A SOFTWARE FOR DIFFRACTION STRESSFACTOR CALCULATIONS
FOR TEXTURED MATERIALS

Thomas Gniupel-Herold
Materias Science and Engineering, University of Maryland, Bldg. 090, Rm 2135, College Park,
MD, 20742, USA, and Center for Neutron Research, NIST, 100 Bureau Dr stop 6102,
Gaithersburg, MD, 20899-6102

ABSTRACT

A software package for the calculation of diffraction elastic constants (DEC) for materials both
with and without preferred orientation was developed. All grain-interaction models that can use
the crystallite orientation distribution function (ODF) are incorporated, including Kroner, Hill,
inverse Kroner, and Reuss. The functions of the software include: reading the ODF in common
textual formats, pole figure calculation, calculation of DEC for different (hkl,o,y), calculation of
anisotropic bulk constants from the ODF, calculation of macro-stress from lattice strain and vice
versa aswell as mixtureratios of (hkl) of overlapped reflections in textured materials.

INTRODUCTION

Diffraction-based stress analysis depends critically on the use of the correct diffraction elastic
constants. A survey of the literature makes it abundantly clear that in the vast majority of casesin
which lattice strain needed conversion to stress preferred grain orientation (texture) is—
justifiably or not - disregarded, and isotropic diffraction elastic constants were used. The main
reasons for this apparent oversimplification are the added need to quantify the degree of

preferred grain orientation through pole figure measurements, and the use of pole figuresto
determine the orientation distribution function (ODF). Even with the ODF available, further
calculations are hampered by the lack of freely available software tools to perform calculations
of anisotropic diffraction elastic constants. The IsoDEC [1] software program introduced here
was devel oped to address this need.

FEATURESAND FUNCTIONALITY

The main purpose of IsobDEC is the calculation of the orientation and (hkl) dependent stress
factors using as input the ODF (in textual form as provided by the output of freely available
texture packages), the single crystal elastic constants and the bulk elastic constants. The latter
can be calculated from the ODF. The software can also be used to cal cul ate stress from measured
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lattice strains using the thus determined stress factors or, in reverse, calculate lattice strains from
agiven stress tensor. Some of the implemented models for DEC calcul ations also allow
including the grain shape, expressed as a generalized ellipsoid, into the calculation of the DEC.

Clearly knowledge of the ODF is crucid. It needs to be input to ISODEC in textual form, i.e.
using the output from popLA [2] or MTEX [3]. The ODF is expected in an equidistant spacing
for the three Euler angles @19 ¢, (Bunge notation) which istypically a 5°x5°x5° spacing. This
tabular form isinternally expanded to the full interval [0..2x;0..7;0..2x] and made quasi-
continuous by means of tri-linear interpolation. This allows the computation of pole figures (in
popLA format) and orientation fibers (i.e. ODF-values for a series of Euler angle combinations)
through Euler space. Orientation fibers are a key element of DEC calculations that use the ODF.
The models that can be selected for DEC calculations are the Kroner model [4,5,6], the Reuss
model [7,8], the Hill model [7,9,10] and the inverse Kréner model [6,10]. The two Kréner-type
models allow the user to devise complex elastic interactions: First, one can approximate multi-
phase composites (e.g. elastically hard particlesin a soft matrix like SICin Al) by using
appropriate set of single crystal constants and bulk constants. Second, the effects of elongated or
otherwise non-spherical grains can be included by changing the grain shape parametersin
IsoDEC.

Input and output in ISoODEC can be done through the spreadsheet, which allows basic copy and
paste exchanges with common spreadsheet programs such as EXCEL. Large datasets consisting
of d-spacings, their uncertainties, unstressed d-spacings, along with their uncertainties and
measurement directions (ey) can be treated this way. Stress tensor components and the
unstressed d-spacing can be fixed or treated as refinable parameters in the stress fit, depending
on boundary/equilibrium conditions.

OPERABILITY

IsoDEC offers two visua interfaces: one for isotropic calculations and one for calculations that
include preferred orientation. The interface for isotropic calculationsis shown in Figure 1. The
fewest possible steps of calculating the isotropic constants s;(hkl) and Y2s,(hkl) are loading a set
of material constants from the drop-down list, entering the indices h, k and |, and starting the
calculation. Elastic constants that are not found in the database included can be entered manually
but must include the | attice parameters and, after entering the single crystal elastic constants, a
calculation of the isotropic bulk constants (upper |eft).
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Figure 1. Screenshot of 1soDEC for isotropic calculations.

For anisotropic calculations the amount of information that has to be provided increases as
shown in Figure 2. Generally the ODF has to be provided either in popLA format or in MTEX
format (“Load ODF”). There is also the possibility to not use an ODF, and instead enter user-
supplied values for the bulk constants, e.g. using arotated single crystal constants tensor to
simulate the effects of individual texture components on the stress factors. Of course, the
anisotropic bulk constants can be cal culated from the ODF, the average grain shape (as €llipsoid
axis ratios) can be entered, and the model (Hill, Reuss, Kroner, inverse Kroner) is chosen. The
stress factors are calculated for the fieldsin which h, k, |, phi and psi are given. This step hasto
precede any stress or strain calculations that require the stress factors. A stress calculation needs
the additional input of d-spacings, the d-spacing uncertainties, the reference or unstressed d-
spacing and their uncertainties and a sorting qualifier (column 1 in the worksheet) that allows to
group those data together that are to be used for the calculation of the same stress tensor (i.e.
same location on the sample or similar). The reverse cal culation d-spacing/strain from stress
naturally requires stress values entered in their appropriate columns. The output of this
caculationisin the column “d_calc” which means that if strain is desired one has to perform the
explicit calculation (d-dy)/dy oneself.
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+I" Stress Factors for Aggregates with Preferred Orientation
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Figure 2. Interface for anisotropic calculations.

PLATFORM AND AVAILABILITY

IsoDEC was written in Turbo Delphi for the Windows operating system. It can also be used
under MacOS X+ and x86 linux, if Windows emulator software is present. Both Darwine
(MacOS X) and Wine have been tested successfully. The installation package contains ahelp
file, adatabase of single crystal elastic constants and several ODFs in textual form that are
readable by 1soDEC for usein further calculations of DEC, pole figures, anisotropic bulk
constants and ODF intensities for given specimen directions. The program home page and the
download link can be found at
http://www.ncnr.nist.gov/programs/crystall ography/software/isodec/.

DISCLAIMER

Certain commercial firms and trade names are identified in this report in order to specify aspects

of the experimental procedure adequately. Such identification is not intended to imply

recommendation or endorsement by the National Institute of Standards and Technology, nor isit
intended to imply that the materials or equipment identified are necessarily the best available for

the purpose.
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