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First-principles calculation of the nonadiabatic spin transfer torque in Ni and Fe
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The magnetization dynamics of a ferromagnet subjected to an electrical current are described by an extension
of the Landau-Lifshitz-Gilbert equation that contains two additional terms, the adiabatic and nonadiabatic
spin-transfer torques. First-principles calculations of the nonadiabatic spin-transfer torque parameter β for bcc
iron and fcc nickel show that β is related to and typically of the same order as α, the damping constant, but
is distinct from it. Calculations as a function of the ratio of spin-dependent scattering rates show that (1) the
minimum of the damping constant as a function of scattering rate does not change significantly, and (2) when the
polarization of the current approaches zero, β can become large but the implied domain-wall velocity does not.
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I. INTRODUCTION

More than thirty years ago, Berger1 proposed using electri-
cal currents in ferromagnetic metallic wires to move magnetic
domain walls. Early experimental work2,3 motivated by this
idea was hampered by the fact that the smallest wires that could
be fabricated required extremely large currents to move the
walls. In the past decade, fabrication technology has developed
sufficiently that domain walls could be moved with much more
modest currents.4–10 For more information, see the reviews11,12

of experimental developments.
Berger13 showed that the interaction between the electrical

current and the textured magnetization patterns is mediated by
the spin current that inevitably accompanies the charge current,
and that the influence of spin currents could be accounted for
by adding two additional terms to the Landau-Lifshitz-Gilbert
equation of motion. This idea was developed further by several
authors14–16 and the labels adiabatic and nonadiabatic torque
were introduced. For more information, see the reviews17–19

of the theoretical developments.
The adiabatic spin-transfer torque has the form −(vs ·

∇)M(r), where M(r) is the spatially varying magnetization
and vs is a spin velocity that is proportional to the current
density and is discussed below. This torque arises when the
electron moments stay aligned with the magnetization as they
flow through a region of nonuniform magnetization.

The nonadiabatic spin-transfer torque is perpendicular to
the adiabatic spin-transfer torque and the magnetization, so
it has the form −βm̂(r) × (vs · ∇)M(r), where β is called
the nonadiabatic spin-transfer torque parameter and m̂ is the
direction of the magnetization. There are several contributions
to the nonadiabatic torque. For thin domain walls, in which
the domain-wall width is comparable to or smaller than the
wavelength of the electrons at the Fermi energy, the electron
spins cannot track the magnetization.15,20–22 In this situation,
there is a nonlocal correction to the adiabatic spin-transfer
torque, part of which is along the adiabatic spin-transfer torque
and part of which is perpendicular. This latter contribution is
literally “nonadiabatic.” For transition metals, this contribution
is small in all but the narrowest domain walls and is

typically neglected.21 The contribution14,16,23–25 of interest
in the present work arises from processes that contribute to
magnetic relaxation (damping). This contribution is literally
not nonadiabatic because it persists in the adiabatic, or slowly
varying, limit. However, the term nonadiabatic is typically
used for this contribution and we follow that practice here.

While the adiabatic spin-transfer torque is thought to
be well understood1 and characterized,26,27 the nonadiabatic
contribution has been controversial. Several authors28,29 have
suggested that β = α in general. This suggestion is con-
sistent with the behavior of particular models23 and some
experiments9,10 but appears not to be generally correct.24 The
experimental situation remains unclear. Measurements on a
wide variety of geometries, with a variety of materials, and
using a variety of techniques find a wide spread in the values of
β extracted from experimental measurements.9,10,30–43 These
values are typically obtained by comparing measurements of
wall velocities with the predictions of behavior for simple
models. One reason for the wide variation of extracted values
may be that the velocities are influenced by the presence of
disorder in the wires.44

Although the nonadiabatic spin-transfer torque is normally
thought to be much smaller than the adiabatic spin-transfer
torque (β � 1), it is important because it controls14,16 the
propagation of the domain walls at currents below the threshold
for Walker breakdown.45 In a smooth wire without magnetic
damping, the adiabatic spin-transfer torque translates a domain
wall without distortion at the velocity vs. Damping and the
nonadiabatic spin-transfer toque modify this result46 such that
the domain wall distorts and the wall velocity is (β/α)vs, where
α is the Gilbert damping parameter.

As the current increases, the distortion of the wall and its
velocity increase. When the current exceeds the Walker break-
down current, the distorted wall becomes unstable causing
the wall motion and the distortion to become cyclical. Above
Walker breakdown, the domain-wall velocity approaches vs as
the current increases.

Much of the interest in understanding the nonadiabatic
spin-transfer torque is driven by the hope that if a material
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with a large β/α were found, it would be possible to move
domain walls with much less current than is typically needed
in present experiments. While it is true that the domain-wall
velocity is (β/α)vs below Walker breakdown, it is also true that
Walker breakdown occurs at lower currents as β/α becomes
large, leaving the velocity at breakdown roughly constant.46

Achieving the desired efficient and fast domain-wall motion
also requires a way to suppress Walker breakdown.

In this paper, we present calculations of the nonadia-
batic spin-transfer torque parameter based on our earlier
calculations of the damping parameter47 and subsequent
formal derivations.48 These calculations do not include
the contributions to the nonadiabatic spin-transfer torque
that are truly nonadiabatic, i.e., those that develop be-
cause the magnetization texture varies rapidly.15,20–22 We
treat the contribution to the nonadiabatic spin-transfer torque
that follows from the same processes as the Gilbert damping. A
number of authors14–16,23–25 have calculated this contribution
using free-electron-like Stoner models for the electronic
structure. In earlier work,48 in which we derived the formal
expression evaluated here, we calculated the nonadiabatic
spin-transfer torque for a few model systems, including a
Kohn-Luttinger model for GaMnAs. The present calculations
are based on first-principles models of the electronic structure.

In both the present work and our earlier calculations, the
important spin-orbit contributions are already present in the
electronic structure of the ideal bulk materials. The scattering
in these models does not have a spin-orbit contribution separate
from that of the host electronic structure. Other calculations of
the nonadiabatic spin-transfer torque,14–16,23–25 based on free-
electron-like Stoner models, use the opposite approximation.
In those models, there is no spin-orbit coupling in the host
band structure, but defects cause spin-flip scattering. Such
calculations provide great pedagogical value and may be
important in samples in which there are defects with strong
spin-orbit coupling. However, in typical transition metals and
their alloys, it is important to treat models of the electronic
structure that are complex enough to include the important
spin-orbit coupling of the host material.

Our calculations do not include the class of spin-transfer
torques that occur even in samples with a uniform magnetiza-
tion. These have been discussed in materials that have spin-
orbit coupling and are gyrotropic (optically active).49–52 Simi-
lar torques occur in systems with spin-orbit coupling in which
interfaces break inversion symmetry.53 In fact, such torques are
present in all bulk materials when the magnetization points in
an arbitrary direction with respect to the crystal lattice. In
that case, they are simply current-dependent corrections to the
torque from the magnetocrystalline anisotropy. For the bulk
systems that we treat, and for the high-symmetry directions
we have chosen for the magnetization, the torques due to the
magnetocrystalline anisotropy and its corrections are zero.

The present calculations and our earlier calculations of
the damping parameter are based on phenomenological, spin-
dependent scattering rates. Recent advances in calculations
of the damping parameter based on scattering theory54–56 or
the coherent potential approximation57 have moved beyond
the necessity of a phenomenological lifetime for calculations
of the damping parameter. These calculations have the ad-
vantage that they can be performed for the specific scattering

mechanism that is believed to be important. In addition, they
can be used to compute the properties of alloys, which are
more commonly used in experiments. Preliminary calculations
of the nonadiabatic spin-transfer torque parameter for a NiFe
alloy have been reported.58

The rest of the paper is laid out as follows. Section II
presents the formalism used in the calculations, Sec. IV
gives the results, while Sec. III gives some numerical details
about the calculations including a discussion of the numerical
convergence. We find that although the damping parameter α

and the nonadiabatic spin-transfer torque parameter β are of
the same magnitude and can be described in terms of similar
contributions, they are very different. In fact, we argue below
that the product βvs is a more appropriate parameter than β

itself to characterize the nonadiabatic spin-transfer torque.

II. THEORY

Magnetic materials respond to time-dependent magnetic
fields with damped magnetization dynamics. A model pro-
posed by Heinrich and Kambersky59–61 appears to provide
a quantitative explanation for the measured damping in
transition metals and their alloys.47,55,56,62–65 In this model,
the spin-orbit interaction mediates a transfer of energy and
angular momentum between the magnetization and other
electronic degrees of freedom. Electron-lattice scattering
then transfers energy between the electronic and vibrational
systems. Magnetic materials also respond dynamically when
electrical currents flow through them, provided their mag-
netization is nonuniform. In the limit of a slowly varying
(in space) magnetization, the nonadiabatic component of the
spin-transfer torque can be thought of as a current-dependent
correction to the damping.

Following earlier work,48 expressions for the damping
parameter and the nonadiabatic spin-transfer torque parameter
are

αq = π

�c

∑
nm

∫
d3k

(2π )3
αnm(k,q), (1)

(q · vs)βq = π

�c

∑
nm

∫
d3k

(2π )3
αnm(k,q)

× (τm,k+qvm,k+q − τn,kvn,k) · eE/h̄ , (2)

αnm(k,q) = |�−
nm(k,q)|2

∫
dεWnm(k,q; ε), (3)

|�−
nm(k,q)|2 = |〈n,k|[Hso,σ

−]|m,k + q〉|2 , (4)

Wnm(k,q; ε) = η(ε)An,k(ε)Am,k+q(ε). (5)

Here, k is the electron wave vector, q is the magnon wave
vector, the subscripts m and n are electron band indices, �c

is the volume of the Brillouin zone, vn,k is the velocity of
the electron state, εn,k is its energy, and τn,k is its lifetime.
E is the electric field in the material. The operator Hso is
the spin-orbit Hamiltonian, and σ− is the Pauli spin lowering
operator. The electron spectral functions Ank are approximated
as Lorentzians centered at εnk with an effective width h̄/2τnk ,
where τnk is the electron scattering time. The derivative for the
Fermi function, η(εnk) = −∂f/∂εnk is sharply peaked for εnk

near the Fermi level.
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Equations (1) and (2) emphasize the similarity between α

and β. Comparing them requires a calculation of q · vs. While
an expression for q · vs analogous to Eqs. (1) and (2) may
be constructed,48 it is significantly more difficult to evaluate
numerically. We use a simpler expression valid in the absence
of spin-orbit coupling.48 In that limit, the spin velocity is

q · vs = σP
qE

ens
, (6)

where ns is the dimensionless spin density and σP = σ↑ − σ↓ is
the spin-polarized conductivity. This approximation is justified
because in transition-metal ferromagnets the spin-orbit energy
is roughly two orders of magnitude smaller than the exchange
energy. It can be shown that this velocity is

q · vs = π

�cens

∑
n

∫
d3k

(2π )3

〈
nz

nk

〉
(q · vnk)(vnk · E)

×
∫

dε Wnn(k,q; ε) . (7)

The velocities of individual electrons are vnk = ∂εnk/h̄∂k and
〈nz

nk〉 is the dimensionless z component of the spin of state
|nk〉 (here the magnetization is along the z direction). This
expression is closely related to the conductivity for current in
the r̂i direction in response to a field in the r̂j direction,

σij = π

�c

∑
n

∫
d3k

(2π )3
(r̂i · vnk)(r̂j · vnk)

∫
dε Wnn(k,q; ε) ,

(8)

which can be derived from the Kubo formula for the conduc-
tivity. The current polarization is the ratio of the spin-polarized
conductivity to the conductivity, P = σP/σ .

Previous calculations of the damping parameter47,64 using
this formalism are limited by the use of a phenomenolog-
ical electron lifetime. Here we make two modifications to
somewhat mitigate this limitation. First, we plot the calculated
results as a function of the calculated resistivity, found as
the inverse of the conductivity, Eq. (8). While there is still an
unknown parameter in the calculation, we now show the results
as a function of a measurable quantity. A similar approach has
been used in calculations based on scattering theory,56 in which
the resistivity and damping were both calculated as a function
of the root-mean-square displacements of the atoms in the
simulation cell from their equilibrium positions.

The second modification is that we generalize earlier
calculations47 of α to allow the lifetime to be spin dependent.
The earlier calculations assume a universal electron lifetime τ

for all electronic states; however, in real materials each electron
state may have a unique scattering time. In ferromagnets, the
most important variation is the difference between up-spin and
down-spin lifetimes. Here, we define separate lifetimes for
up- and down-spin electrons. Due to the spin-orbit interaction,
each state is a mixture of up and down spin to varying degree.
We define a lifetime for each state,(

τ eff
nk

)−1 = (τ↑)−1|〈ψnk| ↑〉|2 + (τ↓)−1|〈ψnk| ↓〉|2, (9)

depending on the fractional admixture of both spin components
in the wave function ψnk. We calculate the electrical con-
ductivity σ , spin-polarized conductivity σP, Gilbert damping

parameter αq, and the product of the nonadiabatic spin-transfer
torque parameter and the spin-polarized conductivity βqσP for
several values of the ratio r = τ↓/τ↑.

III. COMPUTATIONAL DETAILS

All calculations were performed within the local spin-
density approximation to the linearized augmented plane-wave
implementation of density-functional theory.66,67 Calculations
begin from a calculated ground state electron density at the
experimental lattice constant in the absence of the spin-orbit
interaction. Quasiparticle wave functions and energies are
constructed from this density by solving the Kohn-Sham
equations in the presence of the spin-orbit interaction, with
the exchange field in a specified direction. For each metal,
the exchange field was set along the magnetocrystalline
easy axis, which is the 〈001〉 direction for Fe, the 〈0001〉
direction for Co, and the 〈111〉 direction for Ni. The magnon
wave vector and current direction were set parallel to each
other for each metal and in the 〈010〉 direction for Fe, the
〈21̄1̄0〉 direction for Co, and the 〈101̄〉 direction for Ni.
Numerical details of the ground-state convergence,68 treatment
of the spin-orbit interaction,69 and evaluation of the Gilbert
damping parameter47 have been published elsewhere. The
computational details of the evaluation of the nonadiabatic
spin-transfer torque parameter largely parallel those of the
Gilbert damping parameter.

Integrations over k space were performed with the special
points method70 over the full Brillouin zone. The special
points method requires an artificial temperature broadening
of the Fermi level for numerical stability. Convergence
was obtained with respect to this artificial broadening for
a low-energy equivalent to approximately 100 K. While
other k-space integration methods could be considered, none
proved comparatively advantageous in previous calculations
of the magnetocrystalline anisotropy energy,69 leading to
similar expectations for the nonadiabatic spin-transfer torque
parameter since both quantities involve matrix elements related
to the spin-orbit interaction.

Convergence with respect to the k-space integration is
numerically more intensive for β as compared to either the
damping parameter or the conductivity. The difference in the
convergence properties of the α and β integrals can be readily
seen from Eqs. (1) and (2). The former is a sum of positive
definite terms that are large in the small fraction of k space
near the Fermi surface. The latter, on the other hand, is a sum
of terms that vary in sign over the same small region and so
require a much denser sampling in k space. The convergence
properties of β are illustrated in Fig. 1. For practical reasons,
our k-space sampling was limited to 3703 ≈ 5 × 107 k points.
For short lifetimes, i.e., large resistivities, the ratio βσP/(ασ )
converges to within ±0.02, while for long lifetimes, i.e.,
small resistivities, it converges to within ±0.2, with worse
convergence for yet lower resistivities. In contrast, the damping
parameter converges to within ±1 × 10−5 for all scattering
rates and resistivities.

Calculation of β also requires convergence with respect
to evaluation of the band velocities and the magnitude
of the magnon wave vector. The centered finite difference
approximation was used to determine the electron velocities.
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FIG. 1. (Color online) Nonadiabatic spin-transfer torque param-
eter for Fe as a function of k-space volume per sampling point. The
curves are labeled by the values of the resistivity.

Uncertainties due to the difference size and order of the
method are smaller than those due to the k-space sampling.
The definition of β is made in the limit as the magnon
wave vector q → 0. The expressions for β(q · vs) and (q · vs)
may be linearized with respect to q such that the magnitude
of the magnon wave vector need not be specified; however
we have evaluated these quantities with the magnon wave
vector explicitly present. Results were calculated for a small
wave vector of q = 10−4 π/a, where a is the lattice constant.
Previous calculations of the q dependence of the Gilbert
damping parameter show that it varies only weakly with q

for such small values.71

IV. RESULTS

We calculate the conductivity σ , spin polarized conductivity
σP, damping parameter α, and nonadiabatic spin-transfer
torque parameter βσP for a range of electron lifetimes with
fixed ratios of minority to majority lifetimes r = τ↓/τ↑.
We find that both the conductivity and the spin-polarized
conductivity are proportional to the electron lifetime to better
than 3% for each value of r computed. In most cases, the
proportionality is much better. Calculations of the current
polarization, P = σP/σ are shown in Fig. 2. The current
polarization does not go through zero for r = 1 because
the projected densities of states and quasiparticle velocities
are different for minority and majority electrons in all three
materials. We computed the transport parameters for a series
of r = 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0, but below only
show the results for 0.5, 1.0, and 2.0. The results for the other
values do not change any of the conclusions we draw.

Cobalt has been the subject of numerous transport mea-
surements in the context of current-perpendicular-to-the-plane
giant magnetoresistance.72 Values of P that have been ex-
tracted from these measurements range from 0.38 ± 0.06 to
0.50 ± 0.08, which correspond to values of r between 0.6 and
0.8. Similar measurements exist for alloys of Fe, Co, and Ni,
but do not exist to our knowledge for simple Fe and Ni. There
have been extensive studies of the polarization of the resistivity
of Fe, Co, and Ni with dilute impurities,73 but the analysis was
not extended to pure metals.

Allowing for spin-dependent lifetimes raises the question
of whether allowing additional degrees of freedom changes

0.1 1.0 10.0
-1.0

-0.5

0.0

0.5

1.0

Fe
Co

Ni
P

τ /τ

FIG. 2. (Color online) Polarization for bcc Fe (red), hcp Co
(green), fcc Ni (blue) as a function of the ratio of lifetimes for the
two spin channels, r = τ↓/τ↑. At each value of r , P is calculated for
a range of τ↑ and τ↓ and the range of resulting values is indicated by
the vertical bar at each data point.

the agreement found between experiment and earlier cal-
culations of the damping parameter α that were based on
spin-independent lifetimes.47 Figure 3 shows calculations
similar to those previously reported but for several values of
the ratio of spin-dependent lifetimes. For Fe, the damping
parameter α only depends weakly on r , but for Co α depends
strongly on r . However, the agreement between experiment
and the calculations found earlier47 was based on comparing
the minimum damping calculated as a function of lifetime to
the minimum damping measured as a function of temperature.
As seen in Fig. 3, the minimum calculated value of the damping
does not vary strongly with r , suggesting that agreement
between the calculations and experiment remains slightly
better than a factor of 2.

Unfortunately, for the samples for which the damping was
measured,59,74 the temperature-dependent resistivity was not
measured. Such measurements would be necessary to reliably
compare the experimental results to those in Fig. 3 beyond
comparing the minimum values. However, if we assume that
those samples had typical values of the resistivity we can
compare the temperatures at which the minima occur. For
Co, the experimental minimum in the damping occurs around
100 K and the theoretical minima for r = 0.5 and 1.0 occur for
resistivities close to 1.5 × 10−8 � m, which corresponds to a
temperature close to 100 K.75 We do not know the appropriate
values of r for Fe or Ni, but we expect that r < 1 for Ni
and r > 1 for Fe based on the argument that the lifetimes
are inversely related to the densities of states for each spin
channel. For Ni, the theoretical curves for r < 1 decrease from
low resistivity until a resistivity significantly below the room-
temperature value and then remain temperature independent
for the range of resistivities treated. This behavior is consistent
with experimental observations74 that show an decrease in α

from low temperatures to around 200 K and then no change
up to 400 K. Experimentally, Fe is temperature independent
below about 300 K and then slowly increases. While the
flat behavior at low T is not expected from the calculations,
it could be due to important contributions to the resistivity
from temperature-independent sources such as impurities. The
slow increase above room temperature is consistent with the
calculated curves for r > 1.
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FIG. 3. (Color online) Damping constant versus resistivity for a
series of ratios of spin-dependent scattering rates, r = τ↓/τ↑ = 2,
1, 0.5. Dashed vertical lines indicate approximate room-temperature
resistivities for each element.

We can qualitatively compare these results with those of
Liu et al.56 Here we calculate the resistivity as a function of
the lifetimes; they do so as a function of the root-mean-square
displacement of atoms, so a direct comparison is not possible.
The results are qualitatively the same but differ in some details.
The minimum values of the damping that they find are lower
than those we find, but the values are comparable and the
values of the resistivity at the minima are also comparable.
The differences could be due to the different approaches for
calculating the scattering.

Figures 4 and 5 give the calculated values of the nonadia-
batic spin-transfer torque parameter for Fe and Ni respectively
in the top panels (we were not able to numerically converge
calculations for Co in a reasonable time). The middle panels
give β/α and the bottom panels βσP/(ασ ). These figures,
particularly Fig. 4, illustrate a basic conclusion we can draw
from these results: β and β/α are not the most meaningful
descriptions of the nonadiabatic spin-transfer torque. For the
case of Fe with r = 2, σP is close to zero but the combination
βσP need not be. The resulting value of β diverges as the

-0.01

0.00

0.01

0.1 1.0 10.0 100.0
ρ (10−8 Ω m)

-5

0

5

β
α 1/2

1 2
(x 0.1)

2
(x 0.1)

-2

0

2

βσP

ασ

1/2
1
2

β
1/2

1 2
(x 0.1)

2
(x 0.1)

.

FIG. 4. (Color online) Spin-transfer torque parameter versus
resistivity for several ratios (r = 0.5, 1.0, 2.0) of spin-dependent
scattering rates for Fe. The top panel gives β, the middle panel
β/α, and the bottom panel βσP/(ασ ). The dashed vertical lines
indicate the approximate room-temperature resistivity. In the top two
panels, the results for r = 2.0 have been scaled down by a factor of
0.1. In the bottom panel, the vertical bars indicate the convergence
estimates extracted from Fig. 1

current polarization approaches zero (near the room-
temperature resistivity value), while the low-current domain-
wall velocity, proportional to βσP/(ασ ), remains constant.
This suggests that βσP as a quantity is a more fundamental
characterization of the nonadiabatic spin-transfer torque than
β itself, βσP/σ is the most meaningful dimensionless char-
acterization, and βσP/(ασ ) is a useful characterization of the
low-current domain-wall velocity.

The results for β/α in Figs. 4 and 5 make clear that α and
β are of the same order (except when the polarization is close
to zero) but are otherwise not closely related. They can have
different signs and different orders of magnitude for specific
combinations of scattering rates. However, there are common
features between β and α. For low resistivities, the damping
parameter α is dominated by the intraband contribution,
which is proportional to 1/ρ. For high resistivities, the
interband contribution dominates. Similar behavior is seen for
β, particularly for Ni. There is a low-resistivity contribution
that is proportional to 1/ρ and a high-resistivity contribution
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FIG. 5. (Color online) Spin-transfer torque parameter versus
resistivity for several ratios (r = 0.5, 1.0, 2.0) of spin-dependent
scattering rates for Ni. The top panel gives β, the middle panel β/α,
and the bottom panel βσP/(ασ ). The dashed vertical lines indicate
the approximate room-temperature resistivity.

that has a more complicated dependence on resistivity. Since
the sign of both terms in β is not fixed, the total can (and does)
cross zero.

While the results presented here give large values for β/α in
some regimes, particularly when σP approaches zero, these are
unlikely to lead to a substantial reduction in the currents needed
to move domain walls with useful velocities because the
parameter important for the domain-wall velocity, βσP/(ασ ),
never gets large. Interestingly, this ratio is negative for a large
range of values, implying that for those ranges of values and
small currents (below Walker breakdown), the domain wall
moves opposite to the direction of electron flow. While domain
walls moving backward like this may seem unphysical, it is
no different than any velocity different from vad

DW = σPE/ens.
For a wall moving at that velocity, the angular momentum
supplied by the spin-polarized current exactly balances the
rate of change of angular momentum in the magnetization
due to the moving domain wall. For all other cases, angular
momentum is transfered from the lattice to the magnetization
through the combination of the damping and the nonadiabatic
spin-transfer torque.

The results in Figs. 4 and 5 highlight the difficulties in
calculating the nonadiabatic spin-transfer torque parameter.
As compared to the Gilbert damping parameter, it is both

more difficult to converge numerically and more sensitive to
details of the scattering. The results from Fig. 1 show that for
resistivities lower than about 0.6 × 10−8 � m, the convergence
of the ratio βσP/(ασ ) is comparable to the separation in values
for different values of the ratio of scattering rates, r . For Ni,
the convergence is better than for Fe and the ratio βσP/(ασ )
approaches a constant for low resistivities as expected. For
large resistivities, the convergence is much better, but the
model becomes more suspect. At the upper limits of the curves
in Figs. 4 and 5, the maximum width of a state, h̄/2τnk , is
0.3 eV, which is comparable to typical separations of the energy
bands. When the widths of the states become comparable to
their separation, this description of the electronic structure
starts to break down.

In addition, strong disorder (large scattering rates) enhances
the participation of high-energy particle-hole pairs in magnetic
relaxation, thus rendering Eqs. (1) and (2) quantitatively
unreliable.76 In spite of all these difficulties, the results are
sufficiently robust to draw the conclusions mentioned above.
Unfortunately, between the numerical uncertainties and the
sensitivity to the details of the scattering, quantitative predic-
tions of the calculations will be difficult to test experimentally.

V. CONCLUSION

We compute the nonadiabatic spin-transfer torque param-
eter β for Fe and Ni and the damping parameter α for Fe,
Co, and Ni. We generalize our earlier calculations of the
damping parameter by allowing the electron lifetimes to be
spin dependent and calculating the resistivity of the metals
as a function of the same lifetimes. The latter allows for
a potentially closer comparison with experiment when the
resistivity is measured for the samples that are used to measure
α and β. In this case, the unmeasured electron lifetimes are
only needed implicitly. Fortunately, allowing the lifetimes to
be spin dependent did not diminish the agreement found in the
comparison of calculated damping parameters with those that
have been measured.

The nonadiabatic spin-transfer torque parameter is of the
same order of magnitude as the damping parameter, but is
distinctly different. Because it is given by an integral over
momentum space with an integrand that is peaked near the
Fermi surface and varies in sign, the value of β is extremely
dependent on details of the band structure and of the transport
steady state. The calculation of the nonadiabatic torque gives
βσP directly; β is found by dividing by σP. However, we
show that this construction can yield misleading results,
particularly when the current polarization P is close to zero.
The resulting value of β apparently diverges as the current
polarization approaches zero, while the low-current domain-
wall velocity [proportional to βσP/(ασ )] remains constant.
This suggests that βσP is a more fundamental characterization
of the nonadiabatic spin-transfer torque. For the dimensionless
prefactor βσP/(ασ ), which characterizes the domain-wall
velocity, a value of 1 corresponds to one flipped spin per
electron that passes through a domain wall. We find that it
is less than 1 for Fe or Ni over the whole range of electron
lifetimes we have considered.
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