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The evolution of a Stokes vector through depolarizingmedia is considered. A general form for the differential matrix
is found that is appropriate in the presence of depolarization and it is parameterized in a manner that ensures that it
yields, upon integration, a valid Mueller matrix for any choice of parameters. The form expands the more limited
form for a nondepolarizing matrix given by Azzam [J. Opt. Soc. Am. 68, 1756 (1978)] and which was extended
recently by others to include depolarization. A Mueller matrix decomposition is proposed that is based upon
the new parameterization.
OCIS codes: 260.5430, 230.5440, 120.2130.

The Stokes–Mueller formalism for describing the optical
and polarization properties of media has proven to be
extremely valuable [1]. The four-element Stokes vector
defines the intensity and polarization of a stream of light.
A 4 × 4 Mueller matrix describes the linear transforma-
tion between an incoming Stokes vector and an outgoing
Stokes vector. In some applications, such as the analysis
of liquid crystals [2], optical fibers [3], and plasmas [4],
one is interested in a differential formalism [5], where
the Stokes vector S z! evolves as it propagates through
a medium in the z direction, such as with the equation

dS z!

dz
" mS z!; (1)

where m is the differential matrix. Given an initial con-
dition S 0!, Eq. (1) has the well-known solution [6]

S z! " MS 0!; (2)

where the Mueller matrix M is given by

M " Wdiag eσ0z; eσ1z; eσ2z; eσ3z!W−1; (3)

σ0, σ1, σ2, and σ3 are the eigenvalues of m, and the
columns of the orthogonal matrix W are the respective
eigenvectors of m.
Azzam [5] showed that the general differential matrix

for nondepolarizing media is of the form

m "

0

B

@

α β γ δ

β α μ ν

γ −μ α η

δ −ν −η α

1

C

A
; (4)

where α is the absorption coefficient; β, γ, and δ are diat-
tenuation coefficients for light polarized in each of the
three axes of the Poincaré sphere, respectively; and η,
ν, and μ are birefringence coefficients for the three pairs
of axes of the Poincaré sphere, respectively. For lossy
media, the absorption coefficient α is negative. The other
parameters in Eq. (4) are unconstrained.
In his work, Azzam did not describe the form the dif-

ferential matrix would take if there were depolarization.
Coupled rate equations occur when solving diffuse
scattering problems, where scattering couples radiation
traveling in different directions. In such systems, depolar-

ization plays an important role, and having a formalism
for treating depolarization would be beneficial. The pur-
pose of this Letter is to describe a more general form for
the differential matrix that includes the effects of depo-
larization and has no constraints.
A four-element Stokes vector must satisfy the condi-

tion that the first element must be positive and its square
must be greater than or equal to the sum of squares of the
other elements. A Mueller matrix, in order to be valid,
must transform the space of valid Stokes vectors into a
subspace of valid Stokes vectors. Givens and Kostinski
[7] showed that a valid Mueller matrix M must there-
fore satisfy a relatively simple condition: if G "
diag 1;−1;−1;−1! is the Lorentz metric, then all of the
eigenvalues of GMTGM must be real, and the eigenvec-
tor associated with the largest eigenvalue must be a valid
Stokes vector. Any combination of real values for the
variables in the matrix Eq. (4) will yield a valid, realizable
Mueller matrix when Eq. (3) is applied.
The matrix m in Eq. (4) has a clear symmetry. Azzam

pointed out that any breaking of this symmetry will result
in depolarization. It is tempting, therefore, to make the
generalization [8,9]

m0 "

0

B

B

@

α β − β0 γ − γ0 δ − δ0

β $ β0 α − α0 μ0 $ μ ν0 $ ν

γ $ γ0 μ0
− μ α − α00 η0 $ η

δ$ δ0 ν0
− ν η0

− η α − α000

1

C

C

A

; (5)

where α0, α00, α000, β0, γ0, δ0, μ0, ν0, and η0 are nine depolar-
ization coefficients that fill out the degrees of freedom of
the differential matrix, and each of which breaks a spe-
cific symmetry found in Eq. (4). However, with the
exception of α0, α00, and α000, setting any one of these de-
polarization coefficients to a nonzero value will result in
an invalid Mueller matrix.
We thus seek a differential matrix parameterization

that guarantees the resulting Mueller matrix will be valid.
Consider the generating depolarizing matrix

m1 "

0

B

B

@

1 −1 0 0

1 −1 0 0

0 0 0 0

0 0 0 0

1

C

C

A

: (6)
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The differential matrix m1 has no effect on the Stokes
vector  1; 1; 0; 0!T and depolarizes the Stokes vector
 1;−1; 0; 0!T to the greatest extent.
We construct an orthogonal rotation matrix designed

to rotate the polarization state  1; 1; 0; 0!T to
 1; q∕I; u∕I; v∕I!T , where q, u, and v can be any set of
three real numbers and I "  q2 # u2 # v2!1∕2:

R q; u; v! " 1

I

0

B

B

B

B

B

@

I 0 0 0

0 q Iu
##########

q2#u2

p −

qv
##########

q2#u2

p

0 u −

Iq
##########

q2#u2

p −

uv
##########

q2#u2

p

0 v 0

#################

q2 # u2
p

1

C

C

C

C

C

A

. (7)

We can use this matrix to orient the axis of the depolar-
ization matrix m1, so that it is oriented along a vector
a "  aq; au; av!T , and scale it so that it has a depolariza-
tion coefficient A "  a2q # a2u # a2v!1∕2:

ma " R aq; au; av!m1R
T  aq; au; av!A

" 1

A

0

B

B

@

A2
−aqA −auA avA

aqA −a2q −aqau −aqav
auA −auaq −a2u −auav
avA −avaq −avau −a2v

1

C

C

A

: (8)

The matrix ma has no effect on the Stokes vector
 A; aq; au; av!T and depolarizes to a maximum degree
the Stokes vector  A;−aq;−au;−av!T . Each of the param-
eters aq, au, and av can take any real value. Notice that
there are apparent retardance elements in what one may
have thought to be a diattenuative depolarization differ-
ential matrix.
Next, we consider the generator

m2 "

0

B

B

@

0 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

1

C

C

A

. (9)

The matrix m2 depolarizes to a maximum degree the
Stokes vectors  1; 1; 0; 0!T and  1;−1; 0; 0!T and has no
effect on the Stokes vector  1; 0; cos ϕ; sin ϕ!T for any
ϕ. The matrix m2 is independent of ma, in that no vector
a can be chosen so that ma " m2. As we did above, we
can orient the matrixm2 so that its axis is aligned along a
vector b "  bq; bu; bv!T and scale it so that it has a depo-
larization coefficient B "  b2q # b2u # b2v!1∕2:

mb " R bq; bu; bv!m2R
T  bq; bu; bv!B

" 1

B

0

B

B

B

@

0 0 0 0

0 −b2q −bqbu −bqbv
0 −bubq −b2u −bubv
0 −bvbq −bvbu −b2v

1

C

C

C

A

: (10)

The matrix mb depolarizes the Stokes vectors
 B; bq; bu; bv!T and  B;−bq;−bu;−bv!T to the greatest ex-
tent and has no effect on those Stokes vectors orthogonal
to them. Each of the bq, bu, and bv can take on any real

value. Notice that the matrix mb, like ma, has elements
one might attribute to retardance depolarization.
Finally, we consider the generator

m3 "

0

B

B

@

0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 −1

1

C

C

A

. (11)

The matrix m3 has no effect on the Stokes vectors
 1; 1; 0; 0!T and  1;−1; 0; 0!T and depolarizes to a maxi-
mum degree the Stokes vector  1; 0; cos ϕ; sin ϕ!T for
any ϕ. The matrix m3 is independent of ma and mb, in
that no vectors a and b can be chosen so that
ma # mb " m3. As we did above, we can orient the ma-
trix m3 so that its axis is aligned along a vector c "
 cq; cu; cv!T and scale it so that it has a depolarization
coefficient C "  c2q # c2u # c2v!1∕2:

mc " R cq; cu; cv!m3R
T  cq; cu; cv!C

" 1

C

0

B

B

@

0 0 0 0

0 −c2u − c2v cqcu cqcv
0 cucq −c2q − c2v cucv
0 cvcq cvcu −c2q − c2u

1

C

C

A

: (12)

The matrix mc has no effect on the polarization states
 C; cq; cu; cv!T and  C;−cq;−cu;−cv!T and depolarizes
mostly strongly those states orthogonal to these. Each
of the cq, cu, and cv can take on any real value. Once
again, the matrix mc, like ma and mb, has elements
one might attribute to retardance depolarization.
It is worth mentioning that the generating matrices for

the nondepolarizing differential matrices are

m4 "

0

B

B

@

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1

C

C

A

; (13)

m5 "

0

B

B

@

0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

1

C

C

A

; (14)

m6 "

0

B

B

@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C

C

A

: (15)

The matrixm given in Eq. (4) is the sum ofm4, rotated by
R β; γ; δ!, m5, rotated by R η;−ν; μ!, and m6, scaled by
α. The complete depolarizing differential matrix can
therefore be parameterized by the sum m0 " m # ma#
mb # mc, with seven nondepolarizing coefficients and
nine depolarizing coefficients, all of which can take on
any real values.
Lu and Chipman [10] proposed a Mueller matrix

decomposition in which a matrix M is expressed as
the product
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M  MΔMRMD; (16)

where MΔ represents a depolarizer, MR represents a re-
tarder, andMD represents a diattenuator. There has been
some discussion about the appropriate order of the
matrices in Eq. (16), because the one given by Lu and
Chipman is somewhat arbitrary [10–12]. Volume-
diffusing materials, however, are not expected to consist
physically of these three elements in any order, so the
use of the Lu–Chipman decomposition may not provide
necessary physical insight for these cases. Instead,
we would expect some materials to continuously de-
polarize, retard, and diattenuate as light propagates
through them.
Ossikovski [8] and Ortega-Quijano and Arce-Diego [13]

proposed using the logarithm of the Mueller matrix as a
means for characterizing it. By simply inverting Eq. (3),
we have, for a given M and for z  1, the differential
matrix

m  Wdiag!ln τ0; ln τ1; ln τ2; ln τ3"W
−1; (17)

where τ0, τ1, τ2, and τ3 are the eigenvalues ofM andW is
a matrix whose columns are the eigenvectors of M.
Parameterizing a Mueller matrix in this fashion has the
advantage that there is no assumption about the ordering
of the depolarizer, retarder, or diattenuator, because all
three are treated as occurring simultaneously.
We propose a similar decomposition as that proposed

before [8,13], albeit with the new parameterization for
the differential matrix. Because of the nonlinear behavior
of the new depolarization parameters, however, it is dif-
ficult to analytically obtain them from the differential
matrix. Instead, Newton’s method can be used to itera-
tively find the parameters. If the Mueller matrix or differ-
ential matrix is not valid, then there will be no real
solution, because the parameterization guarantees realiz-
able Mueller matrices for any real parameters.
Here, we present an example. Data were obtained from

reflection of 633 nm light from a pressed polytetra-
fluoroethylene powder scattering standard, measured
with an incident angle of 75° and a viewing angle of
60° [14]. In this case, the normalized Mueller matrix
was found to be

M  

0

B

B

@

1.000 −0.098 0.005 0.001

−0.105 0.442 0.000 −0.002

0.002 0.000 0.323 −0.124

0.003 0.004 0.127 0.276

1

C

C

A

. (18)

(Details of these measurements and their uncertainties
are given in the original work; see [14].) The effective
differential matrix is then found from Eq. (17) to be

m0  

0

B

B

@

−0.009 −0.145 0.008 0.003

−0.155 −0.831 0.002 −0.005

0.004 0.002 −1.053 −0.393

0.005 0.011 0.402 −1.202

1

C

C

A

. (19)

The parameters that match the differential matrix are
found to be

α  −0.014;

!β; γ; δ"T  !−0.150; 0.006; 0.004"T ;
!η; ν; μ"T  !−0.398;−0.008;−0.001"T ;

a  !−0.005;−0.002; 0.001"T ;

b  !0.682;−0.009; 0.678"T ;

c  !0.858;−0.003; 0.584"T .

!20"

It can be seen that this decomposition finds a negligible a,
bu, cu, γ, δ, μ, and ν. The negligible values of γ, μ, au, bu,
and cu are expected from the reflection symmetry of the
sample and the measurement geometry.

The general form for differential matrices described in
this Letter provides a basis for performing simulations of
polarization behavior in systems where we anticipate
continuous evolution of the Stokes vector as light propa-
gates through a material. In solving radiative transfer
problems, multistream generalizations of Eq. (1) are re-
quired to describe the evolution of the Stokes vector in
scattering media, because the scattering process couples
light propagating in different directions. Scattering media
tend to cause depolarization, so the formalism described
in this manuscript should assist those performing simula-
tions for these media.
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