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Abstract
A novel variance-based measure for global sensitivity analysis, termed a variance gradient
(VG), is presented for constructing uncertainty budgets under the Guide to the Expression of
Uncertainty in Measurement (GUM) framework for nonlinear measurement functions with
independent inputs. The motivation behind VGs is the desire of metrologists to understand
which inputs’ variance reductions would most effectively reduce the variance of the
measurand. VGs are particularly useful when the application of the first supplement to the
GUM is indicated because of the inadequacy of measurement function linearization. However,
VGs reduce to a commonly understood variance decomposition in the case of a linear(ized)
measurement function with independent inputs for which the original GUM readily applies.
The usefulness of VGs is illustrated by application to an example from the first supplement to
the GUM, as well as to the benchmark Ishigami function. A comparison of VGs to other
available sensitivity measures is made.

Keywords: variance gradient, global sensitivity analysis, variance-based sensitivity measure,
sensitivity index, importance measure, uncertainty budget, nonlinear measurement function,
GUM, Monte Carlo method, Ishigami function

1. Introduction

This paper introduces a novel variance-based measure for
global sensitivity analysis, termed a variance gradient (VG),
for the construction of uncertainty budgets involving scalar-
valued nonlinear measurement functions with independent
inputs. Measurement functions represent an explicit functional
relationship between the measurand (the output quantity)
and one or more input quantities to a measurement model
[1, sections 2.48 and 2.49]. VGs have been developed with
regard to measurement problems in which the first supplement
to the Guide to the Expression of Uncertainty in Measurement
(GUM) [2, 3] would be applied because measurement
function linearization, or higher order approximation, is
inadequate. A VG incorporates the nonlinear effects of the

1 Present address: Measurements and Characterization Group, National Center
for Photovoltaics, National Renewable Energy Laboratory, 15013 Denver West
Parkway, Golden, CO 80401, USA.

measurement function over the support of the independent
inputs. However, unlike certain other sensitivity measures for
nonlinear functions of independent input random variables
(RVs), the collection of VGs (one for each input) does not
decompose the output RV’s variance into an apportionment
among the inputs.

As an analysis tool for reducing the uncertainty in the
result of a measurement, a VG quantifies the relative reduction
in the variance of the measurand resulting from a small relative
reduction in the variance of a given input. For example, a VG
with value 0.25 for a particular input means that one anticipates
that a measurand’s variance will be reduced by approximately
0.25% if the input’s variance is reduced by 1%. Ranking of
inputs by VG value makes VGs useful in the construction
of an uncertainty budget for the result of a measurement.
Furthermore, for a linear(ized) measurement function with
independent inputs, the collection of VGs reduces to the
commonly understood variance decomposition/apportionment
and therefore provides an alternative to this ‘uncertainty
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contribution’ interpretation. For a large class of measurement
problems, VGs can be computed in a straightforward manner
with a Monte Carlo method that uses first-order partial
derivatives of the measurement function. Thus, VGs integrate
well with the methodology of the first supplement to the GUM.

1.1. Terminology

Uncertainty quantification often involves both uncertainty
analysis and sensitivity analysis of models [4]. The goal
in uncertainty analysis is to quantify the uncertainty in the
output of a model. The goal in sensitivity analysis is a better
understanding of the origination of the uncertainty in the
model output, e.g., from input uncertainties or modelling
assumptions, and how this uncertainty may be controlled.
Uncertainty analyses and sensitivity analyses typically go hand
in hand. For measurements, uncertainty budgets provide a
quantitative summary of both analyses.

The traditional local sensitivity analysis considers how
a model output changes with small changes around a single
selection of inputs. In models described by a deterministic
mathematical function, this is often quantified via first-
order partial derivatives evaluated at a single-input point.
For uncertainty quantification and other purposes, a broader
definition of sensitivity analysis considers a range of model
input points. The term global sensitivity analysis indicates
that the analysis accounts for the sensitivity of the model
over a large set of model inputs, especially when the model
has nonlinear effects combined with uncertainty in the inputs
described by a joint probability distribution [5].

While derivatives can still play a role in global sensitivity
analyses, other mathematical measures have been developed
[5, 6]. Some measures require independent inputs and/or the
function to be linear. The nonlinearity of a function may
create interaction effects between inputs. This occurs when
the nonlinear function is not additive2. We distinguish these
interaction effects from dependence effects that arise when the
inputs are not independent. When both are present, these two
effects can interact.

In variance decomposition settings, the adjective total
has been used to describe global sensitivity measures that
account for all interaction effects, while the adjective first-
order has been used for measures that do not account for any
such interactions [5]. The term one-at-a-time has been used
to describe a sensitivity measure that fixes all inputs but one
to their expected values [6]. Thus, one-at-a-time measures are
neither completely local nor entirely global. Also, a first-order
measure is not necessarily a one-at-a-time measure.

Saltelli et al [7] offer the following definition of sensitivity
analysis:

2 An additive function has the form g(x1, . . . , xN ) = g1(x1) + · · · + gN (xN ).
In particular, all additive functions are linear in the transformed variables
g1(x1), . . . , gN (xN ) and all linear functions are additive. A linear function has
the form g(x1, . . . , xN ) = c0 + c1 x1 + · · · + cN xN , where c0, c1, . . . , cN are
constants. (Sometimes the term affine is used instead of linear when c0 �= 0.)
An example of a nonlinear additive function is g(x1, x2) = 1−π ex1 +x2+5x2

2.
The nonlinear function g(x1, x2, x3) = x1 x2 − 2 x3 is not additive and admits
a second-order interaction effect between x1 and x2.

Table 1. Classification of measurement problems under the GUM
framework.

Measurement function

Linearizable Nonlinearizable

Input RVs Independent Linearizable and Nonlinearizable and
independent independent

Dependent Linearizable and Nonlinearizable and
dependent dependent

The study of how uncertainty in the output of a
model (numerical or otherwise) can be apportioned
to different sources of uncertainty in the model input.

The idea of a decomposition of the output variance into
an apportionment among the inputs often leads to the use of
the term contribution analysis instead of sensitivity analysis.
However, in this paper, we propose a sensitivity measure that is
not constructed to decompose/apportion variance. Moreover,
‘contribution analysis’ has other common uses, such as when
the model output is the sum of several components, each
attributed to a different group of inputs. Thus, to avoid
confusion, we use the term sensitivity analysis instead of
contribution analysis.

Considering the above discussion of terminology, we have
selected the term VG for the variance-based global sensitivity
measure presented here. VGs are global because they consider
nonlinear effects over the support of the independent inputs.
VG specifically refers to the limit of a particular ratio involving
relative changes in output and input variances.

1.2. Outline of the paper

Section 2 describes the motivation for VGs with respect to the
GUM framework and uncertainty budgets. The mathematical
derivation and implementation of VGs follows in section 3.
Section 4 provides illustrative examples of VGs, including the
construction of an uncertainty budget for a metrology example
taken from the first supplement to the GUM, as well as for
the Ishigami function, which is a benchmark for comparing
sensitivity analysis measures. Section 5 discusses the use of
VGs in measurement problems in relation to other available
sensitivity measures, as well as the potential extension of VGs
to an even larger class of measurement problem settings. The
appendix contains technical details arising in the mathematical
derivation of the formula used to compute VGs.

2. The GUM framework, uncertainty budgets and
problem settings

This section reviews the GUM framework and uncertainty
budgets for results of measurements stated under this
framework. The familiar reader may wish to skim this material
while noting (1) the classification of measurement problems in
table 1, (2) the discussion of various sensitivity measures that
could appear in uncertainty budgets, and (3) the description of
three problem settings for sensitivity analysis that inform the
choice of sensitivity measure(s).
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2.1. The GUM framework

The GUM [2], its first supplement (GUM-S1) [3] and
its second supplement (GUM-S2) [8] have provided an
internationally accepted approach to the evaluation and
expression of measurement uncertainty [9]. According to
the GUM, no result of a measurement is complete without
a statement quantifying the uncertainty of measurement
[2, section B.2.11, note 2]. The GUM-S2 extends both the
GUM and the GUM-S1 methodologies to vector-valued output
quantities. Despite certain differences between the GUM and
the GUM-S1 [3, section 5.11.4], we collectively term the
GUM, GUM-S1 and GUM-S2 methodologies as the GUM
framework. (This is not to be confused with the GUM-S1’s
reference to the GUM’s methodology as the GUM uncertainty
framework [3, section 3.18].) Furthermore, we consider the
main difference between the GUM and the GUM-S1 to be
their methodologies for the evaluation of uncertainty, but not
for the expression of uncertainty.

Underlying the GUM framework is the notion that
a particular quantity [2, section B.2.1] to be measured,
or measurand [2, section B.2.9], has a state-of-knowledge
probability distribution associated with it that ‘represents
belief probabilities about the possible values of a quantity
based on all available information’ [10]; see also [2, sections
3.3.5, 4.1.6 and G.6.6] and [3, section 5.11.2]. In addition to
measurement uncertainty, this state of knowledge generally
includes definitional uncertainty arising from an incompletely
defined measurand; see [1, section 2.27] and [2, section D.3.4].

Both the GUM and the GUM-S1 provide guidance
concerning epistemic uncertainty in scalar, real-valued
measurands. To quote the GUM:

This guide is primarily concerned with the expression
of uncertainty in the measurement of a well-
defined physical quantity—the measurand—that can
be characterized by an essentially unique value. If
the phenomenon of interest can be represented only
as a distribution of values or is dependent on one or
more parameters, such as time, then the measurands
required for its description are the set of quantities
describing that distribution or that dependence
[2, section 1.2].

Thus, situations in which there is inherent random
variability, or aleatoric uncertainty, in the measurand require
the quantification of epistemic uncertainty in one or more
parameters used to describe the variability. Furthermore, we
distinguish the aleatoric uncertainty in a measurement process
generating indications [1, section 4.1] from the resulting
epistemic uncertainty in a measurand characterized by an
essentially unique value.

In a complete result of a measurement [2,
section B.2.11], both the single value selected for the
measurand and the associated uncertainty are quantified by
mathematically modelling the measurand as a RV, also see
[1, section 2.9]. The single value selected for a measurand
is commonly called an estimate of the measurand. Such
language often entails a broader meaning for the term estimate
than is specified in the GUM [2, section C.2.26], and the

term measured quantity value [1, section 2.10] is more exact,
if less common. The uncertainty is defined in the GUM as
‘a parameter, associated with the result of a measurement,
that characterizes the dispersion of the values that could
reasonably be attributed to the measurand’ [2, section B.2.18].

Under the GUM framework, the estimate of a measurand
is typically the expected value of the state-of-knowledge
probability distribution of the measurand (a measure of
location) [2, section 4.1.1, note 3] and [11, 12]. The
(combined) standard uncertainty is the standard deviation of
this distribution (a measure of scale/spread) [2, sections 2.3.1
and 2.3.4]. The GUM presumes that both the expected value
and the standard deviation are well defined for the state-of-
knowledge probability distribution of the measurand. Unlike
the moments of a distribution, coverage intervals always exist
[1, section 2.36; 3, sections 3.12 and 4.11]. The GUM-S1
methodology is capable of determining coverage intervals,
even when the expected value and/or standard deviation do
not exist [3, section 5.1.1, note 2].

The International Vocabulary of Metrology (VIM) defines
measurement model as a ‘mathematical relation among
all quantities known to be involved in a measurement’
[1, section 2.48]3. A measurement model is derived
from established scientific principles of measurement [2,
section B.2.6], as well as the understanding of the measurement
process of metrologists. The inputs to the measurement model
determine the value of the measurand and include, but are not
limited to, influence factors [2, section B.2.10], corrections
for recognized systematic errors [2, sections B.2.22 and
B.2.23] and standard reference data/materials. Some inputs
may themselves be results of measurements. Ultimately, the
measurement model dictates how the state-of-knowledge joint
probability distribution of the inputs translates into a state-of-
knowledge probability distribution of the measurand.

The measurement model can take the form of a
measurement equation [10], which defines a mathematical
relationship, possibly implicit [1, section 2.48, note 1],
between the measurand and one or more inputs upon
which the measurand depends4. Measurement functions [1,
section 2.49], in which the measurand is an explicit
mathematical function of the inputs, occur in many
measurement problems. Measurement functions appear
throughout the GUM framework [2, section 4.1.1], although
the GUM exclusively uses the term measurement model. In
certain cases, a measurement equation implicitly defines a
corresponding measurement function.

For the application of this work, we assume the existence
of a real-valued measurement function with real-valued
inputs and that the state-of-knowledge (marginal) probability
distributions of the inputs and resulting measurand have

3 As noted in [10, footnotes 11 and 12], a measurement model should
not be confused with a statistical model of a measurement process.
Statistical models relate observed data (or indications) to statistical parameters.
Recently, observation equations have been suggested as statistical models
for metrological applications, to which Bayesian inference methods readily
apply [13].
4 The term measurement equation was used in [14] with a meaning similar
to the aforementioned observation equation rather than the meaning indicated
here.
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sufficiently well-defined moments. A de facto understanding
throughout this work (and the GUM framework) is that
the expected value and the standard deviation together
summarize an underlying state-of-knowledge probability
distribution [10].

A fundamental linearizability criterion underlies the
application of the GUM. A linearizable measurement function
should be linear, or its linearization about the estimates of
the inputs must be adequate, i.e. be mathematically tractable,
practical to compute and give a sufficient approximation over
the uncertainty region of the inputs. In this setting, the complete
characterization of the state-of-knowledge joint probability
distribution of the inputs is not necessary, because the expected
values, standard deviations and covariances (or, equivalently,
correlation coefficients) of the inputs are sufficient to evaluate
the expected value and the standard deviation of the measurand
[10]. (For a linear function, there are no interaction effects, and
the covariances sufficiently capture the dependence effects.)

In particular, the expected value of a linear function of
jointly distributed inputs is precisely the value of the function
at the expected values of the inputs, and the (combined)
standard uncertainty in the measurand can be computed using
the propagation of uncertainties formula [2, sections 3.3.6
and 5]5. Under certain additional conditions [3, section 5.7.2],
the GUM methodology gives reliable evaluations of coverage
intervals for the measurand, which correspond to expanded
standard uncertainties [10].

The Monte Carlo method of the GUM-S1 offers an
alternative to the GUM methodology for evaluating the
expected value, standard deviation and coverage intervals
of the measurand. The GUM-S1 methodology involves
constructing an empirical output distribution for the measurand
by repeated numerical evaluation of the measurement function
at samples drawn from the joint distribution of the inputs. Thus,
the GUM-S1 finds particular use when the linearization of
the measurement function is inadequate for application of the
GUM, the computational cost of evaluating the measurement
function is not prohibitive and the joint distribution of the
inputs can numerically be sampled; see [3, section 5.4.3] and
[10, 15–17]6.

Enough samples must be taken to achieve sufficient
convergence of the Monte Carlo method; see [3, section 7.9]
and [18, 19]. The resulting numerical approximation of the
state-of-knowledge probability distribution of the measurand
[3, sections 5.9 and 7.5] can be used to estimate the expected
value and the standard deviation of the true state-of-knowledge
probability distribution [3, sections 5.9 and 7.6]. Propagation
of distributions via Monte Carlo also offers a method for
estimating coverage intervals for the measurand with fewer
restrictive conditions than the GUM, [3, sections 5.9 and 7.7]
and [10, 15, 16, 18]. For computation of coverage intervals,
more samples must generally be taken to sufficiently resolve
the probability in the tails of a distribution, as opposed
to sufficiently estimating the expected value and standard

5 For reasons given in [10], we prefer the name propagation of uncertainties
formula over the GUM framework’s law of propagation of uncertainty.
6 If the input RVs are independent, then numerically sampling from each
input’s marginal distribution becomes sufficient.

deviation of the distribution [3, section 7.9.4, note 7]. Various
sampling strategies may accelerate convergence [20].

The GUM framework has generally improved both
the practice of metrology and the meaningful exchange of
results of measurements, notwithstanding certain recognized
issues and limitations with both the GUM and the GUM-S1
[10, 21, 22]. For example, the ongoing research is addressing
the GUM framework’s precise relation to frequentist and
Bayesian statistical methodologies [10, 13, 15, 16, 23–29],
as well as the difficulties in determining when linearization
of the measurement function is adequate [30], which is also
addressed in the GUM-S1 [3, section 8]. For a comprehensive
review of the evolution of the expression of uncertainty in
measurement from the error analysis to the GUM framework,
the reader is referred to [10]. A short summary of the GUM-S1,
as compared to the GUM, is given in [31].

2.2. Uncertainty budgets and sensitivity measures

An uncertainty budget provides a valuable summary of a
result of a measurement [1, section 2.33]. Construction
of an uncertainty budget includes recording the estimates
and standard uncertainties of the inputs and measurand. By
including sensitivity measures, an uncertainty budget may also
quantify relationships between the measurand’s uncertainty
and the uncertainty of the inputs. Such information typically
provides guidance on how a measurement uncertainty might
best be reduced [10].

The ease/difficulty of construction of an uncertainty
budget depends upon the type of measurement problem at
hand. The nature of the input RVs and the measurement
function gives rise to the following two important
classifications of the measurement problem:

(i) independent versus dependent input RVs,
(ii) linearizable versus nonlinearizable measurement

function.

These two classifications are not mutually exclusive, and
consideration of the possible combinations gives four possible
measurement problems, which are summarized in table 1.

Because the GUM makes no suggestion for the
content/format of an uncertainty budget, a task force of
the European Co-operation for Accreditation formalized
requirements for uncertainty budgets for linear(ized)
measurement functions with independent inputs [32]. Such
uncertainty budgets quantify an uncertainty contribution
(UC) for each (independent) input to the uncertainty in the
measurand [10]. An UC for a given input is the product of the
input’s sensitivity coefficient (SC) and its standard uncertainty
(i.e. standard deviation), see [2, section 5.1.3] and [10]. These
UCs are squared to become the terms in the propagation of
uncertainties formula whose sum gives the variance of the
measurand. Thus, the squared UCs can be used to make a
full decomposition of the variance of the measurand into an
apportionment among the inputs [10]. Dividing the UCs by
the combined standard uncertainty (i.e. standard deviation)
of the measurand gives the unit-less σ -normalized derivatives
described in [5]. Squaring the σ -normalized derivatives allows
each input’s contribution to the measurand’s variance to be

4
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registered on a 0–100 per cent scale, and the sum of the squares
of the σ -normalized derivatives is 1.

Kessel et al [33] developed coefficients of contribution,
with one coefficient attributed to each input, that allow the
construction of uncertainty budgets for problems where the
measurement function is linear(ized) and dependence effects
are characterized via known (linear) correlations between
inputs. While these dimensionless measures sum to 1 and
decompose the measurand’s variance into an apportionment
among the inputs, the correlation structure can cause a given
coefficient of contribution to be negative or have an absolute
value greater than 1. In the case of independent inputs, the
coefficients of contribution reduce to the above-mentioned
variance decomposition/apportionment derivable from the
σ -normalized derivatives of the inputs. Moreover, they have a
natural interpretation as the squares of the (linear) correlations
between the measurand and the respective inputs [33].

For uncertainty budgets, annex B of GUM-S1 briefly
discusses the use of so-called nonlinear sensitivity coefficients
(NLSCs) in place of the SCs described above. NLSCs
are derived from what we term here nonlinear uncertainty
contributions (NLUCs). NLSCs and NLUCs are described
more thoroughly in [34, section 5.8] and [35, section B.3]. A
NLUC for a given input is computed as the standard deviation
of the measurand that results from holding all other inputs
fixed at their expected values. As with UCs, NLUCs are not
normalized. The corresponding NLSC is derived by dividing
the NLUC by the given input’s standard deviation. NLSCs
can be viewed as a one-at-a-time generalization of SCs to
nonlinear measurement equations that reduce to the absolute
values of the SCs for linear(ized) measurement functions
[3, section B.1]. An input independence assumption apparently
underlies the one-at-a-time treatment used in NLUCs (and the
corresponding NLSCs), because each input is allowed to vary
independently of the other inputs’ fixed values in a variance
computation. Because of potential interaction effects between
inputs that are missed by NLUCs, the sum of the squares of
the NLUCs generally does not equal the measurand’s variance.
The discussion of NLUCs for uncertainty budgets in GUM-S1
[3, section B] ends with the caveat that

. . . in cases for which (a valid implementation of) the
propagation of distributions is more appropriate, an
uncertainty budget should be regarded as a qualitative
tool [3, section B.2].

Without specific regard to metrological applications,
progress has been made in global sensitivity analysis for
a general class of models given by real-valued nonlinear
functions of independent inputs. Based upon the earlier work
of I M Sobol’ and others [36], Saltelli et al [5] have advanced
variance-based sensitivity indices (SIs) for such models. In
this combinatorial approach, the collection of SIs sums to
1 and completely decomposes the output’s variance into an
apportionment (0–100 per cent) among all combinations of the
independent inputs, including inputs taken individually. The
full variance decomposition distinguishes all combinations
of independent inputs producing all orders of nonlinear
interaction effect between these inputs. Here, order refers to

the number of independent inputs that appear (i.e. interact)
in a given term of the decomposition. A brief outline of
SIs is presented next, based upon the more comprehensive
development in [5].

Suppose the following function g of N independent input
RVs

Y = g(X1, . . . , XN )

is square-integrable (so that the output RV Y has finite
variance). In metrology applications, g would be a
measurement function. SIs are based upon a particular high-
dimensional model representation (HDMR) of g with the
following form:

g = g0 +
N∑

n1=1

gn1 +
N−1∑
n1=1

N∑
n2=n1+1

g(n1,n2 ) + · · · + g(1,2,...,N),

in which g0 is a constant function equal to the expectation of Y
and all other terms are square-integrable with zero expectation.
For independent inputs, this HDMR (with 2N terms) is the
unique choice with such properties. Each combination of
inputs, taken in groups of size 1 to N, occurs as the input
to exactly one of the functions in the summation. For example,
g(1,4,5) would be a function of only the inputs X1, X4 and X5

that captures the interaction effects between these inputs up to
and including the third-order (or three-way) interaction.

Corresponding variance decomposition of the output Y is
derived from the HDMR as

V(Y ) =
N∑

n1=1

Vn1 +
N−1∑
n1=1

N∑
n2=n1+1

V(n1,n2 ) + · · · + V(1,2,...,N),

where V(·) is the variance operator. (This involves subtracting
all lower order variance contributions from the variance of any
given term in the HDMR; for details, see [5].) Dividing all
terms by V(Y ) > 0 gives the following relationship among the
(non-negative) SIs:

1 =
N∑

n1=1

Sn1 +
N−1∑
n1=1

N∑
n2=n1+1

S(n1,n2 ) + · · · + S(1,2,...,N).

This combinatorial approach comprehensively accounts for all
interaction effects between independent inputs and completely
distinguishes the interaction effects by order. However,
the computational expense of the complete decomposition
becomes prohibitive as the number of inputs increases, because
the number of indices (2N − 1) grows exponentially with N.

To reduce computational expense, partial decompositions
are typically employed. The first-order sensitivity indices
(FOSIs) are S1, . . . , SN . The collection of total sensitivity
indices (TSIs) is denoted ST1, . . . , STN . A TSI for an input
is the sum of all SIs that involve that input. For example, for a
function of three inputs (N = 3),

ST1 = S1 + S(1,2) + S(1,3) + S(1,2,3),

ST2 = S2 + S(1,2) + S(2,3) + S(1,2,3),

ST3 = S3 + S(1,3) + S(2,3) + S(1,2,3).

The FOSIs and TSIs provide a description of how the variance
of each input contributes to the variance of the output when
considered individually and including all interaction effects,

5
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respectively. Comparing the TSI to the FOSI for a given
input provides information about the importance of interaction
effects for that input.

Additive functions have no interaction effects, so the
FOSI and the TSI are equal for any given input. Thus, the
collection of FOSIs for an additive function is sufficient to
give a full decomposition of the variance of the output into an
apportionment among the independent inputs. Furthermore,
FOSIs give the same variance decomposition/apportionment
mentioned earlier involving the squares of σ -normalized
derivatives for linear(ized) measurement functions.

Mathematically, the HDMR allows both FOSIs and
TSIs to be represented in terms of variances of conditional
expectations. Specifically, for FOSIs, one can show that

Sn = V(E(Y |Xn))

V(Y )
,

where in the numerator the expectation operator E(·) is
conditional upon a fixed value of Xn and the variance is
taken over the distribution of Xn. The law of total variance
(or variance decomposition formula) is the identity

V(Y ) = V(E(Y |Xn)) + E(V(Y |Xn)) .

Applying this identity to the expression for Sn gives,
equivalently,

Sn = V(Y ) − E(V(Y |Xn))

V(Y )
= E

(
V(Y ) − V(Y |Xn)

V(Y )

)
. (1)

Thus, an FOSI can be interpreted as the expected relative
reduction in the variance of the output Y that can be
achieved by fixing the input Xn. Higher-order SIs have
analogous interpretations in which multiple inputs are fixed
together so that the various interaction effects are completely
distinguished. For TSIs, one can similarly show that

STn = 1 − V(E(Y |X∼n))

V(Y )
,

where X∼n denotes that all inputs except Xn are fixed in the
conditional expectation and the variance is taken over the
distribution of all inputs except Xn.

These representations indicate that FOSIs and TSIs
may be estimated using a Monte Carlo method [5, p 164].
However, the nesting of variance and expectation operations
typically leads to computationally intensive algorithms. For
computationally expensive functions and/or large numbers of
inputs, Saltelli et al suggest that the input sensitivities should
be pre-screened using a less-expensive method, such as an
elementary effect test, followed by a variance-based sensitivity
analysis for only those inputs deemed significant [5].

Both input dependences and measurement function
nonlinearities complicate the quantification of the relationship
between the input uncertainties and the output uncertainty. In
particular, characterizing the input dependences in a nonlinear
setting may require an understanding of the dependence effects
beyond linear correlation, which may require working directly
with (arbitrary) joint distributions [17].

In some applications, a joint distribution of the
inputs can be transformed into a distribution with an
independence structure amenable to sensitivity analyses
requiring independent inputs. Examples include the principal

component analysis of multivariate normal distributions and
the Rosenblatt transformation [37], which is a change-of-
variables that transforms any absolutely continuous joint
distribution into a uniform distribution with independent
inputs. Alternatively, a joint distribution of the inputs could
be decomposed as the output of one or more functions of
independent inputs and the sensitivity analysis conducted with
respect to the independent inputs. An important consideration
in such schemes is how to interpret the sensitivity analysis
results with respect to the original inputs to the measurement
function. We know about no practical direct methods that
have been developed for handling problems that are both
nonlinearizable and have dependent inputs, and this represents
an open area for research [6].

2.3. Problem settings for sensitivity analysis

Saltelli et al emphasize that careful consideration of the
problem setting is critical in the selection of appropriate
sensitivity measures [5]. Three settings that they identify,
which have relevance to metrology, are the following7.

(i) Factor prioritization: one seeks to rank each input by the
expectation of how much the output variance would be
reduced if the uncertainty in an input were completely
eliminated. The expectation is computed over an input’s
probability distribution representing the potential true
value for the input. Furthermore, groups of inputs may
be fixed simultaneously.

(ii) Factor fixing: one seeks to determine which inputs have
very little effect on the output variance over their ranges
of uncertainty, and thus could be fixed anywhere in their
ranges of uncertainty without significant effect.

(iii) Variance cutting: one seeks to (efficiently) reduce the
output variance below a given target by reducing the
variance of one or more inputs.

For nonlinear functions with independent inputs, FOSIs have
found use for factor prioritization in which interaction effects
between inputs are not considered. TSIs are also useful
for factor prioritization in which only a single input is to
be fixed. Additional higher order SIs can be computed to
better inform the factor prioritization of groups of inputs.
TSIs are particularly useful measures for factor fixing
because they comprehensively account for interaction effects
between inputs. Furthermore, these settings are not mutually
exclusive [5].

With regard to the above three settings for global
sensitivity analysis, the VGs introduced in this paper are
measures most closely related to factor prioritization and
variance cutting. Like SIs, but unlike many one-at-a-time
measures, VGs capture interaction effects between inputs.
However, VGs capture additional nonlinear effects within a
single input and have a different quantitative meaning than
SIs. These properties can make VGs advantageous over SIs in
the prioritization of inputs for variance reduction purposes.

VGs can be used in concert with other measures, including
SIs for variance decomposition/apportionment and TSIs or

7 Saltelli et al [5] use the term factors instead of inputs.
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elementary effect tests for factor fixing. For linear(ized)
measurement functions with independent inputs, VGs
reduce to the common variance decomposition/apportionment
involving σ -normalized derivatives in the propagation of
uncertainties formula, thus providing an alternative to the
‘uncertainty contribution’ and ‘output–input correlation’
interpretations discussed above.

VGs generate a slightly different factor prioritization than
described above, because VGs do not involve fixation of inputs
to presumed true values. In many metrology applications,
variance cutting is more easily accomplished via small
reductions in the variance of an input than by a complete
elimination of uncertainty. This consideration is related to an
important problem setting for sensitivity analysis in metrology,
namely the method used for evaluating the uncertainty in an
input to a measurement function.

The GUM defines type A evaluation (of uncertainty)
as a ‘method of evaluation of uncertainty by the statistical
analysis of series of observations’ [2, sections 2.3.2 and 4.2]
and type B evaluation (of uncertainty) as a ‘method of
evaluation of uncertainty by means other than the statistical
analysis of series of observations’ [2, sections 2.33 and 4.3].
Both evaluations ultimately correspond to underlying state-
of-knowledge distributions [2, section 4.1.6]. An input to
a measurement function may itself be the output of a
different measurement function with inputs whose uncertainty
evaluations included both type A and type B. Thus, the
delineation between type A and type B evaluation is not
always clear, and the GUM-S1 essentially does away with
this distinction [3, sections 5.11.4(a) and 6].

We prefer the viewpoint proposed in [28], in which type
A and type B evaluations are incorporated into a consistent
Bayesian framework. Here, the type A evaluation uses a
likelihood function and indication(s) from a measurement
process with Bayes’ rule to update a prior state-of-knowledge
distribution to a posterior state-of-knowledge distribution. The
prior chosen may be non-informative. (This type A evaluation
appears in GUM-S1 [3, section 6.4.9].) The type B evaluation
uses only a prior state-of-knowledge distribution, typically
based upon expert judgement or the application of the principle
of maximum entropy [3, 29].

Regardless of one’s viewpoint regarding type A and type B
evaluations, VGs are readily computed for inputs whose state-
of-knowledge probability distributions have finite variance.
However, the discrete nature of taking additional indications to
reduce an input’s variance suggests extending the fundamental
idea behind the VGs introduced in this paper to sensitivity
measures specific to the type A evaluation. This issue is
discussed further in section 5.

3. Variance gradients: derivation and
implementation

This section introduces VGs, providing the limit-based
definition and a derivation of a limit-free formula for
computing VGs that uses first-order partial derivatives of the
measurement function. An interpretation of VGs in the case of
linear(ized) measurement functions is provided, and a method

for usefully combining VGs is given. The specific application
of VGs to uncertainty budgets within the GUM framework is
described. A technique for computing VGs using a Monte
Carlo method is presented and discussed, and an iterative
scheme for using VGs in variance cutting is suggested.

3.1. Notation

Wherever practical, the notational conventions of GUM-S1
are followed in this paper. For example, a normally distributed
(Gaussian) RV with mean μ and strictly positive variance σ 2

is denoted N(μ, σ 2), and a continuous, uniformly distributed
(rectangular) RV with support [a, b], a < b, is denoted
R(a, b). E(·) and V(·) denote the expectation and variance
operators, respectively. However, during the mathematical
derivations μY = E(Y ) and σY = √

V(Y ) are used instead
of y and u(y), respectively, the latter notations (from the GUM
framework) being reserved for stated results of measurements.
Also, g is used to represent the measurement function, while
the more standard f is used to denote a probability density
function [38].

3.2. Definition and derivation

Consider the measurement function

Y = g(X1, . . . , XN ) = g(X), (2)

where X = (X1, . . . , XN ) is a vector of real-valued
independent input RVs with respective (finite) expected
values μX1 , . . . , μXN and respective (finite) strictly positive
variances σ 2

X1
, . . . , σ 2

XN
. Throughout this work, assume that the

measurement function g is differentiable, Borel-measurable
(in the sense of measure-theoretic probability) and produces a
real-valued output RV Y with (finite) expected value μY and
(finite) strictly positive variance σ 2

Y .
The VG of Y with respect to Xn, denoted GXn for any

n = 1, . . . , N, will be defined below as a real number that
indicates how a small relative change in the variance of the
input Xn proportionally translates into a relative change in the
variance of the output Y . Consistent with the GUM framework,
expected values are considered to be estimates of the inputs and
measurand. Variance is used here as the measure of uncertainty,
because of its mathematically desirable properties and its direct
relation to the standard uncertainty in the GUM framework.

For the purpose of defining the VG GXn for any n =
1, . . . , N, consider the following definition of X̃n(ρ), which
is an adjustment to Xn that reduces Xn’s relative variance by
the (signed) factor ρ while retaining the same expected value
as Xn:

X̃n(ρ)
def=

√
1 − ρ

(
Xn − μXn

) + μXn , (3)

where −∞ < ρ < 1. Note that X̃n(0) = Xn for any
n = 1, . . . , N. Thus, the relative change in Xn’s variance is

σ 2
X̃n(ρ)

− σ 2
Xn

σ 2
Xn

= (1 − ρ)σ 2
Xn

− σ 2
Xn

σ 2
Xn

= −ρ,

which indicates a relative reduction in variance if 0 < ρ < 1
and a relative increase in variance if −∞ < ρ < 0.
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Furthermore, consider the corresponding adjustment to the
measurement function output given by

Ỹn(ρ)
def= g(X1, . . . , Xn−1, X̃n(ρ), Xn+1, . . . , XN )

= g(X̃n(ρ)),

where X̃n(ρ) = (X1, . . . , Xn−1, X̃n(ρ), Xn+1, . . . , XN ), so that
X̃n(0) = X. Ỹn(ρ) is assumed to have a (finite) expected value
μỸn(ρ) and (finite) variance σ 2

Ỹn(ρ)
for sufficiently small ρ. Note

that Ỹn(0) = Y for any n = 1, . . . , N and that μỸn(ρ) �= μY in
general when ρ �= 0.

The VG GXn is specifically defined as the ratio of
the relative variance change in Y to the relative variance
change in Xn, in the limit as the relative variance change
in Xn tends to zero, assuming this limit exists. The input
independence assumption allows separate consideration of the
relative variance change in each input’s marginal distribution.

For any n = 1, . . . , N, GXn may be computed as follows:

GXn

def= lim
ρ→0

(
σ 2

Ỹn(ρ)
− σ 2

Y

)/
σ 2

Y(
σ 2

X̃n(ρ)
− σ 2

Xn

)/
σ 2

Xn

= −σ−2
Y lim

ρ→0

V(Ỹn(ρ)) − V(Ỹn(0))

ρ
. (4)

Rewriting the limit as a derivative evaluated at zero gives

GXn = −σ−2
Y

d

dz
V(Ỹn(z))

∣∣∣∣
z=0

= −σ−2
Y

d

dz
[E((Ỹn(z))

2) − (E(Ỹn(z)))
2]|z=0

= −σ−2
Y

d

dz
[E((g(X̃n(z)))

2) − (E(g(X̃n(z))))
2]|z=0.

If conditions permit taking derivatives inside the expectation
operators, then

GXn = −σ−2
Y

[
E

(
2g(X̃n(z))

∂

∂z
g(X̃n(z))

)
− 2E(g(X̃n(z)))E

(
∂

∂z
g
(
X̃n(z)

))]∣∣∣∣
z=0

= −σ−2
Y

[
E

(
2g(X̃n(z))

∂g

∂Xn

∣∣∣∣
X̃n(z)

∂

∂z
X̃n(z)

)

−2E(g(X̃n(z)))E

(
∂g

∂Xn

∣∣∣∣
X̃n(z)

∂

∂z
X̃n(z)

)]∣∣∣∣∣
z=0

= −σ−2
Y

[
E

(
2g(X̃n(z))

∂g

∂Xn

∣∣∣∣
X̃n(z)

Xn − μXn

−2
√

1 − z

)

−2E(g(X̃n(z)))E

(
∂g

∂Xn

∣∣∣∣
X̃n(z)

Xn − μXn

−2
√

1 − z

)]∣∣∣∣∣
z=0

= −σ−2
Y

[
E

(
2g

(
X̃n(0)

) ∂g

∂Xn

∣∣∣∣
X̃n(0)

Xn − μXn

−2
√

1 − 0

)

− 2E(g(X̃n(0)))E

(
∂g

∂Xn

∣∣∣∣
X̃n(0)

Xn − μXn

−2
√

1 − 0

)]

= σ−2
Y

[
E

(
g(X)

∂g

∂Xn

∣∣∣∣
X

(Xn − μXn )

)

− E(g(X))E

(
∂g

∂Xn

∣∣∣∣
X

(Xn − μXn )

)]
.

Simplifying the notation gives

GXn

=
E
(
g(X) ∂

∂Xn
g(X)(Xn − μXn )

) − μY E
(

∂
∂Xn

g(X)(Xn − μXn )
)

σ 2
Y

=
E
(
g(X) ∂

∂Xn
g(X)(Xn − μXn ) − μY

∂
∂Xn

g(X)(Xn − μXn )
)

σ 2
Y

,

which can be written more compactly by factoring, using two
alternative notations, as

GXn =
E
(
(g(X) − μY ) ∂

∂Xn
g(X)(Xn − μXn )

)
σ 2

Y

=
E
(
(Y − μY ) ∂Y

∂Xn
(Xn − μXn )

)
σ 2

Y

. (5)

This last form may be particularly suitable for computation by
a Monte Carlo method. Note that g must be differentiable and
that partial derivatives of g must be computed (analytically or
numerically). Also, a VG can have any sign and the sum of the
collection of VGs for all the inputs is not necessarily 1.

The derivation of (5) required taking a derivative with
respect to the parameter z inside two expectation operators,
namely E(Ỹn(z)) and E((Ỹn(z))2), where z lies in an open
interval containing zero in which Ỹn(z) has finite expectation
and variance. In general, expectation operators are Lebesgue
integrals of measurable functions over finite measure spaces
[39, 40]. Under these conditions, taking a derivative with
respect to a parameter inside an expectation operator can
be justified by exhibiting a non-negative RV with finite
expectation that dominates the absolute value of the partial
derivative of the parametrized RV [39, section 9.2] or
[40, corollary 5.9]. Such a dominating RV is not a function
of the parameter and dominates over an interval of interest for
the parameter. Thus, a sufficient condition for the validity of
(5) for computing GXn is the existence of dominating RVs W1

and W2, each with finite expectation, such that∣∣∣∣ ∂

∂z
Ỹn(z)

∣∣∣∣ � W1 and

∣∣∣∣ ∂

∂z

(
Ỹn(z)

)2
∣∣∣∣ � W2,

for all z in an open interval containing zero. Typically,
dominating RVs can be established for a given measurement
function (see the appendix). However, the reader is cautioned
that the existence of the expectation in (5) is a necessary,
although possibly not sufficient, condition for a VG to be
computable by (5).

3.3. The linear special case

Consider the following special case of a linear measurement
function (with independent inputs):

Y = g(X) = c0 + c1X1 + · · · + cNXN,

where c0, . . . , cN are constants with c1, . . . , cN each nonzero.
In this case, the computation of GXn using (5) reduces to a
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common formula as follows:

GXn =
E
(
(Y − μY ) ∂Y

∂Xn
(Xn − μXn )

)
σ 2

Y

= E([(c0+c1X1+···+cNXN )−(c0+c1μX1+···+cNμXN )]cn(Xn−μXn ))

σ 2
Y

= [
E(c1(X1 − μX1 )cn(Xn − μXn )) + · · · + E

(
c2

n(Xn − μXn )
2
)

+ · · · + E(cN (XN − μXN )cn(Xn − μXn ))
]/

σ 2
Y

= c2
nV(Xn)

σ 2
Y

= c2
nσ

2
Xn

σ 2
Y

=
(

cn
σXn

σY

)2

.

In the above derivation, independent inputs make the
expectation of most terms in the numerator vanish, e.g., for
i �= j, E(ci(Xi −μXi )c j(Xj −μXj )) = ci c j(E(Xi −μXi )E(Xj −
μXj )) = ci c j(0 · 0) = 0.

In this linear special case, 0 < GXn < 1 for all
n = 1, . . . , N, with

∑N
n=1 GXn = 1. Furthermore, for

any input Xn, the constant cn = ∂Y
∂Xn

is the sensitivity
coefficient (SC), cn σXn is the uncertainty contribution (UC)
and cn

σXn
σY

is the σ -normalized derivative. The above derivation
shows that the VGs for a linear measurement function
with independent inputs are precisely the squares of the
σ -normalized derivatives. Thus, these VGs give the common
decomposition of the output variance into an apportionment
among the inputs. Furthermore, if we denote the VGs for
a linearized measurement function derived from a given
nonlinear measurement function as GL

Xn
, n = 1, . . . , N, then∑N

n=1 GL
Xn

= 1 follows immediately.

3.4. Combined variance gradients

The variance in the output may be reduced by simultaneously
reducing the variance in more than one input. Suppose
(Xn1 , . . . , Xnj , . . . , XnJ ) is a nonempty sublist of input
variables, with j = 1, . . . , J � N and 1 � n1 <

· · · < n j · · · < nJ � N. If (Xn1 , . . . , Xnj , . . . , XnJ )

are simultaneously replaced with their reduced variance
counterparts (X̃n1 (ρ), . . . , X̃n j (ρ), . . . , X̃nJ (ρ)), then the
combined VG (CVG), denoted G(Xn1 ,...,Xn j ,...,XnJ ), can be defined
similarly to the single-input GXn and computed to give

G(Xn1 ,...,Xn j ,...,XnJ )
def= −σ−2

Y lim
ρ→0

σ 2
Ỹ(n1 ,...,n j ,...,nJ ) (ρ)

− σ 2
Y

ρ

=
E
(
(Y − μY )

∑J
j=1

∂Y
∂Xn j

(Xnj − μXn j
)
)

σ 2
Y

,

and taking the expectations through the summations and
rearranging gives

G(Xn1 ,...,Xn j ,...,XnJ ) =
J∑

j=1

E
(
(Y − μY ) ∂Y

∂Xn j
(Xnj − μXn j

)
)

σ 2
Y

=
J∑

j=1

Gnj .

Table 2. An uncertainty budget with sensitivity measures.

Quantitya Estimate Standard uncertainty VGb

X1 x1 u(x1) GX1

...
...

...
...

XN xN u(xN ) GXN

Y y u(y)
∑N

n=1 GXn

a A separate column may indicate the quantities’ units.
b VG: variance gradient.

Thus, CVGs have a linearity property in that they are simple
sums of the corresponding single-variable VGs. Note that the
relative reduction in variance for each of the relevant inputs is
assumed to be identical in the limit as this relative reduction
goes to zero8.

3.5. Application to uncertainty budgets

With regard to the GUM framework, VGs are readily
incorporated into uncertainty budgets. As shown in table 2,
VGs can be tabulated alongside the estimates and standard
uncertainties of the inputs and measurand. Recall that a VG
approximates the relative variance reduction in the measurand
relative to a small relative reduction in the variance of a given
input. This quantification enables a natural ordering/ranking
of the inputs by value of the VGs (cf the factor prioritization
setting). A VG can be negative, so the absolute value of the VG
measures the size of the anticipated change while a positive
(negative) sign of the VG indicates that the input variance
should be decreased (increased) to decrease the measurand
variance.

CVGs may be computed for groups of inputs via simple
addition of the corresponding single input VGs. The last
row in the fourth column of table 2 shows the sum of
all the VGs, which quantifies the total relative reduction in
the variance of the measurand that can be anticipated for
a small relative reduction in the variance of all the inputs
simultaneously. Recall that if the measurement function is
linear, then

∑N
n=1 GXn = 1 and GXn are the squares of

the σ -normalized derivatives, i.e. GXn = (
cn

σXn
σY

)2
for all

n = 1, . . . , N, with cn = ∂Y
∂Xn

being constant.

3.6. Computation of VGs

A VG GXn can be estimated using (5) with a Monte Carlo
method. First, an input sample from X is used to generate
a sample from Y = g(X). (Conveniently, this first step is
already a standard procedure to estimate μY and σ 2

Y using the
Monte Carlo method in GUM-S1 [3, section 7]. However, other
methods to compute μY and σ 2

Y are permissible.) Second, this

8 This technique can be extended by assigning relative (non-negative) weights
to the variance reductions in each of the input variables, reflecting, say,
the relative (inverse) costs for reducing the variance of each input. The
resulting CVG is a linear combination of the single-variable VGs with
corresponding non-negative weights. For example, if reducing the variance
of X2 were half as expensive as reducing the variance in X1, so that the
variance of X2 is to be reduced twice as much as the variance of X1, then
X̃1(ρ) = √

1 − ρ(X1 −μX1 )+μX1 and X̃2(ρ) = √
1 − 2ρ

(
X2 − μX2

)+μX2
give (in the limit as ρ → 0) G(X1,X2 ) = GX1 + 2GX2 .
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sample is used to generate samples from Y −μY = g(X)−μY ,
∂Y
∂Xn

= ∂
∂Xn

g(X) and Xn − μXn , which are then used to estimate
the expected value in (5). Finally, dividing by σ 2

Y gives an
estimate of GXn .

As discussed in [3], a sufficiently large sample size must
be used when estimating μY and σ 2

Y with a Monte Carlo
method. For a given input Xn, μXn is typically known from
its marginal distribution or a previous estimation, and in such
cases need not to be estimated from the X sample. Importantly,
any sampling uncertainty in the estimation of μXn , μY and σ 2

Y
propagates into a Monte Carlo estimation of GXn . Depending
upon the problem at hand, additional sampling beyond that
which was required to estimate μY and σ 2

Y may be required
to estimate GXn sufficiently. As with the estimation of μY and
σ 2

Y , adaptive, bootstrap, or other procedures may be employed
to ensure sufficient convergence of the Monte Carlo method
[3, 6, 18, 19]. Various sampling strategies may accelerate
convergence [20].

Because VGs are global sensitivity measures, the par-
tial derivatives of the measurement function g in (5) must
be evaluated over the entire support of the independent in-
puts. This exceeds the requirements of the GUM, in which
partial derivatives need only be evaluated at the expected
values of the inputs [2, sections 5.1.3 and 5.1.4]. For many
measurement functions, a computer algebra system (CAS)
[41, 42] can quickly find closed form expressions for par-
tial derivatives, which reduces computational mistakes and
the workload of metrologists. For complicated measurement
functions such as those defined by a computer program, nu-
merical partial differentiation of g may be required, which
adds numerical uncertainty to the estimation of VGs. Ap-
plicable methods include finite-difference, complex-step, or
automatic differentiation. Also, the numerical approxima-
tion of a partial derivative at a single input point may re-
quire multiple evaluations of g, adding to the overall com-
putational expense. Guidance concerning algebraic/numerical
partial differentiation in metrology applications is given
in [34, 35, 43].

The Monte Carlo method is not the only possible method
for computing the expected value in (5). For example, the
expectation may be computable in a closed form or via
numerical quadrature, possibly with the help of a CAS. If
the expectation in (5) does not exist, then one may still
attempt to compute the VG by resorting to the fundamental
limit definition (4), assuming that this limit exists. Note that
sampling uncertainty typically makes Monte Carlo methods
poor at estimating the indeterminate form in the limit definition
(4), i.e. by fixing a small nonzero value for ρ.

3.7. Application to variance cutting

Because VGs are based upon infinitesimally small relative
changes in the input variances, one may question their
applicability in a variance cutting setting in which one or
more input variances must be substantially reduced in order to
produce a measurement result with acceptable uncertainty. A
proposed application of VGs to this setting would employ an
iterative optimization scheme analogous to a steepest-decent

algorithm. First, a target reduction in the variance of the
measurand is established. Next, guided by the VGs of the
inputs, the variances of inputs (one at a time or in groups) are
iteratively changed in small amounts until the desired output
variance is reached or no further significant variance reduction
occurs. Note that the VGs are re-computed at each iteration
and the expected values of the inputs are fixed in this basic
scheme.

The above optimization scheme would benefit from
automation in software and will not be developed further here.
However, lack of automation does not preclude consideration
of what–if scenarios in which VGs guide the manual
adjustment of the inputs’ variances in order to reduce the
measurand variance below a given threshold. Thus, VGs can
have both diagnostic and prognostic applications to the result
of a measurement.

4. Examples

This section demonstrates the usefulness of VGs to
measurement problems with nonlinear measurement functions
and independent inputs. An illustrative metrological example
is selected from the GUM-S1, for which VGs are compared
with several other sensitivity measures. An additional
benchmark problem example further distinguishes VGs from
FOSIs and TSIs. Recall the notational conventions described
in subsection 3.1.

4.1. GUM-S1 section 9.3 example

The example from GUM-S1 section 9.3 is analysed here
[3, section 9.3]. In this example, a nominal mass is calibrated
by balancing against a reference mass, with consideration
of the buoyancy effects of air. The nonlinear measurement
function for the deviation δm of the unknown mass from its
nominal mass mnom is ultimately given by

δm = (mR,c + δmR,c)
[
1 + (ρa − ρa0 )

(
ρ−1

W − ρ−1
R

)] − mnom,

(6)

where the conventional density of air, i.e. ρa0 = 1.2 kg m−3,
and mnom = 100 g are treated as exact constants. As described
further in [3, section 9.3], (i) mR,c is the conventional mass
of the reference mass, (ii) δmR,c is the conventional mass of
the additional reference mass added to achieve balance with
the unknown mass, (iii) ρa is the actual density of air, (iv) ρW

is the density of the unknown mass and (v) ρR is the density
of the reference mass. The distributions of the five input RVs
and the associated first partial derivatives of the measurement
function are summarized in table 3.

A CAS [42] was used to compute exactly the estimate
(the expected value, μδm) and standard uncertainty (from the
variance, σ 2

δm) of the measurand δm, which agreed with the
results from the Monte Carlo simulation in [3, section 9.3].
Using these two exact values in (5), 106 Monte Carlo
simulations were used to compute the VGs appearing in
the resulting uncertainty budget, given in table 4. Note that
106 Monte Carlo simulations are larger than the 0.72 × 106

simulations used in [3, section 9.3], and were verified to give
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Table 3. Inputs for subsection 4.1 example.

Input RV (∗) Units σ∗/μ∗ ∂δm
∂∗

mR,c ∼ N(μmR,c = 100 000.000, σ 2
mR,c

= (0.050)2) mg 5.0 × 10−7 1 + (ρa − ρa0 )
(
ρ−1

W − ρ−1
R

)
δmR,c ∼ N(μδmR,c = 1.234, σ 2

δmR,c
= (0.020)2) mg 0.016 1 + (ρa − ρa0 )

(
ρ−1

W − ρ−1
R

)
ρa ∼ R(aρa = 1.10, bρa = 1.30) kg m−3 0.048 (mR,c + δmR,c)

(
ρ−1

W − ρ−1
R

)
ρW ∼ R(aρW = 7 × 103, bρW = 9 × 103) kg m−3 0.072 −(mR,c + δmR,c)(ρa − ρa0 )/ρ

2
W

ρR ∼ R(aρR = 7.95 × 103, bρR = 8.05 × 103) kg m−3 0.0036 (mR,c + δmR,c)(ρa − ρa0 )/ρ
2
R

Table 4. Uncertainty budget for subsection 4.1 example.

Quantity Est.a Std. Unc.a VGb Linearized
(∗) Units (μ) (σ ) (G∗) VGc (GL

∗)

mR,c mg 100 000.000 0.050 0.4 0.862
δmR,c mg 1.234 0.020 0.07 0.138
ρa kg m−3 1.20 0.10√

3
0.5 0

ρW kg m−3 8 × 103 100 0√
3

0.5 0

ρR kg m−3 8.00 × 103 50√
3

0.001 0

δm mg 1.234 0.075 49
∑

G∗ = 1.5 –
δmL mg 1.234 0.053 85 –

∑
GL

∗ = 1.000

a Input estimates and standard uncertainties considered to be exact values. Output
estimates and standard uncertainties computed exactly with a CAS and reported to
four significant digits.
b VGs computed to one significant digit using 106 Monte Carlo simulations of (5)
for the measurement function (6).
c VGs for the linearized measurement function (7) computed exactly as squares of
the σ -normalized derivatives equal to the coefficients of contribution of [33], and
reported to three significant digits.

at least one significant digit [3, section 8]. Wherever possible,
the Monte Carlo estimates of the VGs were verified against
exact computations of the VGs with (5) using the CAS.

The VGs in the uncertainty budget given in table 4
provide a very good indication to metrologists as which
inputs’ variance should be reduced to produce the largest
reduction in the measurand’s variance. For example, the VGs
tell metrologists to expect about a 0.5% reduction in the
measurand variance if the variance of either ρa or ρW is reduced
by 1%. To verify these indications, the variance of each of the
inputs in table 3 was reduced by 10% (one input at a time
with expectations unchanged), and the ratio of the relative
reduction in the measurand’s variance to the relative reduction
in each input’s variance was exactly computed. The resulting
ratios agreed with the VGs reported in table 4 to at least one
significant digit, with the exception of the input ρR with a small
VG (ratio = 0.003 versus GρR = 0.001)9.

As shown in table 5, the VGs and TSIs for this example all
agree to at least one significant digit. This result is interesting
given that these measures do not share the same interpretation.
The FOSIs reported here agree well with values reported in
[6]. The TSIs reported here agree well with the strong two-
way interaction effect between ρa and ρW (S(ρa,ρW) ≈ 0.489)
and the weak two-way interaction effect between ρa and ρR

(S(ρa,ρR ) ≈ 0.004) reported in [6].

9 Other measurement functions may require a variance reduction smaller than
10% to obtain such good agreement with the VGs.

The FOSIs (for the nonlinear measurement function) give
a similar ranking as the VGs for the linearization of the
measurement function about the input estimates given by

δmL = mR,c + δmR,c − mnom. (7)

Note that the standard uncertainty of the measurand is
underestimated by the linearized measurement function (7),
and, as expected, the linearized VGs equal the squares of the
respective σ -normalized derivatives and sum to 1. (Compare
the last two rows of table 4.)

Table 5 also indicates that the FOSIs, linearized VGs, UCs
and NLUCs do not adequately prioritize the inputs for reducing
the measurand’s variance. The linearized VGs, NLUCs and
UCs in table 5 only discern between mR,c and δmR,c, while
indicating that the measurand’s variance is totally insensitive
to the remaining three inputs. In particular, Gρa = GρW = 0.5,
whereas GL

ρa
= GL

ρW
= 0. The FOSIs do only slightly better.

4.2. Ishigami function example

A common benchmark function for the sensitivity analysis, the
Ishigami function, is analysed here [6]. The Ishigami function
has three independent, identically distributed inputs, and is
given by

Y = sin (X1) + 7 sin2 (X2) + X4
3

10
sin (X1). (8)

The distributions of the three input RVs and the associated first
partial derivatives of the Ishigami function are summarized in
table 6. Note the oscillatory terms in the function and that

11
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Table 5. Comparison of sensitivity measures for subsection 4.1 example.

Quantity VGa FOSIb TSIb Linearized
(∗) (G∗) (ST∗ ) (S∗) NLSCc NLUCc SCd UCd VGe (GL

∗)

mR,c 0.4 0.439 0.439 1 0.050 1 0.050 0.862
δmR,c 0.07 0.0702 0.0702 1 0.020 1 0.020 0.138
ρa 0.5 0.002 51 0.491 0 0 0 0 0
ρW 0.5 0 0.487 0 0 0 0 0
ρR 0.001 0 0.001 19 0 0 0 0 0

a VGs computed to one significant digit using 106 Monte Carlo simulations of (6).
b FOSIs and TSIs computed exactly with a CAS and rounded to three significant digits.
c NLSCs derived from the NLUCs. NLUCs computed exactly by taking the square root of the
variance of (6) with all inputs but one fixed at their expected values.
d UCs derived from the SCs and computed exactly for the linearized measurement
function (7).
e VGs for the linearized measurement function (7), computed exactly as squares of the
σ -normalized derivatives and rounded to three significant digits.

Table 6. Inputs for subsection 4.2 example.

Input RV (∗) ∂Y
∂∗

X1 ∼ R(aX1 = −π, bX1 = π)
(

1 + X4
3

10

)
cos (X1)

X2 ∼ R(aX2 = −π, bX2 = π) 14 sin (X2) cos (X2)

X3 ∼ R(aX3 = −π, bX3 = π) 2
5 X3

3 sin (X1)

the range of each input RV is apparently misstated in [6] as
(− π

10 , π
10 ).

A CAS [42] was used to compute exactly all results in the
uncertainty budget given by table 7. The exact computation
of the estimate and the standard uncertainty of Y was verified
by 106 Monte Carlo simulations of (8). Using the exact values
of μY and σ 2

Y in (5), the exact computation of the VG for
each input was also verified by 106 Monte Carlo simulations.
To further verify the computation of the VGs, the variance of
each of the inputs in table 6 was reduced by 10% (one input
at a time with expectations unchanged), and the ratio of the
relative reduction in the measurand’s variance to the relative
reduction in each input’s variance was exactly computed. The
resulting ratios agreed with the VGs reported in table 7 to at
least one significant digit. The FOSIs and TSIs reported here
agree well with values reported in and inferred from [6].

Two results are particularly interesting in this benchmark
problem. First is the presence of a negative VG for the first
input X1 and a VG greater than 1 for the third input X3.
Second is that the VGs change the ranking of the inputs

indicated by the TSIs. Thus, the TSIs (in addition to the FOSIs)
may misdirect variance reduction effort. Such misdirection
was verified by the relative reduction of the input variances
by 10% (one input at a time with expectations unchanged),
for which the VGs were sufficient indicators of the realized
relative variance reduction/increase in the output Y . We note
that a further decomposition of the output’s variance into an
apportionment among the inputs (using SIs) does not improve
upon the FOSI/TSI result.

5. Discussion

In this concluding section, the use of VGs for uncertainty
budgets in the GUM framework is summarized, and a
comparison is made with other common sensitivity measures.
Finally, some possible extensions and future work related to
the application of VGs are briefly given.

5.1. VGs for uncertainty budgets in the GUM framework

As illustrated in the above examples, VGs are a useful
quantitative tool for metrologists to prioritize which inputs’
variances should be reduced in order to optimally reduce
the variance of the measurand. VGs aid the construction
of uncertainty budgets in settings with nonlinearizable
measurement functions with independent inputs. VG
sensitivity measures are global in the sense that they account
for nonlinear effects over the entire support of the independent

Table 7. Uncertainty budget for subsection 4.2 example.

Quantity Est.a Std. Unc.a VGb TSIc FOSIc

(∗) (μ) (σ ) (G∗) (ST∗ ) (S∗)

X1 0 π/
√

3 ≈ 1.814 −0.2788 0.5576 0.3139
X2 0 π/

√
3 ≈ 1.814 0.2212 0.4424 0.4424

X3 0 π/
√

3 ≈ 1.814 1.8045 0.2437 0

Y 7/2
√

33 975+36π4+π8

1800 − 49
4 ≈ 3.721

∑
G∗ = 1.7469 —

∑
S∗ = 0.7563

a Input estimates and standard uncertainties considered to be exact values. Output estimates and
standard uncertainties computed exactly with a CAS and rounded to three decimal places.
b VGs computed exactly with a CAS and rounded to four decimal places.
c TSIs and FOSIs computed exactly with a CAS and rounded to four decimal places.
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inputs. This includes nonlinear effects within individual inputs
as well as interaction effects between inputs.

Small variance reductions in the inputs can be
considered individually, or in groups via simple addition
of the corresponding VGs. For linear(ized) measurement
functions, VGs reduce to a commonly understood variance
decomposition, while providing an alternative interpretation to
variance decomposition. Altogether, VGs appear to be useful
for a reasonably large class of measurement functions with
independent inputs. However, additional research is needed to
more completely elucidate the class of measurement functions
and input RVs for which VGs are guaranteed to be well-defined
by (4) and computable using (5). Easily verifiable conditions
under which the existence of the (finite) expectation in (5)
guarantees the existence of the VG would be particularly
useful.

Complementing the GUM-S1 methodology, a Monte
Carlo method can be employed to compute VGs for
differentiable measurement functions. This requires non-
prohibitive computational expense of the measurement
function and its first partial derivatives. Numerical
differentiation adds uncertainty to the computation of VGs.
Finally, the variance-based global sensitivity analysis using
VGs first requires an uncertainty analysis that computes μY

and σ 2
Y used in (4) or (5), which may require additional

consideration of the propagation of sampling uncertainties into
the computation of VGs.

5.2. Comparison with other sensitivity measures

VGs give quantitative information about how small relative
changes in the variances of the inputs proportionally translate
into relative changes in the output variance. This includes
all higher order effects of the nonlinearity within individual
inputs and from interaction effects between inputs. Unlike the
variance-based SIs advanced by Saltelli et al [5], the definition
of VGs does not imply that the collection of VGs sums to 1.
Unlike FOSIs and TSIs, VGs need not sum to 1 for additive
functions with independent inputs. In particular, even for the
simplest type of (nonlinear) additive function, i.e. Y = g(X1),
it is possible that GX1 > 1 or GX1 < 1 (including GX1 < 0).
However, if the function is linear, then

∑N
n=1 GXn = 1. Thus,

the VGs introduced here should not be viewed generally as a
decomposition of the output variance into an apportionment
among the inputs.

As indicated above by the Ishigami benchmark function,
the quantitative meaning of VGs makes them advantageous
over SIs for variance reduction. The nesting of expectation
operators in the computation of SIs also makes them
computationally intensive, whereas the inner expectations
in VGs, namely μY and μXn , are computed only once
as a necessary part of the uncertainty analysis. However,
differentiability of the measurement function and computation
of its partial derivatives are typically required for VGs, while
not required for SIs10.

10 Consider the function Y = g(X1, X2) =
√

X2
1 + X2

2 , where X1 and X2 are
normal i.i.d., which gives Y a Rayleigh distribution. The derivative of this
function does not exist at the origin, and to compute VGs, one may resort to
the limit definition (4), with the associated computational difficulties.

As shown here and elsewhere [6], UCs/SCs and
NLUCs/NLSCs may be inadequate sensitivity measures for
nonlinear measurement functions. However, FOSIs and TSIs
(or other SIs) can optionally be included in uncertainty
budgets in addition to VGs, because they give additional
sensitivity information that is sometimes useful. For example,
comparing respective FOSIs and TSIs gives a good indication
of interaction effects and the additivity of the model [5].

A TSI considers the effect on the output’s variance of a
probabilistically weighted fixation of an input to any possible
value in its state-of-knowledge probability distribution. Thus, a
TSI near zero indicates that the input is globally non-influential
[5]. A near-zero VG gives a more local indication about an
input’s influence, per se, which is relative to an infinitesimally
small relative reduction of the input’s variance with its
expected value fixed (recall definition (3))11. Despite the
differences between VGs and SIs, a common idea concerning
relative variance reduction underlies both these sensitivity
measures. This is illustrated by comparing (1) and (4).

Recall that a complete decomposition/apportionment of
the output variance using the entire set of SIs may be
computationally prohibitive. For computationally expensive
measurement functions with many inputs, pre-screening inputs
with elementary effect tests would reduce the computational
burden of both SIs and VGs. The establishment of benchmark
problems with verified solutions is advantageous in these and
related matters. Such benchmarks should correspond to the
problem setting at hand, which may correspond to a specific
application area such as metrology. Other computational
techniques such the Fourier amplitude sensitivity test (FAST)
and random balanced design (RBD) [5] can be useful for
benchmarking. These were not considered here because of
their implementation complexity relative to the Monte Carlo
method of GUM-S1.

5.3. Extensions for future work

In closing, we consider some extensions of the application
of VGs. First, a direct extension of VGs to problems with
jointly distributed inputs would be useful. This might be
accomplished by infinitesimally reducing a variance-related
parameter of a copula [17] or other representation of the joint
distribution in a manner analogous to definition (3). Second,
as mentioned in subsection 3.7, VGs enable an iterative
scheme for an optimized reduction in the variance of the
measurand. Such a scheme could account for relative ease/cost
of reducing variances in the various inputs. Finally, effective
measures/tests for the appropriateness of measurement
function linearization are useful in applications of the GUM
framework. We have shown that if the measurement function
is linear, then

∑N
n=1 GXn = 1. Equivalently, if

∑N
n=1 GXn �= 1,

then the measurement function must be nonlinear. However,
the use of VGs to diagnose ‘degrees’ of nonlinearity and the
implications of

∑N
n=1 GXn = 1 require further investigation.

VGs are applicable to measurement functions with
independent inputs whose underlying state-of-knowledge

11 Occasionally, a near-zero VG (or TSI) indicates that a mistake was made
somewhere, so that the analysis and computations should be re-checked.
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probability distributions have finite variance. The inputs’
uncertainty evaluation may be either type A or type B. In
many type A evaluations, however, one attempts to reduce
an input’s variance by taking additional indications from a
measurement process, or by reducing the variability in the
measurement process itself. VGs may potentially be extended
to these specific situations.

Because of the stochastic nature of measurement
processes, one could consider the expected relative reduction
in the output variance given one or more additional indications
of an input. (Indeed, a rare event producing a single additional
indication could increase an input’s variance instead of
decreasing it.) The type of input/output state-of-knowledge
distributions may change with additional indication(s), such
as different shifted and scaled t-distributions with changing
degrees of freedom [2, 3]. The discrete nature of this setting is
more analogous to finite differences than gradients/derivatives.
Similar expectations could be computed for a fixed number of
indications to be taken from a measurement process whose
variance were reduced infinitesimally, giving yet another
gradient-related variance-based sensitivity measure.
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Appendix. Taking derivatives inside expectation
operators

The derivation of formula (5) for computing VGs requires
taking a derivative with respect to a parameter inside two
different expectation operators. This appendix provides the
theoretical justification for the stated sufficient conditions for
the validity of (5) and illustrates how to construct dominating
RVs that justify this operation for the Ishigami function from
subsection 4.2.

The following theorem is adapted directly from results
proved in [39, section 9.2] and [40, corollary 5.9], which
are based upon the Lebesgue dominated convergence theorem
(LDCT). The hypotheses of the following theorem provide
the sufficient conditions stated in subsection 3.2 for the
validity of (5).

Theorem 1. {Y (z)}z∈[a,b] is a parametrized collection of RVs
defined on some probability triple (�,F , P). Suppose for
some z0 ∈ [a, b] that E(Y (z0)) < ∞ and for all z ∈ [a, b]
that the derivative ∂Y

∂z (z) exists. Furthermore, suppose there

exists a non-negative RV W defined on (�,F , P) with finite
expectation such that for all z ∈ [a, b]∣∣∣∣ ∂

∂z
Y (z)

∣∣∣∣ � W.

It follows that ∂
∂z E(Y (z)) = E

(
∂
∂zY (z)

)
for all z ∈ [a, b].

We note that establishing uniform integrability
[39, section 9.1] of difference quotients of RVs with respect to
a parameter is a possible alternative to invoking the LDCT.

Recall from (8) that the Ishigami function is given by

Y = sin (X1) + 7 sin2 (X2) + X4
3

10
sin (X1).

The distributions of the three input RVs and the associated first
partial derivatives of the Ishigami function are summarized in
table 6. As described in subsection 3.2, a sufficient condition
for the validity of (5) for computing GXn for some n = 1, 2, 3
is the existence of dominating RVs, i.e. W1 and W2, each with
finite expectation, such that∣∣∣∣ ∂

∂z
Ỹn(z)

∣∣∣∣ � W1 and

∣∣∣∣ ∂

∂z

(
Ỹn(z)

)2
∣∣∣∣ � W2,

for all z in an open interval containing zero. By assumption,
E(Ỹn(0)) = E(Y ) < ∞ and E((Ỹn(0))2) = V(Y )+(E(Y ))2 <

∞, and we can take z ∈ [−ε, ε] for some 0 < ε < 1. Note
that applying the chain rule for derivatives gives

∂

∂z
Ỹn(z) = ∂Y

∂Xn

∣∣∣∣
X̃n(z)

∂

∂z
X̃n(z)

and
∂

∂z

(
Ỹn(z)

)2 = 2Ỹn(z)
∂Y

∂Xn

∣∣∣∣
X̃n(z)

∂

∂z
X̃n(z).

For GX1 , note that

Ỹ1(z) = sin
(
X̃1(z)

) + 7 sin2 (X2) + X4
3

10
sin (X̃1(z)),

and, because X̃1(z) = √
1 − z(X1 − μX1 ) + μX1 and μX1 = 0,

∂

∂z
Ỹ1(z) =

(
cos (X̃1(z)) + X4

3

10
cos (X̃1(z))

)
X1

−2
√

1 − z
.

Using the triangle inequality, the dominating function W1 is
derived as follows:∣∣∣∣ ∂

∂z
Ỹ1(z)

∣∣∣∣ =
∣∣∣∣cos (X̃1(z)) + X4

3

10
cos (X̃1(z))

∣∣∣∣ ∣∣∣∣ X1

−2
√

1 − z

∣∣∣∣
� | cos (X̃1(z))| + X4

3

10
| cos (X̃1(z))| |X1|

2
√

1 − ε

�
(

1 + X4
3

10

) |X1|
2
√

1 − ε
= W1,

which has finite expectation for the rectangular distributions
given for X1, X2 and X3. Likewise, the dominating function W2

is derived as follows:∣∣∣∣ ∂

∂z
(Ỹ1(z))

2

∣∣∣∣
= 2

∣∣∣∣sin (X̃1(z)) + 7 sin2 (X2) + X4
3

10
sin (X̃1(z))

∣∣∣∣
×

∣∣∣∣cos (X̃1(z)) + X4
3

10
cos (X̃1(z))

∣∣∣∣ ∣∣∣∣ X1

−2
√

1 − z

∣∣∣∣
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� 2

(
| sin (X̃1(z))| + 7 sin2 (X2) + X4

3

10
| sin (X̃1(z))|

)
×

(
| cos (X̃1(z))| + X4

3

10
| cos (X̃1(z))|

) |X1|
2
√

1 − ε

�
(

8 + X4
3

10

) (
1 + X4

3

10

) |X1|√
1 − ε

= W2,

which has finite expectation for the rectangular distributions
given for X1, X2 and X3.

For GX2 , a similar argument shows that∣∣∣∣ ∂

∂z
Ỹ2(z)

∣∣∣∣ � 7 |X2|√
1 − ε

= W1

and ∣∣∣∣ ∂

∂z
(Ỹ2(z))

2

∣∣∣∣ �
(

8 + X4
3

10

)
14|X2|√

1 − ε
= W2,

both of which have finite expectation.
Finally, for GX3 , a similar argument shows that∣∣∣∣ ∂

∂z
Ỹ3(z)

∣∣∣∣ � (1 + ε)X4
3

5
= W1

and∣∣∣∣ ∂

∂z
(Ỹ3(z))

2

∣∣∣∣ � 2

(
8 + (1 + ε)2X4

3

10

) (
(1 + ε)X4

3

5

)
= W2,

both of which have finite expectation.
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