventional
textures (so-called precursor states) arise near the TC as a result
of a softening of the magnetization.13,28 They are characterized
by a strong coupling between angular and longitudinal mod-
ulations and differ fundamentally from regular chiral phases
with angular modulations and a magnetization with a fixed
magnitude.13,26–28 In this paper, we limit our investigation of
MnSi thin films to the region of regular modulations, below
this precursor regime.

According to theoretical analysis, magnetic modulations
in the form of helices, distorted by an applied magnetic
field transverse to their propagation direction, here called
helicoids, and two-dimensional modulations, skyrmion lat-
tices, also arise in cubic helimagnets as regular solutions
of the corresponding micromagnetic equations.1,6,29 In bulk
samples, they usually only exist as metastable states, while
the cone phase corresponds to the global energy minimum
over practically the whole region where chiral modulations
occur (for details, see Ref. 29). However, the cone phase
can be suppressed by intrinsic cubic anisotropies or (more
effectively) by induced uniaxial distortions.29 Thus, a surface-
induced uniaxial anisotropy that has an easy axis can stabilize
hexagonal skyrmion lattices in magnetic nanostructures with
the skyrmion axis along the anisotropy axis. This effect
explains the experimental observations of skyrmion lattices
in thin layers of cubic helimagnets (Fe,Co)Si and FeGe, as
reported in Refs. 8 and 9. An important issue to address, from
both a fundamental and an applications point of view, is the
response of the helical order in thin films to both surface-
induced magnetic couplings and to an external magnetic field.
One of the important differences between the results conducted
on bulk MnSi and those conducted on thin films is the presence
of strain, which is expected to produce a uniaxial anisotropy
through magnetoelastic coupling. Generally, both strain and
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surface effects offer control of the magnetic anisotropies over
a wide range of energies, which should influence the chiral
magnetic textures in thin layers of cubic helimagnets.

In contrast to bulk crystals, there has been relatively little
work on the magnetic properties of MnSi thin films.30–33 We
have shown that the helical magnetic order is preserved in
MnSi(111) films grown on Si(111), which makes this material
attractive for spintronics studies of helical magnets. We cal-
culate the magnetic phase diagram for the phenomenological
Dzyaloshinskii model1 with easy-plane uniaxial anisotropy
in applied magnetic fields transverse to the axis in order to
predict the stable modulations of the magnetic order that can be
observed in the chiral magnetic thin films. These calculations
display existence regions for stable helicoids and skyrmion
lattices with tubular skyrmion strings running along the applied
field in a direction perpendicular to the anisotropy axis.

In this paper, we show that it is possible to induce an easy-
plane-type magnetic anisotropy in epitaxial MnSi(111) thin
films with a positive and isotropic in-plane strain. Although
Si has a lattice constant of 0.5431 nm that is 16% larger than
that of MnSi, a = 0.4558 nm, the Si(111) surface unit cell
is only 3.1% larger than that of MnSi(111) for an epitaxial
relationship of [110]MnSi ‖[112]Si. The noncentrosymmetric
MnSi crystal structure results in inversion domains in films
grown on Si(111) (Ref. 30) that result in both left- and
right-handed helical magnetic domains,31 which explains the
glassy magnetic behavior observed in these films. Polarized
neutron reflectometry (PNR) and superconducting quantum
interference device magnetometry (SQUID) results show that
the pitch vector is along the film normal, and that the helical
wavelength 2π/Q = 13.9 ± 0.1 nm is smaller than measured
in bulk material.31 Here, we present a study of the response
of MnSi thin films to a magnetic field that is transverse to
Q displaying interesting reorientation of the helical magnetic
order, which is significantly different than in bulk crystals.
SQUID magnetometry studies of the magnetic reorientation
are complemented by PNR measurements to obtain a depth
profile of the magnetization in the films. To understand
the origin of these differences, we measure the uniaxial
magnetocrystalline anisotropy in the films as a function of
thickness by SQUID magnetometry. A comparison of the
anisotropy with the strain determined by x-ray diffraction and
transmission electron microscopy (TEM) gives the magnetoe-
lastic coupling coefficients. These results are compared to a
fully relativistic electron-structure calculation using density
functional theory (DFT) of magnetocrystalline anisotropy in
rhombohedrally distorted MnSi bulk.

II. MAGNETIC PHASE DIAGRAM OF CHIRAL CUBIC
HELIMAGNETS WITH INDUCED UNIAXIAL

ANISOTROPY

To model the magnetic states in epitaxial MnSi films,
we add an additional uniaxial magnetic anisotropy to the
phenomenological free energy for a noncentrosymmetric cubic
ferromagnet, which is appropriate as long as the films are
strained homogeneously and are not too thin, so that specific
surface-induced effects can be neglected. This phenomeno-
logical model can be written as a functional W = ∫

w(M)dV

with the energy density w written in terms of a slowly varying

magnetization M(r) and its gradients1,2

w(M) = c

2
M2

s (∇m)2 + bM2
s m · (∇ × m)

+Ku(m · n̂)2 − μ0H · M − 1

2
μ0Hd · M , (1)

where m = M/Ms is a unit vector along the direction of
the magnetization M (Ms = |M|). The magnetic stiffness
associated with the exchange interaction c is related to the spin-
wave stiffness A by c = AS/(M2

s a3), where S = 0.8 is the
spin per unit cell in units of h̄ and a = 0.4558 nm is the lattice
constant. The Dzyaloshinskii-Moriya constant D is related to
the b coefficient describing the Lifshitz invariant through b =
DS/(M2

s a3). Aside from these two major exchange couplings
that are present in isotropic or cubic chiral magnets,1 this
Dzyaloshinskii model only considers Zeeman energy (H is the
applied magnetic field) and demagnetization energy with stray
field Hd .34

The cubic anisotropy and the anisotropic exchange are
omitted in functional (1) because these terms are small. Adding
these terms recovers the model used by Bak and Jensen to
explain the magnetic structure and magnetization processes
in bulk MnSi and related chiral cubic helimagnets.2 Enhanced
uniaxial anisotropy can arise in magnetic nanolayers as a result
of elastic strains induced by a lattice mismatch between the
magnetic layer and the overlying or underlying layers.35,36 In
addition, anisotropies may be introduced by symmetry break-
ing at the layers boundaries, and due to physical and chemical
modifications at the surfaces and interfaces.37,38 Depending
on material and geometrical parameters, the surface-induced
anisotropy can vary from cases when it is strictly confined to
the surfaces or interfaces to cases when it smoothly extends
into the depth of magnetic layers.39 An inhomogeneous
distribution of the induced anisotropy across the thickness
of the film may stabilize specific spatially inhomogeneous
magnetic states, so-called twisted phases.39,40 However, their
existence regions are restricted to specific relations between
material and external parameters.39,40 In this paper, we neglect
effects imposed by spatial inhomogeneity of the induced
anisotropy and describe the induced uniaxial anisotropy by
an energy contribution with constant Ku [Eq. (1)]. We show
in this paper that the MnSi films have an induced anisotropy
that is of easy-plane type. For this case, Ku > 0 in functional
(1), and the ground state of the system is a single harmonic
helix with a wave number Q = b/c that propagates along n̂.
An applied magnetic field perpendicular to the film surface
transforms the helix into the conical phase [Fig. 1(a)] with
analytical solutions

ψ(ξ ) = ξ/LD, cos(θ ) = H/H⊥
C2, (2)

where θ is the polar angle of the magnetization with respect
to n̂ and ψ is the azimuthal angle, ξ is a spatial variable
along the propagation direction, and LD = 2πc/b = 2π/Q is
the wavelength of the modulation. The out-of-plane saturation
field H⊥

C2 can be expressed as

μ0H
⊥
C2 = 2K0

Ms

+ 2Ku

Ms

+ μ0Ms,

(3)

K0 = b2M2
s

2c
= 1

2

AQ2

gμB

Ms,
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FIG. 1. (Color online) Modulated states in a thin layer of a cubic
helimagnet with in-plane magnetization: (a) a conical phase that
arises in the applied field perpendicular to the film surface, (b)
a helicoid phase, which is a helix distorted by the applied field
perpendicular to the propagation direction, (c) elliptically distorted
conical phases formed in a strong in-plane magnetic field, and (d) a
hexagonal skyrmion lattice with elliptical distortions imposed by a
uniaxial anisotropy. The unit vector n̂ indicates the direction of the
uniaxial anisotropy.

where K0 is the “effective stiffness” of the conical phase.
The conical phase is characterized by the constant modulation
period LD and a linear magnetization curve. Transversally
distorted helices (helicoids) [Fig. 1(b)] gradually increase their
periods with increasing magnetic fields. At a certain critical
field μ0Hh = π2K0/(16Ms), helicoids transform into a set
of isolated 360◦ domain walls separating domains with the
magnetization along the applied field direction.1

One-dimensional modulations propagating along the in-
plane field also arise as regular solutions for the model
presented in Eq. (1). In such modulations, the uniax-
ial anisotropy causes elliptical distortions of the “cones”
[Fig. 1(c)]. The equilibrium parameters for these distorted
cones have no analytical solutions. However, for Ku � K0

and H near the in-plane saturation field H
‖
C2, we can use

Eqs. (2) to derive the following result:

μ0H
‖
C2 = (2K0 − Ku − Km) M−1

s ,

Km = μ0M
2
s

LD

4πd
[1 − exp (−2πd/LD)] , (4)

where Km(d/LD) is the stray field contribution and d is the
film thickness.

The equations that minimize the energy functional (1) with
an in-plane magnetic field also include solutions for two-
dimensional modulations in the form of hexagonal skyrmion
lattices with elliptical distortions caused by the uniaxial
anisotropy [Fig. 1(d)]. We have studied the magnetic phase
diagram that results from model (1) for a bulk system with
periodic boundary conditions by using numerical methods,
as in previous work.6,13 We have calculated stable solutions
rigorously of one- and two-dimensional modulated states
for H ⊥ n̂ by direct energy minimization and testing their
stability. By comparing the energies of these solutions, we
determine the thermodynamically stable states and the first-
order transition lines between them. The resulting magnetic

FIG. 2. (Color online) Low anisotropy range of the magnetic
phase diagram in reduced variables for uniaxial anisotropy k =
Ku/K0 and applied magnetic field h = H/HD for model (1) with
an in-plane magnetic field [HD = 2K0/Ms is the saturation field
for a bulk cubic helimagnet with Ku = 0 and K0 is an “effective
stiffness” (Eq. (3))]. The regions of global stability for helical
and skyrmionic states are indicated by different colors. Solid lines
designate the first-order transitions: H1 represents the transition
between helicoid and distorted cone, and HS1 and HS2 are transitions
from a distorted skyrmion lattice to helicoid and distorted cones,
respectively. The dashed line indicates the critical field H

||
C2 [Eq. (4)]

for the distorted cone phase. Hh = π 2K0/(16μ0Ms) = 0.617HD is
the transition between the helicoid and the saturated states. Triangles
and squares show experimental values of critical fields H

||
C2 and Hα

for MnSi films of different thickness d .

phase diagram (Fig. 2) demonstrates that H ⊥ n̂ can induce
skyrmion phases in noncentrosymmetric magnets with an
easy-plane-type uniaxial anisotropy when Ku is above a
threshold value. However, the helicoids propagating along
the axis of the uniaxial anisotropy retain thermodynamical
stability over a wide range of magnetic fields and transform by
a first-order process, either into the distorted conical phase
at a critical field H1(Ku/K0) (for Ku < K∗

u = 0.12K0) or
into the skyrmion lattice. In the magnetic phase diagram
(Fig. 2), critical lines HS1(Ku/K0) and HS2(Ku/K0) separate
the skyrmionic states from the regions with one-dimensional
modulations.

The results of the model apply to the strained MnSi films
investigated in this work. However, the neglected effects of
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cubic anisotropy and additional surface-induced anisotropies
can modify the details and quantitative evaluation of the
magnetic phase diagram. For thin films in particular, the
isotropy of the chiral Dzyaloshinskii model could be impaired
and inhomogeneous competing surface anisotropies, e.g., with
easy-axis character, may become important.

III. MAGNETIC CHARACTERIZATION

We performed SQUID measurements of MnSi(111) thin
films in order to determine the energy scales that govern
the spin reorientation transition. The films were grown on
Si(111) by molecular beam epitaxy (MBE), and capped with
a protective 20-nm-thick amorphous Si cap, as described in
Ref. 31. The M-H loops were measured in an applied magnetic
field oriented along the out-of-plane [111] and the in-plane
[110] directions at a temperature of T = 5 K. The linear
diamagnetic susceptibility of the substrate was determined
from the least-squares fits to M between μ0H = 3 and 5 T and
subtracted from the data. Six representative curves are shown
in Fig. 3. The out-of-plane curves are qualitatively similar
to bulk for all film thicknesses.41 M increases approximately
linearly with field up to a field H⊥

C2, and reaches a saturation
magnetization Ms = 163 ± 3 kA/m, which corresponds to
a moment μ = 0.416 ± 0.003 μB/Mn as compared to 0.39
μB/Mn in bulk. The knee in the M-H loops, which is
determined from the minimum in d2M/dH 2, is used as a
measure of H⊥

C2 and is plotted as a function of thickness in
Fig. 4.

For in-plane magnetic fields, the shape of the M-H
loops is qualitatively different than bulk. The first difference
is the existence of a remanent magnetization. Since the
magnetization lies in plane with the pitch vector along the
film normal, there are uncompensated moments when the film
thickness is a noninteger multiple of the helical wavelength.
Oscillations in the remanent magnetization as a function
of film thickness provide a measure of this wavelength.31

Second, we find first-order-like jumps in the magnetization
in Figs. 3(b) and 3(c), labeled Hα . For some thicknesses, there
is an additional kink in the magnetization below Hα , which is
labeled Hβ in Fig. 3(c). The values for the in-plane saturation
fields H

‖
C2 were determined in the same way as for H⊥

C2,
with the exception of the two lowest film thicknesses where
rounding of the M-H curves prevented a clear determination
of the minimum in the second derivative. In these two cases,
the knee was determined by extrapolation of the low-field M

values of the M-H curve up to Ms , and the second derivates
were calculated from the decreasing-H branch of the hysteresis
loops since they provided sharper transitions.

The effective stiffness of the conical phase can be derived
from the measured saturation fields H⊥

C2 and H
‖
C2:

K0 = Ms

6

(
μ0H

⊥
C2 + 2μ0H

‖
C2 − μ0Ms + 2Km

Ms

)
. (5)

Since we have found that the helical wavelength 2π/Q =
13.9 ± 0.1 nm is independent of d for a film thickness
range of at least 7 to 40 nm,31 K0 provides a measure
of the spin-wave stiffness. Figure 5(b) shows that A is
approximately independent of thickness with a mean value

(a)

(b)

(c)

FIG. 3. SQUID M-H curves of MnSi thin films with an in-plane
field applied along [110] (filled points) and out-of-plane field along
[111] (open points) measured at T = 5 K. The film thicknesses are
d = 11.6 nm (a), 17.6 nm (b), and 26.7 nm (c).

A = 0.45 ± 0.01 meV nm2 as compared to the bulk value
A � 0.50 meV nm2.42,43 This is consistent with the fact that
TC is nearly constant between d = 10 and 40 nm. Given that
Q = D/A, we then infer that D = 0.203 ± 0.005 meV nm
is larger than the bulk value, 0.18 meV nm. However,
Grigoriev et al. argue that the Dzyaloshinskii interaction is
best characterized by D/(μa) since they find it to vary about
a value of 1.15 ± 0.01 meV/μB for both the Mn1−xFexSi and
FexCo1−xSi B20 alloys.44,45 We obtain a value D/(μa) =
1.06 ± 0.03 for the films that is in good agreement with this
value. The 22% reduction in the wavelength of the helix in the
thin films can therefore be understood by the combination of a
decrease in the spin-wave stiffness, and the increase in D due
to the increase in the magnetic moment of the film.
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FIG. 4. The in-plane saturation field (filled squares) and the out-
of-plane saturation field (open circles) determined from M-H curves
measured at T = 5 K, like those shown in Fig. 3

The magnetocrystalline anisotropy, which is the second
energy scale important to understand the magnetic phase
diagram, is also determined from the saturation fields H⊥

C2

and H
‖
C2,

Ku = Ms

3

(
μ0H

⊥
C2 − μ0H

‖
C2 − μ0Ms − Km

Ms

)
, (6)

and is plotted in Fig. 5(a). The anisotropy is found to be
positive, which shows that it is of easy-plane type.

Given the epitaxially induced strain in the films, this
uniaxial anisotropy would be expected to originate, at least
in part, from magnetoelastic coupling. Furthermore a surface

FIG. 5. The uniaxial magnetocrystalline anisotropy (a) and the
exchange stiffness (b), calculated from the H⊥

C2 and H
‖
C2 in Fig. 4, as

a function of MnSi film thickness

(a)

(b)

(c)

FIG. 6. (Color online) (a) In-plane elastic strain measured from
plane-view TEM selected area diffraction patterns. (b) Out-of-
plane strain determined from x-ray diffraction measurements of the
MnSi(111) peak. In both sets of measurements, the Si substrate was
used as an internal calibration standard. (c) Ratio of the out-of-plane
strain to twice the in-plane strain. The three samples indicated by
open red squares contain MnSi1.7 precipitates in excess of 20%. All
error bars are ±1σ .

anisotropy of the form Ks
u/d cannot fit the data in Fig. 5(a).

From the magnetoelastic free energy, expressed in terms of the
components of the directional cosines mi and the strains εij ,
defined with respect to the cubic axes of MnSi,46

wme = B1
(
εxxm

2
x + εyym

2
y + εzzm

2
z

)
+B2(εxymxmy + εyzmymz + εxzmxmz), (7)

one can show that a trigonal distortion of the (111) planes pro-
duces an isotropic magnetoelastic stress energy contribution
B1. However, the magnetoelastic shear stress contribution to
the free energy of the film is anisotropic:

wme = 1
2B2,eff(ε⊥ − ε‖)(m · n̂)2. (8)

If we attribute the uniaxial magnetocrystalline anisotropy to
this contribution, we can obtain an estimate of an effective
magnetoelastic shear stress B2,eff. To this end, we measured the
in-plane strain ε‖ from TEM selected area diffraction patterns
and the out-of-plane strain ε⊥ by using x-ray diffraction curves
from the MnSi(111) planes, both of which were performed
at room temperature. The results are shown in Fig. 6. The
strains are higher in the MBE samples compared to the solid-
phase epitaxy (SPE) samples.30 We attribute the higher residual
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0

0.01

0.02

FIG. 7. (Color online) (a) The volume strain as a function of
three times the shear strain. The red line shows the polynomial fit
to the data over the range cover by the B2,eff data. (b) The effective
magnetoelastic shear stress, where the red line is a fit to the data.
The fit in (a) and (b) gives B2 = 1.6 ± 1.0 MJ/m3, D1 = −78 ± 20
MJ/m3, and D2 = −460 ± 120 MJ/m3. All error bars represent ±1σ .

strains in the films to the shorter annealing times during MBE
growth. On the other hand, the ratio ε⊥/2ε‖, which is related
to the ratio of the bulk modulus to the shear modulus c44,30

is the same for both MBE and SPE grown samples, which
implies that the elastic constants for both sets of samples are the
same, despite the presence of a small concentration of MnSi1.7

precipitates in MBE grown samples. A large concentration
of precipitates, however, does affect the elastic properties of
the films. The strain in three of the samples that contained
more than 20% MnSi1.7, as determined from plane-view TEM
images, has relaxed more than the other samples. The ε⊥/2ε‖ is
high in these samples, which suggests the precipitates do soften
the c44 of the films when in large concentrations. Despite these
differences, the magnetic moments of the MnSi films remain
unaffected by the presence of the MnSi1.7.

We made estimates of the effective magnetoelastic shear
stress B2,eff(ε) = 2Ku/(ε⊥ − ε‖), shown in Fig. 7(b). Here,
we assume that the magnetocrystalline surface anisotropy is
negligible. This is a reasonable assumption since the surface
anisotropies Ks

u are in the range (0.2 − 1) mJ/m2 for Fe,
Co, and Ni,35,37,47 and would be expected to be considerably
smaller for MnSi given the small Ms = 163 kA/m and that
Ku scales as M2.48–50

The magnetoelastic shear stress was found to vary with
thickness, as found for other thin-film systems. Wedler et al.
measured the nonlinear B2,eff in Fe/MgO(100), and introduced
an ε‖-dependent contribution to B2,eff.51 However, as pointed
out in Ref. 52, this ansatz does not properly account for the

FIG. 8. (Color online) The in-plane fields Hα and Hβ , as shown
in Fig. 3, determined from the peak in dM/dH of the SQUID
measurements with the magnetic field along [110]. The filled (open)
circles show Hα calculated from the decreasing-H (increasing-H )
branch of the M-H curve measured at T = 5 K. The red squares
show Hβ for decreasing H (filled squares) and increasing H (open
squares).

symmetry of the crystal. In the case of a trigonal distortion of
a MnSi(111) film, nonlinear magnetoelastic theory53 gives a
contribution proportional to the shear strain, with coefficient
D1, as well as to the volume strain, parametrized by D2:

B2,eff = B2 + D1(ε⊥ − ε‖) + D2(ε⊥ + 2ε‖), (9)

where B2 is the linear magnetoelastic shear stress. Since
the volume and shear strains are related through the elastic
constants, we fit the volume strain in Fig. 7(a) to c1(ε⊥ −
ε‖) + c2(ε⊥ − ε‖)2 over a range spanned by the data in
Fig. 7(b) to enable a fit to the B2,eff with a single variable.
The parameters c1 and c2 together with the fit in Fig. 7(b)
give B2 = 1.6 ± 1.0 MJ/m3, D1 = −78 ± 20 MJ/m3, and
D2 = −460 ± 120 MJ/m3.

To date, there are no values for B2 for MnSi provided in the
literature. However, the magnetoelastic stress B1 equals 2B2

in an isotropic medium.54 By analysis of the magnetostriction
data given in Ref. 55, and by correcting the scale in the plot of
the low-field magnetostriction data, as pointed out in Ref. 56,
we obtain B1 � 1 MJ/m3 for bulk MnSi at low temperature.
Therefore, B2 = 1.6 may overestimate the magnetoelastic
shear stress in the films. However, the reasonable fit shows
that the uniaxial anisotropy can be explained in terms of a
magnetoelastic effect.

The measurement of the uniaxial anisotropy provides a
basis for attempting to understand the reorientation transition
in MnSi thin films. Unlike the out-of-plane measurements, the
M-H curves measured with an in-plane magnetic field show
significant departures from the characteristic behavior of bulk
MnSi, as described by the in-plane transition fields Hα and Hβ

shown in Fig. 3. We plot the values for these fields obtained
from peaks in dM/dH (see Fig. 8). The first-order-like step at
Hα only appears above a thickness d = 12 nm, which is close
in magnitude to 2π/Q. For film thicknesses close in value to
4π/Q, a second transition Hβ appears. These two transitions
are more difficult to explain with existing models. Plumer

094429-6



CHIRAL MODULATIONS AND REORIENTATION EFFECTS . . . PHYSICAL REVIEW B 85, 094429 (2012)

(a)

(b)

(c)

(d)

FIG. 9. (Color online) PNR with ±1σ error bars of 20 nm
Si/26.7 nm MnSi/Si(111) measured at T = 6 K. The magnetic field
applied along the in-plane [110] direction is (a) 1 mT, (b) 0.3 T, (c)
0.5 T, and (d) 0.8 T. The fits to the PNR data, shown by the solid
lines, yield the magnetic moment profiles given in each of the insets.

and Walker modeled the reorientation of the helical order in
bulk MnSi where small departures from linear M-H curves
are observed below the reorientation transition HC1 � 0.1 T.17

However, their solutions to a Landau-type free energy are not
able to account for the large values of Hα relative the H⊥

C2.

IV. MAGNETIC DEPTH PROFILES

In order to better understand the magnetic structure during
reorientation, we performed a series of PNR measurements
on a d = 26.7-nm-thick film with the aim of determining
a depth profile of the magnetization for a range of applied
magnetic fields. The results of the measurements performed
on the NG-1 reflectometer at the NIST Center for Neutron
research are shown in Fig. 9. We present measurements
with the magnetic field and neutron polarization along the
in-plane [110] direction in Fig. 9, in contrast to our previous
measurements where an out-of-plane orientation enabled a

FIG. 10. (Color online) XRR measurements of the 20 nm
Si/26.7 nm MnSi/Si(111) sample shown in Fig. 9. The solid line
is a fit to the data, which gives the x-ray SLD shown in the inset.

direct measure of the pitch of the helix.31 Samples were field
cooled with μ0H = 0.8 T applied along the [110] direction
to a temperature of 6 K, and then four sets of measurements
were performed in fields of 1 mT, 0.3 T, 0.5 T, 0.6 T, and
0.8 T. In this more conventional geometry, the scattering cross
sections R(++) and R(−−) are sensitive to both chemical
and magnetic structure. Evidence for helical order would
normally appear as a Bragg-type peak in the R(+−) or R(−+)
channels, which are sensitive to the in-plane component of
the magnetization that is perpendicular to the field direction.
However, the presence of left- and right-handed magnetic
domains largely cancel one another, evidenced by the small
spin-flip (SF) signal, as can be seen in Fig. 9.

In order to extract the magnetic scattering length, we infer
the nuclear scattering length density (SLD) profile from the x-
ray SLD profile determined from a fit to the x-ray reflectometry
(XRR) data in Fig. 10. The x-ray SLD is uniform across the
thickness of the silicide film and agrees well with the value
expected for MnSi, which indicates that the film is single
phase without any secondary phase, in agreement with TEM
measurements. We use the nuclear SLD to then fit R(++) and
R(−−) in Fig. 9 and obtain the magnetic SLD profile displayed
in each of the insets. A uniform magnetic SLD profile that
corresponds to a moment of m = 0.38μB/Mn fits the 0.8-T
data well. A conical phase with Q||[110] is consistent with such
an SLD profile since the component of the magnetization in
the field direction in this orientation is constant throughout the
film. The cone angle inferred from PNR measurements, θ =
cos−1(m/msat) = 25◦, is in reasonable agreement with θ =
cos−1(H/H

‖
C2) = 28◦ obtained from SQUID measurements.

In an applied field of 1 mT oriented in the in-plane [110]
direction, the pitch vector Q is pointing in the out-of-plane
[111] direction. A sinusoidal magnetic SLD profile with a
period of 2π/Q = 13.9 ± 0.01 nm provides a good fit to
the data. This is entirely consistent with the out-of-plane
measurements.31 The small magnetic moment of 0.20 μB/Mn
that is obtained from the fit is accounted for by the presence
of domains. The SLD profile for the 0.3 T field in Fig. 9(b)
shows distortions to the sinusoidal SLD, which become greater
at 0.5 T. The evolution and reorientation of the helical order,
however, shows clear departures from bulk behavior. The PNR
data provide an in-plane average of the component of the
magnetization in the direction of the magnetic field. The fact
that the depth dependence of the magnetization is described
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FIG. 11. (Color online) Results from density functional theory
calculations for strained MnSi: (a) the dependence of the energy
increase 
E on the rhombohedral angle � with fixed lattice constant
a = 0.4556 nm and the calculated anisotropy for the magnetization
along the rhombohedral axis, parallel to [111], and perpendicular
to the axis along [110]. (b) Dependence of strain components on
� for the deformation with constant lattice parameter. Note the
factor 10 for the volume strain ε⊥ + 2ε‖. (c) Corresponding evolution
of spin moments for different sites in the rhombohedral cell. (d)
Comparison of orbital magnetic moments on the different Mn sites
for the magnetization parallel and perpendicular to the rhombohedral
axis. In the latter case, the equivalence of the 3b sites is lost and the
orbital magnetic moments split.

by the layered model rules out a second-order-like transition
where the pitch vector rotates in the direction of the magnetic
field. Furthermore, the magnetization can be seen to be larger
in the field direction than in the antiparallel direction. This
difference contributes to the net magnetization, and is in
agreement with M(H ) plotted in Fig. 3(c).

V. THEORETICAL CONSIDERATIONS AND DISCUSSION

In the following two sections, the experimental information
is discussed using additional insights from theoretical calcula-
tions. The first section reports ab initio calculations to assess
the induced uniaxial anisotropy in strained cubic helimagnets.
The results corroborate the basic magnetic model of a chiral
magnet with a homogeneous easy-plane uniaxial anisotropy
[Eq. (1)] to describe the properties of the epitaxial MnSi
films. In the second part, the experimental observations on the
field-driven evolution of the modulated states are discussed.

A. Comparison with electronic-structure calculations

In order to ascertain the character and origin of the
uniaxial anisotropy in strained epitaxial MnSi films, we have
performed electronic-structure calculations. The calculations
for rhombohedrally distorted MnSi provide theoretical esti-
mates for the magnetoelastic coupling coefficient B2 and the
induced uniaxial anisotropy, which is a bulk effect present
in homogeneously strained films. Density functional theory
calculations of the electronic structure are useful to understand
and evaluate the properties of d-electron-based metallic mag-
netic systems.57 In particular, trends in magnetic properties
of metallic nanostructures can be understood from such
calculations, even though the exact quantitative determination
of small spin-orbit effects such as magnetic anisotropies or
magnetostriction coefficients still poses severe problems (see
Refs. 50, 58 and the references therein). In the present MnSi
films, the lattice stretches are sizable so that the induced
uniaxial anisotropy can be estimated from electronic-structure
calculations, although the intrinsic cubic anisotropies in this
material that derive from higher-order spin-orbit coupling
effects are too small to be calculated reliably by DFT methods.
To address the limit of relatively thick films, we neglect the
proper surface-induced anisotropies.

The isotropic in-plane strain in the (111)-oriented films
transforms the cubic lattice from the structure described
by space group P 213 (#198) into a rhombohedrally dis-
torted structure with symmetry R3 (#146). We performed
calculations using a full-potential local orbital method, as
implemented in the FPLO code59 with the generalized gradient
approximation (GGA) parametrized by Perdew, Burke, and
Ernzerhof.60 The variation of total energy with respect to the
rhombohedral angle � is evaluated from a full relativistic cal-
culation with the quantization axis (magnetization direction) in
various directions.61 In the calculations, the lattice constant has
been kept at a fixed value of a = 0.4556 nm, as was determined
previously from calculations by optimizing the structure of the
cubic cell, including the cell parameters. The calculated results
for the cubic MnSi structure are in good agreement with earlier
DFT studies.62 In the rhombohedrally distorted cell, the site
positions 4a for the Mn and Si in the cubic structure are split
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into two crystallographic inequivalent positions 1a and 3b.
For each rhombohedral angle � = π/2 − 2(ε⊥ − ε‖)/3, the
lattice cell of the distorted bulk MnSi was first optimized
by a scalar relativistic calculation. In these calculations,
the site positions of all atoms have been relaxed so that
forces on the atom were less than 10−3 eV/Å. In these
optimized structures, full relativistic calculations are used
to estimate the magnetocrystalline anisotropy. The energy
was converged to values better than 4 × 10−7 eV/unit cell
and the density to better than 10−6. It was checked that the
reciprocal space integration with a k-mesh subdivision of
22 × 22 × 22 is sufficient to obtain satisfactory convergency
of the fully relativistic total energies. As expected, the method
is unable to resolve the anisotropy for different magnetization
directions in the plane, which was checked by performing
calculations with the quantization axis along the [112], [110],
and [112] + √

6[110] directions. Thus, the sixfold basal plane
anisotropy in the isotropically strained MnSi(111) should be
below a few μeV/f.u. Therefore, we only compare results for
the quantization along the crystallographic [111] axis with
those with the axis along the in-plane direction [110] in the
following discussion.

Figure 11(a) shows the dependence of the total energy 
E

on � with respect to the minimum energy for the cubic struc-
ture � = 90◦ and the magnetocrystalline anisotropy energy
(MAE) evaluated as the difference of the total energies for the
two different quantization axes, MAE= E111

tot − E01−1
tot . The

figure shows that the isotropic in-plane expansion induces an
easy-plane magnetic anisotropy, while compressively strained
films would acquire an out-of-plane easy-axis anisotropy.
Figure 11(b) shows the dependence of the different strain
components on rhombohedral angle �, which are almost
linear over the relevant range of angles, while the volume
strain ε⊥ + 2ε‖ is almost zero for the deformation mode used
in the calculations. The magnetoelastic coupling coefficient
BDFT

2 = −2.1 ± 0.2 MJ/m3 is calculated from the slope of
MAE(� = 90◦). Similarly, the leading nonlinear magnetoe-
lastic coupling coefficient DDFT

1 = −17.9 ± 1.5 MJ/m3 can
be estimated from a nonlinear fit. The total magnetic moment
remains constant under strain. However, there is a marked
redistribution of spin moment between the different Mn and
Si sites, as shown in Fig. 11(b). A sizable induced spin
moment on Si is found, which undergoes minor changes in
the strained lattice. The redistribution of spin moments on Mn
is accompanied by a complex dependency of the corresponding
orbital magnetic moments on the different Mn sites that also
depend on the quantization direction [Fig. 11(c)]. These orbital
moments are associated with the magnetic anisotropy energy.
The observed dependence indicates an intricate mechanism
due to the strain that makes all the MnSi 4a sites inequivalent
for a magnetization perpendicular to the rhombohedral axis.
The calculated orbital moments on Si are very small.

MnSi is described as a weak band ferromagnet subject
to strong spin fluctuations, which strongly reduce the static
spin polarization in the low-temperature magnetically or-
dered state.63 Thus, the experimentally determined magnetic
moment that is 0.39 μB/Mn in bulk MnSi is enhanced
to about Sexp = 0.42μB/Mn in the epitaxial films with a
slight volume expansion. As in previous DFT calculations
on MnSi with B20-structure,62 we find a net spin moment of

FIG. 12. (Color online) Diagram of a skewed conical phase in
an in-plane magnetic field, where n̂ is the film normal and x̂ is the
direction of the applied magnetic field H . The wavefronts of this
phase remain parallel to the surface, while the axis of the cone ĉ cants
in the direction of the field by an angle φ.

SDFT = 1.00μB/Mn. As a result of the enhanced spin moment
in the DFT calculations that neglect quantum-dynamical spin
fluctuations, the MAE is also overestimated. In order to
provide a more realistic estimate on the uniaxial anisotropy
energy Ea from the calculations, we assume that the MAE
scales with the magnetization. A renormalization considering
spin fluctuations should behave as Ea =MAE (Sexp/S

DFT)n.
The effects of thermal and quantum dynamics at the zero
point both cause a reduction of the magnetization, which
essentially influences the macroscopic magnetic properties in
the same way. Therefore, we can rely on recent results on the
temperature dependence of the magnetic uniaxial anisotropies
in band ferromagnets, which find a scaling of MAE with the
magnetization and an exponent n = 2.48–50 Thus, a simple
rescaling of the MAE by a factor (0.42/1.00)2 = 0.18 is
appropriate to estimate a theoretical magnetoelastic coupling
coefficient of bulk MnSi of B2 = −0.37 MJ/m3 and a
nonlinear coefficient of D1 = −3.2 MJ/m3. In view of the
large uncertainties regarding the theoretical treatment of the
spin-fluctuation effect, there is still a reasonable agreement of
this value with the experimental data shown in Fig. 7.

B. Field-driven modulated structures

The profiles from the PNR in applied magnetic fields
(Fig. 9) are unusual. If one assumes a one-dimensional chiral
modulated state to explain these profiles, then one is led to
consider a skewed conical phase with anharmonic distortions.
The lth harmonic of the magnetic moment for such a structure
as a function of depth z,

μl(z) = μl cos(θ )ĉ + μl sin(θ )[cos(lQ · n̂z)â

+ sin(lQ · n̂z)b̂], (10)

is expressed in terms of an orthonormal coordinate system

â = cos(φ)x̂ − sin(φ)n̂, b̂ = ŷ, ĉ = sin(φ)x̂ + cos(φ)n̂.

(11)

The coordinate axes are written in terms of φ, the angle of
the cone axis with respect to n̂, and in terms of the unit
vectors x̂‖[110], ŷ‖[112], and n̂‖[111], as shown in Fig. 12.
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The skewed cone cants in the direction of the field, while the
wavefronts of the spin density wave remain perpendicular to
n̂, in contrast to a conical phase where the wavefronts are
perpendicular to the ĉ direction. For the case of μ0H = 0.5
T, a first harmonic μ1 = 0.42μB/Mn and second harmonic
μ2 = 0.12μB/Mn with θ = 56◦ and φ = 40◦ are able to
accurately reproduce the magnetic SLD profile. Field-induced
second harmonics have been observed in bulk MnSi,43,64 and
were also predicted by Plumer and Walker.65 However, such a
skewed conical phase has not been seen previously.

The one-dimensional skewed conical phase rationalizes the
experimental observations and is one of the possible structures
to explain the unusual magnetization processes. It is clear from
an unrestricted search for one-dimensional static magnetic
states that skewed conical helices do not exist as solutions
in the basic magnetic model with a homogeneous easy-plane
uniaxial anisotropy [Eq. (1)]. However, it is equally clear
that epitaxial thin films may possess a number of additional
interactions stemming from the surfaces, which could even-
tually stabilize such distorted modulated structures. There is
ample choice of possible competing and inhomogeneously
distributed anisotropies, e.g., the intrinsic cubic anisotropies,
that may cause anharmonicities, and competing easy-axis
surface anisotropies. Moreover, in the strained films, the
isotropy of the chiral DM interaction may be lost, so that
the in-plane and out-of-plane helical modulations become
energetically different.

The phase diagram, Fig. 2, enumerates the basic confor-
mations of the possible magnetic modulations in an almost
isotropic chiral magnet with an easy-plane anisotropy: the
flat helicoidal structure in the field plane, the conical helices,
and skyrmion lattices. It also shows that there is a close
competition between these states around a triple point, where
these three structures can coexist. All transformations between
these states are expected to be first-order processes. Moreover,
this indicates the possibility of severe history dependence
and hysteresis in the magnetization processes. Weaker in-
teractions, e.g., intrinsic cubic anisotropies2 and additional
surface effects, are not considered in the phase diagram. These
couplings could lead to modifications or distortions of the basic
modulated structures. Quantitative agreement with experiment
is expected for the saturation of the conical phase at field HC2

because this transition is continuous and starts out from the
unique saturated state. This field is used to determine the
induced anisotropy Ku of the films in Fig. 2. For all other
transition lines and transformation processes between these
different states, a quantitative agreement is not to be expected
as their energies are very close and relative thermodynamical
stability may be shifted by minor additional effects.

The thicker films that show a lower easy-plane anisotropy
display a hysteretic transformation process at the characteristic
field Hα , which is just below the field Hh, for transformations
from flat helicoids into the saturated state. It is important
to understand the peculiar nature of this transformation,
which does not destroy the helical kinks (360◦ rotations)
of the magnetization in an infinite system. Rather, the
transformation retains the localized core of these kinks
while their tails are stretched to infinity, so that the period of
the helicoid diverges. The reverse transformation requires the
nucleation of single kinks, which then assemble into a periodic

one-dimensional lattice at the nucleation transition Hh. This
means that the helicoid and the competing conical state,
propagating transverse to it, have wide ranges of coexistence
in applied fields, and during the transformation process, it
is impossible to destroy domains with kink-like structures
even in high applied fields. The characteristic field Hα in the
experiments may be explainable by such a process, which may
involve skewed helices instead of flat helicoids. Most likely,
transitions from a helicoid into free kinks and a transformation
into a conical phase at higher fields takes place in many of
the films. The first process is exactly the type of nucleation
transition of helicoidal kinks, predicted by Dzyaloshinskii in
his seminal work.1 The second process seems to proceed by a
domain process at higher fields.

The existence of a skyrmion lattice is a possible explana-
tion for the unusual magnetization process and the unusual
magnetic depth profiles from the PNR data. However, the
magnetic anisotropy for the film with thickness d = 26.7 nm is
found to be too low in the magnetic phase diagram (data point
#2 in Fig. 2) in comparison to the theoretical threshold for
stable skyrmion phases in the basic model, so that additional
magnetic couplings would be required to stabilize such states.
On the other hand, the demagnetizing field makes it difficult
to transform a helicoidal or a conical structure into a phase
with skyrmion axes running along the direction of an applied
in-plane magnetic field.

Therefore, it is possible that in all experiments done so
far, the skyrmion lattices are kinetically suppressed, although
the estimated anisotropies of the MnSi films cover a range
where the basic model displays thermodynamically stable
skyrmions in applied fields, as shown in Fig. 2. There are
clearly additional effects that may confound the formation of
such a state and favor either the helicoidal order or other types
of spiral order, even in equilibrium. A surface anisotropy may
also be present with an easy axis that may distort any of these
modulated phases. Moreover, it is possible that the isotropy
of the Lifshitz invariants m · ∇ × m is broken by the strain in
the films since the DM interaction and the uniaxial anisotropy
may have the same origin of a pairwise anisotropic exchange
in a band ferromagnet.49

Based on the experimental observations, it is not possible to
conclusively decide the question of which magnetic structures
are responsible for the anomalous field-driven evolution in the
experiments. It is clear that different MnSi films may even
show different sequences of states. The fact that some films
display two transitions at lower fields is suggestive of different
magnetization processes. Be that as it may, a comparison of
the magnetic profiles from the PNR data with depth profiles
of the layer-averaged component of the magnetization in field
direction 〈Mx〉 for different structures allows some conclusions
on the possible magnetic modulations. Figure 13 shows
profiles from numerical solutions to Eq. (1) that correspond
to the 26.7-nm-thick film in a 0.5-T field reported in Fig. 9.
The skewed anharmonic conical helix yields a good fit to
the magnetic depth profile. In particular, the modulation falls
short of the saturation magnetization in the negative direction.
In contrast, 〈Mx〉(z) of the flat helicoids covers the full
range of the magnetization, from +Ms to Ms , albeit with a
strong anharmonicity. The distorted conical helix has constant
value of magnetization in field direction. Finally, the profiles
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FIG. 13. (Color online) Experimental magnetization profile as
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lutions for different modulated states. Data and solutions correspond
to reduced anisotropy and field (k = 0.04, h = 0.50).

of the metastable and periodic skyrmion lattice solutions
have a similar character as the experimental data. For the
observations, we have then at least two possible explanations:
(i) If one-dimensional modulations occur as intermediate states
in the MnSi films, they should have a complex skewed conical
structure. Additional magnetic couplings such as competing
anisotropies would be required to explain such unusual helices
in MnSi. (ii) A transverse distorted skyrmion phase does
exist as a field-driven phase in easy-plane chiral magnets,
as shown by the theoretical magnetic phase diagram. This
explanation also requires additional magnetic couplings to
achieve a quantitative agreement between the model and the
experimental observations.

VI. CONCLUSION

The results of this work establish epitaxial MnSi films as a
chiral cubic helimagnetic system where complex magnetiza-
tion processes can be studied under the influence of induced
magnetic anisotropies. The major part of this work shows
that the in-plane tensile strain in MnSi(111) films produces
an easy-plane uniaxial anisotropy, which can be explained
by a homogeneous magnetoelastic effect. Both the theoretical
results within a simplified model and the experiments reveal a
number of modulated states that are metastable or do not exist
in bulk MnSi, which is a nearly isotropic cubic helimagnet.
Depending on the value of the uniaxial anisotropy, different
types of magnetization processes are found. Our experimental
data give clear indications for such processes in the MnSi films.

One of the most interesting transformation processes that
may be observed in this system is the creation of solitonic
states,13 such as the nucleation of free kinks in the helicoidal
phase in a transverse magnetic field, or alternatively the
formation of skyrmion lattices. These structures have their
own mesoscale lengths, fixed by the competition between
Dzyaloshinskii-Moriya and direct exchange. This poses new
problems for their stability and transformational behavior in
confining geometries of magnetic nanostructures. Magnetic
microscopic imaging now will play a major role in order to
discriminate between the different chirally modulated states
and to unravel the magnetic phase diagram relying on the
intricate competition between these states. We also show that
quantitative models for the magnetic behavior of these films
will require very detailed determination of their magnetic
properties, including higher-order anisotropies and surface
effects.
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