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Moments of the Truncated Complex Gaussian Distribution

Ryan J. Pirkl

Electromagnetics Division
National Institute of Standards and Technology

325 Broadway, Boulder, CO 80305

We present arbitrary moments of the univariate and bivariate truncated complex Gaussian distri-
bution. Using these moment expressions, we investigate the convergence of a particular infinite
series of moments encountered in recent statistical analyses of scattering parameters measured in
reverberation chambers. We find that the infinite series converges for particular parameterizations
of the truncated distribution and may be expressed in closedform for the univariate case.

Key words: bivariate, circular random variables, complex Gaussian, complex normal, truncated
complex Gaussian, truncated complex normal, univariate.

1. Introduction

The complex Gaussian distribution has proven to be a useful statistical model for describing a
wide range of physical phenomena including thermal noise [1, 2], signal fluctuations in wireless
links [3], and the complex electromagnetic fields within reverberation chambers [4]. For physical
systems, it is important to recognize that the infinite tailsof the complex Gaussian distribution
allow for realizations that may violate energy conservation principles. As an example, in the pres-
ence of a continuous wave-transmitter, the maximum power received by an antenna is constrained
by the power transmitted by the source. However, modeling the antenna’s received signal as a
complex Gaussian random variable allows for the possibility that the received power may exceed
the transmitted power!

In particular, this work is motivated by ongoing statistical studies of the scattering parameters
measured in reverberation chambers. Typically, these scattering parameters are modeled as com-
plex Gaussian random variables [5, 6]. However, this model neglects the fact that a reverberation
chamber is a passive system such that the magnitude of the scattering parameters cannot exceed
unity [7]. In this light, it is expected that the scattering-parameter measurements made in re-
verberation chambers may be more accurately modeled as realizations of atruncatedcomplex
Gaussian random variable, wherein the complex Gaussian distribution’s probability density func-
tion is forced to zero outside of the unit circle and re-normalized within the unit circle such that
the probability density function integrates to unity.
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Whereas both the truncatedreal Gaussian distribution [8–11] and the non-truncatedcomplexGaus-
sian distribution [12–16] have been studied extensively, there have been very few analyses of the
truncated complex Gaussian distribution [17–19]. In all ofthese instances, the truncated and under-
lying non-truncated Gaussian distributions were zero-mean, and the probability density function
was truncated along circles of constant magnitude in the complex plane. In [17], the variance and
spectral kurtosis were evaluated for a one-sided truncatedcomplex Gaussian distribution, wherein
the probability density function was nonzero within a disk centered at the origin. In [18], the one-
sided truncated complex Gaussian distribution’s entropy was evaluated. In [19], the variance and
fourth moment were evaluated for a two-sided truncated complex Gaussian distribution, wherein
the probability density function was nonzero within an annulus centered about the origin.

Here, we present expressions for arbitrary moments of the truncated complex Gaussian distribution
for both the univariate (i.e., single complex random variable) and bivariate (i.e., a pair of complex
random variables) cases. Additionally, we examine an infinite series of moments that we have
encountered in recent statistical analyses of reverberation chambers and determine the convergence
of this infinite series when the random variables are drawn from both non-truncated and truncated
complex Gaussian distributions. We show that for the non-truncated case, the series diverges
regardless of the distribution’s parameterization. In contrast, for the truncated case, the series
converges for certain distribution parameterizations andmay even be expressed in closed form if
the distribution is univariate.

We restrict our analysis to complex random variables that are “circular” (see [15, 16, 20, 21]),
wherein the (joint) probability density function of the random variable(s) is rotationally invariant
in the complex plane. Due to this rotational symmetry, circular random variables are inherently
complex and zero mean, and have the unique property that expectations of products containing
different numbers of conjugated and non-conjugated randomvariables are always zero [16]. The
latter property is particularly convenient, because it reduces the number of non-zero moments that
need to be considered.

We begin by reviewing the derivations for the moments of the univariate non-truncated circular
Gaussian distribution in Section 2.1.. Then, following a similar analysis, we derive the moments of
the univariate truncated circular Gaussian distribution in Section 2.2.. In Section 3., we consider the
bivariate distributions. We first review the derivation forthe moments of the bivariate non-truncated
distribution in Section 3.1., and then apply this analysis to the bivariate truncated distribution
in Section 3.2.. In Section 4., we examine the convergence ofan infinite series of univariate
and bivariate moments drawn from non-truncated and truncated circular Gaussian distributions.
Section 5. summarizes the main contributions of this report.

2. Univariate Distribution

2.1. Non-Truncated Gaussian

Consider a realizationzof univariate circular Gaussian random variableZ characterized by a mean
of zero and a variance ofσ2. For many analyses,z is commonly decomposed into its real and
imaginary components:
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z= x+ jy, (1)

wherex and y are realizations of two independent and identically distributed zero-mean Gaus-
sian random variables, each with a variance ofσ2/2. Here, we will favor an alternative phasor
decomposition where we expressz in terms of its magnitude and phase [13]:

z= re jφ. (2)

In (2), the magnituder ∈ [0,∞) and phaseφ ∈ [0,2π) are realizations of a Rayleigh and uniform
distribution, respectively. Due to the circularity ofZ, the magnitude and phase distributions are
independent. Importantly, (1) and (2) are equivalent representations for a circular Gaussian random
variable. Using (2), we may express the probability densityfunction ofZ as

fZ(r,φ) =
r

πσ2e−
r2

σ2 . (3)

By use of (3), the most general expression for the moments ofZ is given by [16]

E {ZmZ∗n}=
∞∫

0

dr

2π∫

0

dφzmz∗n fZ(r,φ), (4)

whereE {·} denotes the expectation operator,·∗ denotes the complex conjugate, andZ∗n = (Zn)∗ =
(Z∗)n. However, because we have assumed thatZ is acircular random variable, we need consider
only moments for whichm= n. Form 6= n, it may be shown that [16]

E {ZmZ∗n}= 0 if m 6= n. (5)

For the case ofm= n, (4) becomes

E {[ZZ∗]n}=
∞∫

0

dr

2π∫

0

dφ [zz∗]n
r

πσ2e−
r2

σ2 . (6)

Performing the integration with respect toφ yields

E {[ZZ∗]n}= 2
σ2

∞∫

0

dr r2n+1e−
r2

σ2 . (7)

By way of a change of variables and the introduction of the gamma functionΓ(x), defined as

Γ(x) =
∞∫

0

dt tx−1e−t , (8)
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we may further simplify (7), yielding

E {[ZZ∗]n}= σ2nΓ(n+1). (9)

Noting that for integern,

Γ(n+1) = n!, (10)

where·! denotes the factorial, we get

E {[ZZ∗]n}= n!σ2n. (11)

Equation (11) is well known [12]. Furthermore, inspection of (11) confirms that

Var(Z) = E {ZZ∗}= σ2, (12)

where Var(Z) denotes the variance ofZ.

2.2. Truncated Gaussian

Consider now a realization ˜z= r̃e j φ̃ of a univariatetruncatedcircular Gaussian random variableZ̃.
Here, ˜r ∈ [0,a] andφ̃∈ [0,2π) are realizations of a truncated Rayleigh distribution and uniform dis-
tribution, respectively. Again due to the circularity ofZ̃, its magnitude and phase distributions are
independent. In contrast, the real and imaginary components of Z̃ are dependent random variables.

We define the probability density function for the truncateddistribution as

fZ̃(r̃, φ̃) =
{

C1 fZ(r̃, φ̃) for r̃ ≤ a
0 otherwise

, (13)

where fZ(r̃, φ̃) is the probability density function corresponding to the univariate non-truncated
circular Gaussian distribution defined in (3), andC1 is a normalization constant defined such that

1=

∞∫

0

dr̃

2π∫

0

dφ̃ fZ̃(r̃, φ̃). (14)

Inserting (13) into (14) and solving forC1 yields

C1 =
1

1−e−
a2

σ2

. (15)

It is important to emphasize thatσ2 is a shape parameter for the truncated distribution – it isnot the
variance ofZ̃, as was the case for the non-truncated circular Gaussian distribution. The relationship
betweenσ2 and the variance of̃Z will be more fully explored toward the end of this section.
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Analogous to the non-truncated univariate case, we expressthe moments of the truncated random
variableZ̃ as

E {Z̃mZ̃∗n}=
a∫

0

dr̃

2π∫

0

dφ̃ z̃mz̃∗n fZ̃(r̃, φ̃). (16)

Again, due to the circularity of̃Z, we have

E {Z̃mZ̃∗n}= 0 if m 6= n, (17)

whereby we need to consider only moments of the form

E {[Z̃Z̃∗]n}=
a∫

0

dr̃

2π∫

0

dφ̃ [z̃z̃∗]n fZ̃(r̃, φ̃). (18)

Substituting (13) into (18) and performing theφ̃ integration yields

E {[Z̃Z̃∗]n}=C1
2

σ2

a∫

0

dr̃ r̃2n+1e−
r̃2

σ2 . (19)

By introducing the incomplete gamma functionγ(n,x), defined as [22]

γ(n,x) =
x∫

0

dt tn−1e−t , (20)

we can evaluate the ˜r integral, whereby (19) becomes

E {[Z̃Z̃∗]n}=C1γ
(

n+1,
a2

σ2

)

σ2n. (21)

Substituting (15) forC1 in (21) leads to our final result for the moments ofZ̃:

E {[Z̃Z̃∗]n}= σ2n

1−e−
a2

σ2

γ
(

n+1,
a2

σ2

)

. (22)

Inspection of (22) shows that the variance ofZ̃ is given by

Var(Z̃) = E {Z̃Z̃∗}= σ2

1−e−
a2

σ2

γ
(

2,
a2

σ2

)

. (23)
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Figure 1: Comparison of the truncated circular Gaussian distribution’s shape parameterσ2 and
the distribution’s corresponding variance Var{Z̃} for different values ofa2.

Using the recurrence relationships for the incomplete gamma function, [22]

γ(n+1,x) = nγ(n,x)−xne−x for n> 0 (24)

and

γ(1,x) = 1−e−x, (25)

we may alternatively express the variance ofZ̃ as

Var(Z̃) = σ2
1−

(

1+ a2

σ2

)

e−
a2

σ2

1−e−
a2

σ2

. (26)

Equation (26) agrees with that reported in [17]. Taking the limit of (26) as a2/σ2 → 0 and
a2/σ2 → ∞, we find that fora2 ≫ σ2, Var(z̃)∼ σ2 and fora2 ≪ σ2, Var(z̃)∼ a2/2. That is, when
the truncation radiusa is large compared to the shape parameterσ, the variance of the truncated
circular Gaussian distribution approaches that of the non-truncated circular Gaussian distribution,
as defined in (12). Conversely, whena is small compared toσ, the probability density function of
the truncated circular Gaussian distribution is approximately constant within a circle of radiusa in
the complex plane. Thus, fora2 ≪ σ2, the variance of̃Z approaches that of a “circular uniform”
distribution characterized by a constant probability density function within a circle of radiusa in
the complex plane. This behavior is demonstrated in Figure 1for different values ofa2/σ2. As
expected, we observe that the variance approachesa2/2 whenσ2 ≫ a2 andσ2 whenσ2 ≪ a2.
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3. Bivariate Distribution

We next consider moments of a bivariate distribution. As in Section 2., we first review the deriva-
tion for the non-truncated circular Gaussian distributionand then proceed to derive the moments
for the truncated circular Gaussian distribution.

3.1. Non-Truncated Gaussian

Consider the moments of a pair of identically distributed andpotentially correlated non-truncated
circular Gaussian random variables,Z1 andz2. As in Section 2.1., we assume the variables are zero
mean with a variance ofσ2. Additionally, we denote the complex correlation coefficient between
Z1 andZ2 asρ. Denotingz1 = r1ejφ1 andz2 = r2ejφ2 as realizations ofZ1 andZ2, the probability
density function for the associatedbivariatecircular Gaussian distribution is given by [13]

fZ1,Z2(r1,φ1, r2,φ2) =
r1r2

π2σ4(1−|ρ|2)e
− r21+r22+2r1r2|ρ|cos(φ2−φ1+π+∠ρ)

σ2(1−|ρ|2) (27)

for |ρ| ∈ [0,1). In (27),∠ρ denotes the phase of the complex phasorρ such thatρ = |ρ|ej∠ρ, and
we consider|ρ|= 1 in the one-sided limit that|ρ| → 1−.

Again, allowing for moments of conjugated and non-conjugated terms, we find that the most gen-
eral expression for the moments of the bivariate distribution is

E {Zm
1 Zn

2Z∗p
1 Z∗q

2 }=
∞∫

0

dr1

2π∫

0

dφ1

∞∫

0

dr2

2π∫

0

dφ2zm
1 zn

2z∗p
1 z∗q

2 fZ1,Z2(r1,φ1, r2,φ2). (28)

Due to the circularity ofZ1 andZ2, we get

E {Zm
1 Zn

2Z∗p
1 Z∗q

2 }= 0 if m+n 6= p+q, (29)

whereby we need consider only moments of the form

E

{

Zm
1 ZN−m

2 Z∗p
1 Z∗(N−p)

2

}

=

∞∫

0

dr1

2π∫

0

dφ1

∞∫

0

dr2

2π∫

0

dφ2zm
1 zN−m

2 z∗p
1 z∗(N−p)

2 fZ1,Z2(r1,φ1, r2,φ2) (30)

for N ≤ m, p≤ 0. Substituting (27) and the phasor forms ofz1 andz2 into (30) yields

E

{

Zm
1 ZN−m

2 Z∗p
1 Z∗(N−p)

2

}

=
1

π2σ4(1−|ρ|2) (31)

×
∞∫

0

dr1

2π∫

0

dφ1

∞∫

0

dr2

2π∫

0

dφ2 rm+p+1
1 r2N−m−p+1

2 ej(m−p)[φ1−φ2]e
− r21+r22+2r1r2|ρ|cos(φ2−φ1+π+∠ρ)

σ2(1−|ρ|2) .
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Theφ1 andφ2 integrals may be evaluated by way of a change of variables andthe following integral
valid for integern [23]:

I|n|(x) =
1
π

π∫

0

dθexcosθ± jnθ, (32)

whereIn(x) is the modified Bessel function of the first kind of ordern. Thereby, (31) becomes

E {Zm
1 ZN−m

2 Z∗p
1 Z∗(N−p)

2 }= 4ej(m−p)∠ρ

σ4(1−|ρ|2) (33)

×
∞∫

0

dr1

∞∫

0

dr2rm+p+1
1 r2N−m−p+1

2 e
− r21+r22

σ2(1−|ρ|2) I|m−p|

(

2r1r2|ρ|
σ2(1−|ρ|2)

)

.

To carry out ther1 andr2 integrations, we first substitute forIn(x) its power series [24]

In(x) =
(x

2

)n ∞

∑
k=0

(

x
2

)2k

k!(n+k)!
, (34)

whereby (33) becomes

E {Zm
1 ZN−m

2 Z∗p
1 Z∗(N−p)

2 }= 4|ρ||m−p|ej(m−p)∠ρ

σ2 (35)

×
∞

∑
k=0

1
k!(k+ |m− p|)!

|ρ|2k

[σ2(1−|ρ|2)]2k+|m−p|+1

×
∞∫

0

dr1r2k+m+p+|m−p|+1
1 e

− r21
σ2(1−|ρ|2

∞∫

0

dr2r2k+2N−m−p+|m−p|+1
2 e

− r22
σ2(1−|ρ|2 .

After evaluating the integrals with the aid of the gamma function defined in (8), (35) becomes

E {Zm
1 ZN−m

2 Z∗p
1 Z∗(N−p)

2 }= |ρ||m−p|ej(m−p)∠ρσ2N(1−|ρ|2)N+1 (36)

×
∞

∑
k=0

(

k+ |m−p|+m+p
2

)

!
(

k+N+ |m−p|−m−p
2

)

!

k!(k+ |m− p|)! |ρ|2k,

where we have usedΓ(n+1) = n!.

For arbitraryN,m, p, the summation in (36) cannot be evaluated in closed form. However, if either
m= 0, p= 0, orN = m+ p, we may apply the binomial series [23]
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1
(1−x)n+1 =

∞

∑
k=0

(n+k)!
n!k!

xk (37)

valid for |x|< 1. Thereby, form= 0, (36) becomes

E {ZN
2 Z∗p

1 Z∗(N−p)
2 }= N!|ρ|pe− jp∠ρσ2N; (38)

for p= 0,

E {Zm
1 ZN−m

2 Z∗N
2 }= N!|ρ|mejm∠ρσ2N; (39)

and forN = m+ p,

E {Zm
1 Zp

2Z∗p
1 Z∗m

2 }= (m+ p)!|ρ||m−p|ej(m−p)∠ρσ2(m+p). (40)

In terms of expectations, the correlation between two random variablesX1 andX2 is defined as

Corr{X1,X2}=
Cov{X1,X2}

√

Var{X1}Var{X2}
, (41)

where Cov{X1,X2} denotes the covariance betweenX1 andX2 as given by

Cov{X1,X2}= E {X1X∗
2}. (42)

By use of (40) withm= 1 andp= 0, the covariance betweenZ1 andZ2 is thus

Cov{Z1,Z2}= ρσ2. (43)

Substituting (43) and (12) into (41), we find that the correlation betweenZ1 andZ2 is

Corr{Z1,Z2}= ρ, (44)

which is the expected result for a bivariate non-truncated circular Gaussian distribution.

3.2. Truncated Gaussian

We now consider the moments of a pair of identically distributed and potentially correlated trun-
cated circular Gaussian random variables,Z̃1 andZ̃2. As in Section 2.2.,σ2 is a shape parameter
for the truncated bivariate distribution that is related tothe variance of̃Z1 andZ̃2 by (26). Similarly,
|ρ| ∈ [0,1) is a complex shape parameter for the bivariate truncated distribution that is related to
the complex correlation coefficient betweenZ̃1 andZ̃2. The exact relationship betweenρ and the
complex correlation coefficient will be explored toward theend of this section.
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Analogous to the univariate truncated circular Gaussian case presented in Section 2.2., we de-
note realizations of̃Z1 andZ̃2 as z̃1 = r̃e j φ̃1 and z̃2 = r̃2ej φ̃2, respectively and define the bivariate
truncated Gaussian distribution’s probability density function as

fz̃1,z̃2(r̃1, r̃2, φ̃1, φ̃2) =

{

C2 fz1,z2(r̃1, r̃2, φ̃1, φ̃2) for r̃1, r̃2 ≤ a
0 otherwise

, (45)

where fZ1,Z2(r1, r2,φ1,φ2) is the probability density function defined in (27) for the non-truncated
bivariate distribution, andC2 is the bivariate truncated distribution’s normalization constant such
that fZ̃1,Z̃2

(r̃1, r̃2, φ̃1, φ̃2) integrates to unity. This normalization constant is definedsuch that

1=

∞∫

0

dr̃1

2π∫

0

dφ̃1

∞∫

0

dr̃2

2π∫

0

dφ̃2 fZ̃1,Z̃2
(r̃1, r̃2, φ̃1, φ̃2). (46)

To solve (46) forC2, we use (45) and (35) withN = m= p= 0 and change the upper integration
limits from ∞ to a. This leads to

1=C2
4

σ2

∞

∑
k=0

|ρ|2k

[σ2(1−|ρ|2)]2k+1

a∫

0

dr1r2k+1
1 e

− r21
σ2(1−|ρ|2

a∫

0

dr2r2k+1
2 e

− r22
σ2(1−|ρ|2 . (47)

Using (20) to evaluate the integrals yields

1=C2
4

σ2

∞

∑
k=0

1
k!k!

|ρ|2k

[σ2(1−|ρ|2)]2k+1

[

[σ2(1−|ρ|2)]k+1

2
γ
(

k+1,
a2

σ2(1−|ρ|2)

)]2

. (48)

Introducing the regularized incomplete gamma functionP(p,x), defined as [22]

P(p,x) =
γ(p,x)
Γ(p)

, (49)

allows us to express the reciprocal ofC2 as

1
C2

= (1−|ρ|2)
∞

∑
k=0

[

P

(

k+1,
a2

σ2(1−|ρ|2)

)]2

|ρ|2k. (50)

Recognizing that 0≤ P(p,x) ≤ 1 for all p,x ≥ 0, we can show with the aid of (37) thatC2 ≥ 1,
with equality approached asa2/σ2/(1−|ρ|2)→ ∞.

Similar to (28), we define the moments of the bivariate truncated circular Gaussian distribution as

E {Z̃m
1 Z̃∗n

2 }=
a∫

0

dr̃1

2π∫

0

dφ̃1

a∫

0

dr̃2

2π∫

0

dφ̃2 z̃m
1 z̃∗n

2 fZ̃1,Z̃2
(r̃1, r̃2, φ̃1, φ̃2). (51)
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Again due to circularity, we have

E {Z̃m
1 Z̃n

2R̃∗p
1 R̃∗q

2 }= 0 if m+n 6= p+q, (52)

whereby we need consider only moments of the form

E {Z̃m
1 Z̃N−m

2 Z̃∗p
1 Z̃∗(N−p)

2 }=
∞∫

0

dr̃1

2π∫

0

dφ̃1

∞∫

0

dr̃2

2π∫

0

dφ̃2 z̃m
1 z̃N−m

2 z̃∗p
1 z̃∗(N−p)

2 fZ̃1,Z̃2
(r̃1, φ̃1, r̃2, φ̃2) (53)

for 0≤ m, p≤ N. Following (31)-(35), (53) simplifies to

E {Z̃m
1 Z̃N−m

2 Z̃∗p
1 Z̃∗(N−p)

2 }=C2
4|ρ||m−p|ej(m−p)∠ρ

σ2 (54)

×
∞

∑
k=0

1
k!(k+ |m− p|)!

|ρ|2k

[σ2(1−|ρ|2)]2k+|m−p|+1

×
a∫

0

dr̃1r̃2k+m+p+|m−p|+1
1 e

− r̃21
σ2(1−|ρ|2)

a∫

0

dr̃2r̃2k+2N−m−p+|m−p|+1
2 e

− r̃22
σ2(1−|ρ|2) .

Using (20) to evaluate the ˜r1 and ˜r2 integrals, we have

E {Z̃m
1 Z̃N−m

2 Z̃∗p
1 Z̃∗(N−p)

2 }=C2|ρ||m−p|ej(m−p)∠ρσ2N(1−|ρ|2)N+1 (55)

×
∞

∑
k=0

γ
(

k+ |m−p|+m+p
2 +1, a2

σ2(1−|ρ|2)

)

γ
(

k+N+ |m−p|−m−p
2 +1, a2

σ2(1−|ρ|2)

)

k!(k+ |m− p|)! |ρ|2k.

Unfortunately, the summation in (55) cannot be evaluated inclosed form forany m, p, or N. Thus,
substituting into (55) the expression for our normalization constant given in (50) and simplifying,
we have

E {Z̃m
1 Z̃N−m

2 Z̃∗p
1 Z̃∗(N−p)

2 }= |ρ||m−p|ej(m−p)∠ρσ2N(1−|ρ|2)N (56)

×

∞
∑

k=0

γ
(

k+ |m−p|+m+p
2 +1, a2

σ2(1−|ρ|2)

)

γ
(

k+N+
|m−p|−m−p

2 +1, a2

σ2(1−|ρ|2)

)

k!(k+|m−p|)! |ρ|2k

∞
∑

k=0

[

P
(

k+1, a2

σ2(1−|ρ|2)

)]2
|ρ|2k

.

By use of (56) withm= N = 1 andp = 0, the covariance betweeñZ1 andZ̃2 may be expressed
reasonably compactly as
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Cov{Z̃1, Z̃2}= E {Z̃1Z̃∗
2}= ρσ2(1−|ρ|2)

∞
∑

k=0

[

P
(

k+2, a2

σ2(1−|ρ|2)

)]2
|ρ|2k(k+1)

∞
∑

k=0

[

P
(

k+1, a2

σ2(1−|ρ|2)

)]2
|ρ|2k

, (57)

where we have usedΓ(k+ 2) = (k+ 1)Γ(k+ 1), along with the regularized incomplete gamma
function defined in (49). Combining (57), (26), and (41), we find that the correlation betweeñZ1

andZ̃2 is

Corr{Z̃1, Z̃2}= ρ(1−|ρ|2) 1−e−
a2

σ2

1−
(

1+ a2

σ2

)

e−
a2

σ2

∞
∑

k=0

[

P
(

k+2, a2

σ2(1−|ρ|2)

)]2
|ρ|2k(k+1)

∞
∑

k=0

[

P
(

k+1, a2

σ2(1−|ρ|2)

)]2
|ρ|2k

. (58)

Figure 2 compares the actual correlation Corr{Z̃1Z̃∗
2} to the truncated circular Gaussian distribu-

tion’s shape parameterρ for 0 < ρ < 1 and different values ofa2/σ2. Whena2/σ2 ≫ 1, the
distribution closely resembles a non-truncated circular Gaussian distribution, and the correlation
coefficient is approximately the shape parameterρ. As a2/σ2 is decreased, we observe that the
shape parameter becomes an increasingly poor estimate of the distribution’s correlation coefficient,
with Corr{Z̃1Z̃∗

2}< ρ in general. We also find that asa2/σ2 decreases, the correlation coefficient’s
sensitivity toρ becomes skewed, whereby moderate correlation coefficient values requireρ to be
increasingly large. Although Figure 2 considers purely real and positive values ofρ, inspection of
(58) indicates that similar comments apply to the magnitudeof complex correlation coefficients
based on the magnitude of complex values ofρ.

4. Infinite Series of Moments

In recent and ongoing statistical analyses of scattering parameters measured in reverberation cham-
bers, we have encountered the following two infinite series:

∞

∑
n=0

cn
E {[XX∗]n} (59)

and

∞

∑
n=0

cn
E {[X1X∗

2 ]
n}. (60)

In (59) and (60),c> 0 is a real, positive, and constant coefficient, andX, X1, andX2 are random
variables drawn from some circular distribution. For (59),the underlying distribution is univariate;
for (60), the distribution is bivariate, withX1 andX2 being identically distributed and potentially
correlated. Having derived expressions for arbitrary moments of the non-truncated and truncated
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Figure 2: Comparison of the truncated circular Gaussian distribution’s shape parameterρ and the
distribution’s corresponding correlation coefficent Corr{Z1Z∗

2} for different values ofa2/σ2.

circular Gaussian distributions in the previous sections,we are now able to ascertain the conver-
gence of these two series for the different distributions and, where possible, evaluate the summa-
tions in closed form. As with the preceding discussion, we first consider the univariate case given
by (59) and then proceed to the bivariate case given by (60).

4.1. Univariate Distribution

4.1.1. Non-Truncated Gaussian

By use of (11), the infinite series for the univariate non-truncated circular Gaussian distribution
takes the form

∞

∑
n=0

cn
E {[ZZ∗]n}=

∞

∑
n=0

cnn!σ2n. (61)

The factorialn! has thelower bound given by [25]

n! >
√

2πn
(n

e

)n
, (62)

whereby (61) has the lower bound

∞

∑
n=0

cn
E {[ZZ∗]n}>

√
2π

∞

∑
n=0

√
n
[

cσ2n
e

]n
. (63)
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This lower bound diverges for allcσ2 > 0. Thus, the infinite series given by (61) also diverges,
regardless of the choice ofc or the variance of the distribution.

4.1.2. Truncated Gaussian

By use of (21), the infinite series for the univariate truncated circular Gaussian distribution takes
the form

∞

∑
n=0

cn
E {[Z̃Z̃∗]n}=C1

∞

∑
n=0

cnγ
(

n+1,
a2

σ2

)

σ2n. (64)

By use of the integral representation of the incomplete gammafunction given in (20), (64) becomes

∞

∑
n=0

cn
E {[Z̃Z̃∗]n}=C1

a2/σ2∫

0

dt e−t
∞

∑
n=0

[ctσ2]n. (65)

Convergence of the summation in (65) requires that|ctσ2| < 1. Observing that the integration
region in (65) corresponds to 0≤ t ≤ a2

σ2 , we find that convergence thus requires thatca2 < 1.
Under this condition, (65) simplifies to

∞

∑
n=0

cn
E {[Z̃Z̃∗]n}=C1

a2/σ2∫

0

dt e−t 1
1−ctσ2 for ca2 < 1. (66)

By introducing the exponential integral function Ei(x) defined as [24]

Ei(x) =

x∫

−∞

et

t
dt, (67)

we may alternatively express (66) as

∞

∑
n=0

cn
E {[Z̃Z̃∗]n}=C1

1
cσ2e−

1
cσ2

[

Ei

(

1
cσ2

)

−Ei

(

1−ca2

cσ2

)]

for ca2 < 1. (68)

In the Appendix, we provide a more general proof of convergence for (59) foranycircular random
variableX whose realizations are bounded such that|x|< 1/

√
c for all x.

4.2. Bivariate Distribution

4.2.1. Non-Truncated Gaussian

By use of (39) withm= N, the infinite series for the bivariate non-truncated circular Gaussian
distribution takes the form
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∞

∑
n=0

cn
E {[Z1Z∗

2]
n}=

∞

∑
n=0

cnρnσ2nn!. (69)

Re-examining the lower bound on the factorial given in (62), we find that regardless of the value
of c|ρ|, the magnitude of the individual terms in the summation in (69) will grow toward infinity
asn→ ∞. Thus (69) diverges.

4.2.2. Truncated Gaussian

Starting from (55) and settingm= N = n andp= 0, we have

E {[Z̃1Z̃∗
2]

n}=C2ρnσ2n(1−|ρ|2)n+1 (70)

×
∞

∑
k=0

γ
(

k+n+1, a2

σ2(1−|ρ|2)

)

γ
(

k+n+1, a2

σ2(1−|ρ|2)

)

k!(k+n)!
|ρ|2k.

Using (49) and (10), we re-express (70) as

|E {[Z̃1Z̃∗
2]

n}|=C2|ρ|nσ2n(1−|ρ|2)n+1 (71)

×
∞

∑
k=0

γ
(

k+n+1, a2

σ2(1−|ρ|2)

)

Γ(k+1)
P

(

k+n+1,
a2

σ2(1−|ρ|2)

)

|ρ|2k.

A lower bound on the magnitude of (71) may be formulated by recognizing thatP(p+ q,x) <
P(p,x) [22], whereby

|E {[Z̃1Z̃∗
2]

n}|<C2|ρ|nσ2n(1−|ρ|2)n+1P

(

n+1,
a2

σ2(1−|ρ|2)

)

×
∞

∑
k=0

γ
(

k+n+1, a2

σ2(1−|ρ|2)

)

Γ(k+1)
|ρ|2k. (72)

This inequality may be simplified by use of the following relation [24]

γ(n+1, t(1−x))
(1−x)n+1 =

∞

∑
k=0

xkγ(k+n+1, t)
Γ(k+1)

(73)

valid for |x|< 1. By use of (73), (72) becomes

|E {[Z̃1Z̃∗
2]

n}|<C2[|ρ|σ2]nP

(

n+1,
a2

σ2(1−|ρ|2)

)

γ
(

n+1,
a2

σ2

)

. (74)
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Substitution of (74)’s upper bound into the infinite series given in (60) yields

∞

∑
n=0

cn|E {[Z̃1Z̃∗
2]

n}|<C2

∞

∑
n=0

cn[|ρ|σ2]nP

(

n+1,
a2

σ2(1−|ρ|2)

)

γ
(

n+1,
a2

σ2

)

. (75)

Recognizing thatP(n+ 1,x) < P(1,x) and using (49) and (25), we find that (75)’s upper bound
becomes

∞

∑
n=0

cn|E {[Z̃1Z̃∗
2]

n}|<C2

(

1−e
− a2

σ2(1−|ρ|2)

) ∞

∑
n=0

[c|ρ|σ2]nγ
(

n+1,
a2

σ2

)

, (76)

which, analogous to the summation in (64), may be evaluated by use of the integral representation
of the incomplete gamma function in (20). The result is

∞

∑
n=0

cn|E {[Z̃1Z̃∗
2]

n}|<C2

(

1−e
− a2

σ2(1−|ρ|2)

)

1
c|ρ|σ2 (77)

×e
− 1

c|ρ|σ2

[

Ei

(

1
c|ρ|σ2

)

−Ei

(

1−cρa2

c|ρ|σ2

)]

for c|ρ|a2 < 1.

The normalization constantC2 defined in (50) is the reciprocal of the area under theunnormal-
izedprobability density function. Thus,C2 is guaranteed to be finite for anya > 0, and (77) is
guaranteed to converge forc|ρ|a2 < 1. This indicates that the infinite series of bivariate moments
defined in (60) converges for the case of a truncated circularGaussian distribution, provided that
c|ρ|a2 < 1.

5. Summary

The truncated circular Gaussian distribution is a useful alternative to the non-truncated circular
Gaussian distribution, particularly when physical processes are described that have a finite range
of values. Here, we have developed expressions for arbitrary moments of univariate and bivariate
truncated circular Gaussian random variables. We have alsoexamined the convergence of a partic-
ular series of infinite moments that we have encountered in recent statistical analyses of scattering
parameters measured in reverberation chambers. We observed that the series always diverges for
the non-truncated circular Gaussian case and converges forparticular parameterizations of the
truncated circular Gaussian case. Based on these findings, wesuggest that statistical analyses of
reverberation-chamber measurements of scattering parameters use truncated circular Gaussian ran-
dom variables rather than the more conventional non-truncated circular Gaussian random variables.
This is particularly important when moments of large order are being calculated.
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Appendix A: Bounds on the Infinite Series of Moments of Univariate Dis-
tributions with Finite Support

Consider an arbitrary circular random variableX with probability density functionfX(r,φ). Due to
the circularity ofX, the univariate probability density functionfX(r,φ) is in general given by [16]

fX(r,φ) =
1
2π

fX(r), (78)

where fX(r) is the marginal probability density function corresponding to |X|. The non-zero mo-
ments ofX are given by

E {[XX∗]n}=
∞∫

0

dr

2π∫

0

dφ [xx∗]n fX(r,φ). (79)
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Defining a realization ofX asx= re jφ, and using (78), we find that (79) simplifies to

E {[XX∗]n}=
∞∫

0

dr r2n fX(r), (80)

whereby the non-zero moments ofX are determined by the even moments of|X|.

Let us suppose thatfX(r) = 0 for r > a; that is, we assumefX(r) is non-zero only forr ∈ [0,a].
Due to the monotonicity ofr2n, (80) will be maximized iffX(r) = δ(r −a), whereδ(·) denotes the
Dirac delta function. This leads to the following upper bound on the moments ofX:

E {[XX∗]n} ≤ a2n if fX(r) = 0 for r > a. (81)

Substitution of (81) into the infinite series defined in (59) yields

∞

∑
n=0

cn
E {[XX∗]n} ≤

∞

∑
n=0

[ca2]n, (82)

which converges ifa< 1/
√

c.
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