Energy & Environmental Science

Cite this: Energy Environ. Sci., 2012, 5, 5686

www.rsc.org/ees

COMMUNICATION

Borohydride hydrazinates: high hydrogen content materials for hydrogen storage[†]

Teng He,^a Hui Wu,^{bc} Guotao Wu,^a Junhu Wang,^a Wei Zhou,^{bc} Zhitao Xiong,^a Juner Chen,^a Tao Zhang^a and Ping Chen^{*a}

Received 17th November 2011, Accepted 7th December 2011 DOI: 10.1039/c2ee03205h

A new class of hydrogen storage materials, borohydride hydrazinates, was successfully synthesized. In particular, the bidentate NH_2NH_2 coordinates with LiBH₄ in molar ratios of 1 : 1 and 1 : 2 giving rise to a monoclinic LiBH₄·NH₂NH₂ and orthorhombic LiBH₄·2NH₂NH₂, respectively. Around 13.0 wt% H₂ can be released from LiBH₄·NH₂NH₂ at 140 °C in the presence of Fe–B catalysts.

Development of safe and energy efficient hydrogen storage materials is one of the technical challenges towards the large scale utilization of hydrogen energy.¹ In the past, tremendous efforts have been given to light-weight complex/chemical hydrides, including borohydrides,² alanates,³ amides,⁴ ammonia borane,⁵ metal amidoboranes⁶ etc. Among them, LiBH₄ has received close attention due to its high hydrogen content (18.4 wt%); however, its potential use in automotive applications is compromised by the unfavorable thermodynamics for dehydrogenation, *i.e.*, with an enthalpy of *ca.* 67 kJ mol⁻¹ LiBH₄

^aDalian Institute of Chemical Physics, Chinese Academy of Sciences, 457, Zhongshan Road, Dalian, China. E-mail: pchen@dicp.ac.cn; Fax: +86-411-84379583; Tel: +86-411-84379905 can only decompose to H₂ in a stepwise manner at temperatures above 300 °C.⁷ Thermodynamic alterations *via* compositing LiBH₄ with MgH₂,⁸ LiNH₂⁹ or NH₃¹⁰ *etc.* have been investigated, among which LiBH₄ has been found to form complexes with LiNH₂ or NH₃ forming Li₂BNH₆,¹¹ Li₄BN₃H₁₀¹² or LiBH₄·*x*NH₃,^{106,13} respectively, leading to the remarkable changes in the dehydrogenation thermodynamics, *i.e.*, from a highly endothermic to a mild exothermic nature. The co-existence of H^{δ+} (in NH₃ or NH₂⁻) and H^{δ-} (in BH₄⁻) in these systems has been proven to effectively facilitate hydrogen release.^{10α,14} It is, therefore, of particular interest to probe the combination of other H^{δ+} rich compounds such as hydrazine with borohydrides, and thus, to improve dehydrogenation properties.

Hydrazine (NH₂NH₂), a commonly used spacecraft propellant, contains 12.5 wt% of hydrogen and decomposes via two competing pathways giving rise to H₂, N₂ and NH₃ under mild conditions with the help of noble or noble metal-like catalysts.¹⁵ Recent results from Singh and Xu showed that the decomposition of hydrazine hydrate catalyzed by bimetallic nanoparticles achieved nearly 100% selectivity to hydrogen and nitrogen at room temperature.¹⁶ Hydrazine can also complex with borane forming N₂H₄·BH₃¹⁷ and N₂H₄·2BH₃, where N_2H_4 · BH₃ decomposes to H₂ at a temperature range of 100–150 °C. As there are two lone pair electrons at N's, N₂H₄ is capable of binding the metal cation of borohydrides through two donor sites, and forming hydrazinates. Meanwhile, the co-existence of H^{ô+} and $H^{\delta-}$ is expected to facilitate dehydrogenation from the system. In the present study several hydrazinates of LiBH₄, NaBH₄, and Mg(BH₄)₂, were synthesized successfully. In particular, NH₂NH₂ adducts strongly to LiBH₄ in 1/1 or 1/2 molar ratios, resulting in monoclinic LiBH₄·NH₂NH₂ and orthorhombic LiBH₄·2NH₂NH₂, respectively.

Broader context

Lack of safe and efficient hydrogen storage materials is one of the pending issues in the implementation of hydrogen fuel cell technology. Tremendous efforts have been given to the development of materials with high hydrogen content. Herein, a new type of hydrogen storage material, namely lithium borohydride hydrazinate, was successfully synthesized by ball milling LiBH₄ and NH₂NH₂. In particular, NH₂NH₂ complexes with LiBH₄ in molar ratios of 1/1 and 2/1 giving rise to a monoclinic LiBH₄·NH₂NH₂ and an orthorhombic LiBH₄·2NH₂NH₂, respectively. Importantly, around 13.0 wt% hydrogen can be released from LiBH₄·NH₂NH₂ at 140 °C with the assistance of an Fe-based catalyst. Spectroscopic analyses (Mössbauer and XAFS) evidence that an Fe–B amorphous alloy is the functional catalytic species. To the best of our knowledge, this is the first report on the synthesis and dehydrogenation of borohydride hydrazinates.

^bNIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-6102, USA

^cDepartment of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742-2115, USA

[†] Electronic supplementary information (ESI) available. Experimental details, XRD, XAFS, FT-IR, Raman, ⁵⁷Fe Mössbauer results *etc.* CCDC reference numbers [CCDC NUMBER(S)]. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2ee03205h

More importantly, around 13.0 wt% hydrogen can be released from the Fe-catalyzed $LiBH_4 \cdot NH_2NH_2$ at 140 °C. To the best of our knowledge, this is the first report on the synthesis and direct dehydrogenation of borohydride hydrazinates.

The reaction of hydrazine with $LiBH_4$ in various molar ratios (2/1, 1/1 and 1/2), yields a series of new phases (shown in Fig. S1⁺). Similarly, treating NaBH₄ and Mg(BH₄)₂ with hydrazine can also result in the corresponding new hydrazinate compounds (Fig. S2 and S3[†]). The Fourier transform infrared (FTIR) and Raman spectra show the presence of a vibration at around 1120 cm⁻¹ (Fig. S4 and S5[†]) assignable to the N-N stretching,¹⁸ which evidences the retention of the N-N bonding in the hydrazinates. The X-ray diffraction (XRD) patterns of LiBH₄·NH₂NH₂ and LiBH₄·2NH₂NH₂ samples were indexed using, respectively, a monoclinic Cc cell and an orthorhombic $Pca2_1$ cell with lattice parameters of a = 12.1423 A, b = 6.7217 Å, c = 10.3680 Å, $\beta = 104.79^{\circ}$, and a = 12.0638 Å, b =6.5219 Å, c = 7.6983 Å. The crystal structures are shown in Fig. 1, and the Rietveld fits to the diffraction patterns are shown in Fig. S6 and S8[†]. In LiBH₄·NH₂NH₂ each Li⁺ is surrounded by two BH₄⁻ ions and two NH2NH2 molecules with the Li-B distances of

2.322–2.600 Å and the Li–N distances of 2.131–2.427 Å, leading to a distorted tetrahedral coordination (Fig. S7†). In the structure of LiBH₄·2NH₂NH₂, each Li⁺ is tetrahedrally coordinated by four NH₂NH₂ molecules forming a tetrahydrazinelithium [Li(N₂H₄)₄](1) complex cation with Li–N distances of 1.962–2.248 Å. Having lone pairs on two N's, N₂H₄ is a bidentate ligand and can act as a bridge to link the neighboring [Li(N₂H₄)₄]⁺ tetrahedra through edge-sharing, forming a chain-like cationic complex of [Li(NH₂NH₂)₂]⁺. Such [Li(NH₂NH₂)₂]⁺ chains are then separated by the free BH₄⁻ anions (Fig. 1), as in the structure of [Li₂(H₂N–NHMe)₃](BH₄)₂.¹⁹

Both LiBH₄·NH₂NH₂ and LiBH₄·2NH₂NH₂ contain oppositely charged $H^{\delta+}$ (in N₂H₄) and $H^{\delta-}$ (in BH₄⁻), hence the interactions between these H's result in the elongated N-H and B-H distances compared to those in the neat LiBH420 and NH2NH2.21 From the crystal structures, the H's in N₂H₄ have short distances to their neighboring H in BH4⁻, ranging from 2.066 to 2.323 Å in LiBH₄·NH₂NH₂, and from 1.926 to 2.397 Å in LiBH₄·2NH₂NH₂, respectively, which indicates the establishment of dihydrogen bonding (see Tables 1, S1 and S2^{\dagger}). In particular, the shortest H^{δ} $^+\cdots$ H^{$\delta-$} distance (1.926 Å) in LiBH₄·2NH₂NH₂ system is even less than those in any other B-N containing hydrogenous compounds.^{2c,22} Similar to the dihydrogen bonding in ammonia borane,^{5a,22b} which is primarily responsible for the stability of this molecular crystal at room temperature, the entire network of the intermolecular dihydrogen bonding in the hydrazinates, together with the interactions between Li⁺ and NH₂NH₂/BH₄⁻ (Fig. 1), is thus the main driving force for the structural stabilization and is expected to have a profound impact on their thermal decomposition.

Dehydrogenation properties of $\text{LiBH}_4 \cdot \text{NH}_2\text{NH}_2$ and $\text{LiBH}_4 \cdot 2\text{NH}_2\text{NH}_2$ were analyzed by volumetric release and mass spectrometry (MS) measurements (Fig. 2). Decomposition of hydrazine follows two competing routes: *i.e.*, to N₂ and H₂ (reaction 1, denoted hereafter as eqn (1)) and to N₂ and NH₃ (reaction 2, eqn (2)).^{15a-c}

$$N_2H_4 \rightarrow N_2 + 2H_2 \tag{1}$$

$$3N_2H_4 \rightarrow N_2 + 4NH_3 \tag{2}$$

Volumetric release and MS measurements show that (Fig. 2) neat hydrazine releases 0.1 equiv. gas per hydrazine at 140 °C in 17 h, which is mainly composed of NH₃ and N₂ (see MS signals in Fig. S9[†]), following eqn (2).^{15a} Neat LiBH₄ hardly releases H₂ under this condition. However, the LiBH4 · NH2NH2 sample decomposes at temperatures right above 110 °C and releases ca. 0.55 equiv. gas comprised of N2, NH3 and a significant amount of H2 (molar ratio of $H_2/N_2 = 0.94$) at 140 °C (shown in Fig. 2). LiBH₄·2NH₂NH₂ starts to decompose at about 75 °C and evolves more than 1.5 equiv. gas per LiBH₄ under the same condition. The gaseous product is also a mixture of N₂, NH₃ and H₂ (Fig. S10[†]). The presence of significant amount of N2 and NH3 in both hydrazinates in comparison with neat N₂H₄ indicates the "catalytic role" of LiBH₄ in eqn (2), which manifests in the elongated N-H and N-N bonds in NH2NH2 units of the hydrazinates. The formation of H_2 , on the other hand, may not be via the self-decomposition of the "activated" hydrazine following eqn (1), which is evidenced by the observation of B-N species in the solid residue by ¹¹B magic angle spinning nuclear magnetic resonance (MAS NMR) (Fig. S11[†]). Moreover, only H₂, no N₂ (Fig. S13[†]), can

	$LiBH_4 \cdot NH_2NH_2$	$LiBH_4 \cdot 2NH_2NH_2$	NH ₂ NH ₂	LiBH ₄
В…Н	1.217–1.231 ^{<i>a</i>}	1.225–1.234	_	1.208-1.225
N····H	1.025-1.036	1.030	1.021	
$N \cdots N$	1.447-1.452	1.452	1.449	
Li…B	2.322-2.600	3.735-4.426		2.475-2.542
Li…N	2.131-2.427	1.962-2.248		_
Shortest $H^{\delta^+} \cdots H^{\delta^-}$	2.066	1.926	_	—
^{<i>a</i>} Close contacts around the	Li ⁺ center in LiBH (NH ₂ NH ₂ and	interatomic distances can be found i	in the ESI‡	

Table 1 Interatomic distances (Å) in LiBH₄·NH₂NH₂ and LiBH₄·2NH₂NH₂ compared with pristine hydrazine and LiBH₄ at room temperature^a

Fig. 2 Volumetric release measurements (top) on neat LiBH₄ (a), hydrazine (b), LiBH₄ \cdot NH₂NH₂ (c), LiBH₄ \cdot 2NH₂NH₂ (d), and 5.0 mol% FeCl₃-doped LiBH₄ \cdot NH₂NH₂ (e) at 140 °C. The gas evolution from hydrazine is quantified by equiv. gas/hydrazine. MS profiles (bottom) of the gaseous products of LiBH₄ \cdot NH₂NH₂ (c) and 5.0 mol% FeCl₃-doped LiBH₄ \cdot NH₂NH₂ (e) upon heating them at 140 °C.

be released from LiBH₄·1/3NH₂NH₂ at 140 °C (Fig. S12⁺), further excluding the occurrence of the self-decomposition of NH₂NH₂ (eqn (1)) We propose that the formation of H_2 is more likely via the interaction of LiBH₄ and N₂H₄. Note that the dissociation of the N-N bond is easier than that of the N-H bond in hydrazine;²³ NH₂NH₂ may first dissociate homogeneously into two neutral [·NH₂] radicals, which, then, abstract electrons from H⁻ of BH₄⁻ giving rise to LiNH₂BH₃ and H₂. LiNH₂BH₃ can readily decompose to H2 under the same condition mentioned above.24 Another possible pathway proposed here resembles the "hydride-transfer" mechanism in the decomposition of amidoboranes,²⁵ in which one hydride in BH₄⁻ transfers to Li⁺ giving rise to the intermediates LiH and BH₃, which further interact with hydrazine to form LiH/BH₃NH₂NH₂. It was reported that BH3NH2NH2 or LiH/BH3NH2NH2 released hydrogen easily under mild conditions.17a More detailed investigation on this aspect is underway.

The primary objective of the present study is to convert both H in BH_4^- and NH_2NH_2 to H_2 . The limited decomposition of

hydrazinates shown above evidences the presence of a kinetic barrier. We, thus, introduced 5 mol% of FeCl₃ to LiBH₄·NH₂NH₂ to examine its catalytic effect.²⁶ As shown in Fig. 2, gas evolution was observed at ~60 °C, which is much lower than that of pristine LiBH₄·NH₂NH₂. More than 3.8 equiv. gaseous products/LiBH₄ can be released at 140 °C, which contain mainly H₂ and N₂ (Fig. 2) with a molar ratio of 12/1 (GC result). Therefore 13.0 wt% hydrogen (\sim 88% of the hydrogen content) is released from the Fe-catalyzed LiBH₄·NH₂NH₂ sample. Heating the sample to 250 °C results in more than 4 equiv. total gas per LiBH₄ (corresponding to 13.8 wt% H₂) (Fig. S14[†]). Notably, the concentration of NH₃ is lower than 0.1 mol% in the gaseous phase detected by a conductivity meter. XRD patterns of the post-dehydrogenated FeCl3-doped LiBH₄·NH₂NH₂ sample reveal the formation of BN (Fig. S16[†]). In addition, FTIR and Raman spectra show the disappearance of B-H and N-H vibrational modes and the appearance of BN2³⁻ and B-N modes instead (Fig. S17 and S18[†]). Summarizing the above information, the overall decomposition of LiBH₄·NH₂NH₂ in the presence of the Fe-based catalyst may follow eqn (3).

$$3(\text{LiBH}_4 \cdot \text{N}_2\text{H}_4) \rightarrow \text{Li}_3\text{BN}_2 + 2\text{BN} + \text{N}_2 + 12\text{H}_2$$
 (3)

It is reported that Fe, Co and Ni are efficient catalysts for the decomposition of B-N-H compounds.27 Ferric or ferrous salts can be easily reduced by BH₃ or BH₄⁻ to form an amorphous Fe-B alloy.276,28 In this work, the formation of an Fe-B alloy is evidenced by the X-ray absorption fine structure (XAFS) and ⁵⁷Fe Mössbauer analyses (ESI[†]). Fe in both samples is essentially in the reduced state (XANES spectra shown in Fig. S19[†]) with a broad peak to the first shell atoms (Fourier transform structure shown in Fig. S20⁺), which is in good agreement with the feature of the amorphous Fe-B alloy reported previously.27b The 57Fe Mössbauer spectrum on the FeCl3doped LiBH₄·NH₂NH₂ sample clearly shows an isomer shift (IS) at 0.17 mm s⁻¹, which is close to those of $Fe_{44}Co_{19}B_{37}$, $Fe_{62}B_{38}$ and Fe_{-1} B alloys reported in the literature^{27b,28} and is similar to the ball milled 5 mol% FeCl₃-LiBH₄ sample (Fig. S21 and Table S3[†]). It is likely that the Fe-B alloy is the functional species catalyzing the dehydrogenation of LiBH₄·N₂H₄.

The presence of the catalyst may significantly alter the dehydrogenation pathway. For instance, transition metals of the first row of the periodic table were found to be highly effective in catalyzing eqn (2) under the condition applied here. It is likely that hydrazine first decomposes to N₂ and NH₃, and NH₃ molecules derived then coordinate with LiBH₄ to form LiBH₄ ammoniate, which was observed in the solid residue (Fig. S22†). Our recent work showed that in the presence of the Co–B alloy, LiBH₄·(4/3)NH₃ can directly dehydrogenate in the temperature range of 140–250 °C and form Li₃BN₂ and BN.¹⁴ It was found that the Fe–B alloy exhibits a similar catalytic performance. In this context, N₂ and NH₃ should be the main components in the gaseous phase in the initial stage of decomposition. Another possibility is that the dehydrogenation is *via* the direct combination of H^{δ +} (in N₂H₄) and H^{δ -} (in BH₄⁻) with the aid of the Fe–B alloy, where H₂ and N₂ could evolve simultaneously. To investigate the exact dehydrogenation (from 59 to 90 °C) were analyzed by mass spectrometry (Fig. S23†). It was found that although H₂ was the dominant species, the signal intensities of H₂, N₂, and NH₃ increased simultaneously with temperature, indicating the likelihood of concurrence of both dehydrogenation paths mentioned above.

Conclusions

The coordination of the bidentate ligand hydrazine to the metal centers in borohydrides leads to the formation of a series of new borohydride hydrazinate compounds. The binding between metals and hydrazine and the interactions between the protonic H in NH₂NH₂ and hydridic H in the BH₄⁻ ions "catalyze" the decomposition of hydrazine. With the aid of the Fe–B catalyst, ~13.0 wt% hydrogen was evolved from LiBH₄·NH₂NH₂ at a temperature as low as 140 °C, which makes the borohydride hydrazinate a compelling candidate for hydrogen storage. However, the formation of Li₃BN₂ and BN in the final products indicates the direct rehydrogenation is impossible.⁹⁴ Thus, regeneration of hydrazinates offboard from the spent fuel is, thus, a subject of further study. More investigations are also needed to elucidate dehydrogenation mechanisms and to optimize the dehydrogenation property of the hydrazinates.

Acknowledgements

We would like to acknowledge the financial supports from the Hundred Talents Project and Knowledge Innovation Program of CAS (KGCX2-YW-806 and KJCX2-YW-H21) and 973 (2010CB631304) Project. XAFS and high resolution XRD experiments were performed in Shanghai Synchrotron Radiation Facility.

Notes and references

- P. Chen and M. Zhu, Mater. Today, 2008, 11, 36; (b)
 L. Schlapbach and A. Züttel, Nature, 2001, 414, 353; (c)
 C. Weidenthaler and M. Felderhoff, Energy Environ. Sci., 2011, 4, 2495; (d) http://www1.eere.energy.gov/hydrogenandfuelcells/storage/.
- 2 (a) A. Züttel, P. Wenger, S. Rentsch, P. Sudan, P. Mauron and C. Emmenenegger, J. Power Sources, 2003, 118, 1; (b) R. Černý, Y. Filinchuk, H. Hagemann and K. Yvon, Angew. Chem., Int. Ed., 2007, 46, 5765; (c) S.-i. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel and C. M. Jensen, Chem. Rev., 2007, 107, 4111; (d) Y. Guo, H. Wu, W. Zhou and X. Yu, J. Am. Chem. Soc., 2011, 133, 4690.
- 3 B. Bogdanović and M. Schwickardi, J. Alloys Compd., 1997, 253-254, 1.
- 4 P. Chen, Z. Xiong, J. Luo, J. Lin and K. L. Tan, *Nature*, 2002, **420**, 302.
- A. Staubitz, A. P. M. Robertson and I. Manners, *Chem. Rev.*, 2010, **110**, 4079; (b) A. Gutowska, L. Li, Y. Shin, C. M. Wang, X. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski and T. Autrey, *Angew. Chem., Int. Ed.*, 2005, **44**, 3578; (c) M. G. Hu, R. A. Geanangel and W. W. Wendlandt, *Thermochim. Acta*, 1978, **23**, 249.
- 6 (a) Z. Xiong, C. K. Yong, G. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards and

W. I. F. David, *Nat. Mater.*, 2008, 7, 138; (b)
H. V. K. Diyabalanage, R. P. Shrestha, T. A. Semelsberger,
B. L. Scott, M. E. Bowden, B. L. Davis and A. K. Burrell, *Angew. Chem.*, *Int. Ed.*, 2007, 46, 8995.

- 7 A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron and C. Emmenegger, J. Alloys Compd., 2003, 356–357, 515.
- 8 (a) T. E. C. Price, D. M. Grant, V. Legrand and G. S. Walker, *Int. J. Hydrogen Energy*, 2010, **35**, 4154; (b) J. J. Vajo, S. L. Skeith and F. Mertens, *J. Phys. Chem. B*, 2005, **109**, 3719.
- 9 (a) F. E. Pinkerton, G. P. Meisner, M. S. Meyer, M. P. Balogh and M. D. Kundrat, J. Phys. Chem. B, 2004, 109, 6; (b) T. Noritake, M. Aoki, S. Towata, A. Ninomiya, Y. Nakamori and S. Orimo, Appl. Phys. A: Mater. Sci. Process., 2006, 83, 277.
- 10 (a) Y. Guo, G. Xia, Y. Zhu, L. Gao and X. Yu, *Chem. Commun.*, 2010, **46**, 2599; (b) S. R. Johnson, W. I. F. David, D. M. Royse, M. Sommariva, C. Y. Tang, F. P. A. Fabbiani, M. O. Jones and P. P. Edwards, *Chem.-Asian J.*, 2009, **4**, 849.
- 11 (a) H. Wu, W. Zhou, T. J. Udovic, J. J. Rush and T. Yildirim, *Chem. Mater.*, 2008, **20**, 1245; (b) P. A. Chater, W. I. F. David and P. A. Anderson, *Chem. Commun.*, 2007, 4770.
- 12 (a) Y. E. Filinchuk, K. Yvon, G. P. Meisner, F. E. Pinkerton and M. P. Balogh, *Inorg. Chem.*, 2006, **45**, 1433; (b) P. A. Chater, W. I. F. David, S. R. Johnson, P. P. Edwards and P. A. Anderson, *Chem. Commun.*, 2006, 2439.
- 13 E. A. Sullivan and S. Johnson, J. Phys. Chem., 1959, 63, 233.
- 14 X. Zheng, G. Wu, W. Li, Z. Xiong, T. He, J. Guo, H. Chen and P. Chen, *Energy Environ. Sci.*, 2011, 4, 3593.
- (a) X. Chen, T. Zhang, M. Zheng, Z. Wu, W. Wu and C. Li, J. Catal., 2004, 224, 473; (b) M. Zheng, X. Chen, R. Cheng, N. Li, J. Sun, X. Wang and T. Zhang, Catal. Commun., 2006, 7, 187; (c) J. P. Contour and G. Pannetier, J. Catal., 1972, 24, 434; (d) L. Ding, Y. Shu, A. Wang, M. Zheng, L. Li, X. Wang and T. Zhang, Appl. Catal., A, 2010, 385, 232.
- 16 (a) S. K. Singh and Q. Xu, J. Am. Chem. Soc., 2009, 131, 18032; (b) S. K. Singh and Q. Xu, Chem. Commun., 2010, 46, 6545.
- 17 (a) T. Hügle, M. F. Kühnel and D. Lentz, J. Am. Chem. Soc., 2009, 131, 7444; (b) J. Hannauer, O. Akdim, U. B. Demirci, C. Geantet, J. Herrmann, P. Miele and Q. Xu, Energy Environ. Sci., 2011, 4, 3355.
- 18 J. R. Durig and C. Zheng, Vib. Spectrosc., 2002, 30, 59.
- 19 J. C. Gálvez Ruiz, H. Nöth and M. Warchhold, *Eur. J. Inorg. Chem.*, 2008, 2008, 251.
- 20 M. R. Hartman, J. J. Rush, T. J. Udovic, R. C. Bowman, Jr and S.-J. Hwang, J. Solid State Chem., 2007, 180, 1298.
- 21 K. Kohata, T. Fukuyama and K. Kuchitsu, J. Phys. Chem., 1982, 86, 602.
- 22 (a) G. Soloveichik, J.-H. Her, P. W. Stephens, Y. Gao, J. Rijssenbeek, M. Andrus and J. C. Zhao, *Inorg. Chem.*, 2008, **47**, 4290; (b)
 W. T. Klooster, T. F. Koetzle, P. E. M. Siegbahn, T. B. Richardson and R. H. Crabtree, *J. Am. Chem. Soc.*, 1999, **121**, 6337; (c)
 H. Chu, G. Wu, Z. Xiong, J. Guo, T. He and P. Chen, *Chem. Mater.*, 2010, **22**, 6021; (d) H. Wu, W. Zhou and T. Yildirim, *J. Am. Chem. Soc.*, 2008, **130**, 14834.
- (a) M. Szwarc, Proc. R. Soc. London, Ser. A, 1949, 198, 267; (b)
 S. Foner, J. Chem. Phys., 1958, 29, 442; (c) I. P. Fisher and
 G. A. Heath, Nature, 1965, 208, 1199.
- 24 Z. Xiong, C. K. Yong, G. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards and W. I. F. David, *Nat. Mater.*, 2008, 7, 138.
- 25 (a) D. Y. Kim, N. J. Singh, H. M. Lee and K. S. Kim, *Chem.-Eur. J.*, 2009, **15**, 5598; (b) T. B. Lee and M. L. McKee, *Inorg. Chem.*, 2009, **48**, 7564–7575; (c) A. T. Luedtke and T. Autrey, *Inorg. Chem.*, 2010, **49**, 3905.
- 26 Note: Reducing Fe-based catalyst loading from 5 mol% to 2 mol% will also bring significant kinetic improvement.
- 27 (a) W. S. Tang, G. Wu, T. Liu, A. T. S. Wee, C. K. Yong, Z. Xiong, A. T. S. Hor and P. Chen, *Dalton Trans.*, 2008, 2395; (b) T. He, J. Wang, G. Wu, H. Kim, T. Proffen, A. Wu, W. Li, T. Liu, Z. Xiong, C. Wu, H. Chu, J. Guo, T. Autrey, T. Zhang and P. Chen, *Chem.-Eur. J.*, 2010, **16**, 12814.
- 28 (a) J. van Wonterghem, S. Morup, C. J. W. Koch, S. W. Charles and S. Wells, *Nature*, 1986, **322**, 622; (b) T. He, J. Wang, T. Liu, G. Wu, Z. Xiong, J. Yin, H. Chu, T. Zhang and P. Chen, *Catal. Today*, 2011, **170**, 69.