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Moments of the Truncated Complex Gaussian Distribution

Ryan J. Pirkl

Electromagnetics Division
National Institute of Standards and Technology
325 Broadway, Boulder, CO 80305

We present arbitrary moments of the univariate and bivariatincated complex Gaussian distri-
bution. Using these moment expressions, we investigateotheigence of a particular infinite
series of moments encountered in recent statistical analg§scattering parameters measured in
reverberation chambers. We find that the infinite seriesemm®s for particular parameterizations
of the truncated distribution and may be expressed in clésed for the univariate case.

Key words: bivariate, circular random variables, complexuSaian, complex normal, truncated
complex Gaussian, truncated complex normal, univariate.

1. Introduction

The complex Gaussian distribution has proven to be a us#dtisscal model for describing a
wide range of physical phenomena including thermal nois2][Isignal fluctuations in wireless
links [3], and the complex electromagnetic fields withinederation chambers [4]. For physical
systems, it is important to recognize that the infinite tailshe complex Gaussian distribution
allow for realizations that may violate energy conservapanciples. As an example, in the pres-
ence of a continuous wave-transmitter, the maximum powssived by an antenna is constrained
by the power transmitted by the source. However, modeliegattitenna’s received signal as a
complex Gaussian random variable allows for the posgititiat the received power may exceed
the transmitted power!

In particular, this work is motivated by ongoing statististudies of the scattering parameters
measured in reverberation chambers. Typically, theseéestaj parameters are modeled as com-
plex Gaussian random variables [5, 6]. However, this modglatts the fact that a reverberation
chamber is a passive system such that the magnitude of ttiersog parameters cannot exceed
unity [7]. In this light, it is expected that the scatteripgrameter measurements made in re-
verberation chambers may be more accurately modeled agateais of atruncatedcomplex
Gaussian random variable, wherein the complex Gaussi&bdison’s probability density func-
tion is forced to zero outside of the unit circle and re-ndimea within the unit circle such that
the probability density function integrates to unity.



Whereas both the truncatezhl Gaussian distribution [8—11] and the non-truncatechplexGaus-
sian distribution [12—-16] have been studied extensivblgré have been very few analyses of the
truncated complex Gaussian distribution [17-19]. In athefse instances, the truncated and under-
lying non-truncated Gaussian distributions were zerormaad the probability density function
was truncated along circles of constant magnitude in thept®aplane. In [17], the variance and
spectral kurtosis were evaluated for a one-sided trunaaegblex Gaussian distribution, wherein
the probability density function was nonzero within a digktered at the origin. In [18], the one-
sided truncated complex Gaussian distribution’s entropyg @valuated. In [19], the variance and
fourth moment were evaluated for a two-sided truncated ¢exn@aussian distribution, wherein
the probability density function was nonzero within an dnsuwentered about the origin.

Here, we present expressions for arbitrary moments of time#ited complex Gaussian distribution
for both the univariate (i.e., single complex random vdgahnd bivariate (i.e., a pair of complex
random variables) cases. Additionally, we examine an ifiseries of moments that we have
encountered in recent statistical analyses of reverloeratiambers and determine the convergence
of this infinite series when the random variables are draemfboth non-truncated and truncated
complex Gaussian distributions. We show that for the nandated case, the series diverges
regardless of the distribution’s parameterization. Intcst, for the truncated case, the series
converges for certain distribution parameterizations rmag even be expressed in closed form if
the distribution is univariate.

We restrict our analysis to complex random variables that“aircular” (see [15, 16, 20, 21]),
wherein the (joint) probability density function of the diom variable(s) is rotationally invariant
in the complex plane. Due to this rotational symmetry, dacuandom variables are inherently
complex and zero mean, and have the unique property that&tjpas of products containing
different numbers of conjugated and non-conjugated rangimmables are always zero [16]. The
latter property is particularly convenient, because iti$ the number of non-zero moments that
need to be considered.

We begin by reviewing the derivations for the moments of thevariate non-truncated circular
Gaussian distribution in Section 2.1.. Then, followingraitar analysis, we derive the moments of
the univariate truncated circular Gaussian distributio@ection 2.2.. In Section 3., we consider the
bivariate distributions. We first review the derivation foe moments of the bivariate non-truncated
distribution in Section 3.1., and then apply this analysighte bivariate truncated distribution
in Section 3.2.. In Section 4., we examine the convergencanahfinite series of univariate
and bivariate moments drawn from non-truncated and tredceircular Gaussian distributions.
Section 5. summarizes the main contributions of this report

2. Univariate Distribution

2.1. Non-Truncated Gaussian

Consider a realizationof univariate circular Gaussian random variableharacterized by a mean
of zero and a variance af?. For many analyseg, is commonly decomposed into its real and
imaginary components:



Z=X+1y, (1)

wherex andy are realizations of two independent and identically distied zero-mean Gaus-
sian random variables, each with a variances®f2. Here, we will favor an alternative phasor
decomposition where we expressm terms of its magnitude and phase [13]:

z=rel®. (2)
In (2), the magnitude € [0,) and phase € [0,2m) are realizations of a Rayleigh and uniform
distribution, respectively. Due to the circularity 8f the magnitude and phase distributions are

independent. Importantly, (1) and (2) are equivalent regméations for a circular Gaussian random
variable. Using (2), we may express the probability derfsitytion ofZ as

2

r
fz(r,) = o2 3)
By use of (3), the most general expression for the momenfs®fiven by [16]

o 21T
£{Z72") = [dr [dez"2"1z(r.0), (4)
0 0
wherez {-} denotes the expectation operatddenotes the complex conjugate, &l = (Z")* =

(Z*)". However, because we have assumedZhatacircular random variable, we need consider
only moments for whichm = n. Form+# n, it may be shown that [16]

£{Z"Z""} =0if m#n. (5)
For the case o= n, (4) becomes
o 21 ] 5
£{[ZZ°]"} = / dr [dlzz]"—e . 6)
0 0

Performing the integration with respectgyields

2

£{ZZ"} = % / drr2le o, 7
0

By way of a change of variables and the introduction of the garfunctionl (x), defined as

r(x) = / dtelet, ®8)
0
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we may further simplify (7), yielding

£{[2Z]"} = 6® T (n+1). (9)
Noting that for integen,

rn+1)=nl, (20)
where-! denotes the factorial, we get

£{[2Z*]"} = nlg®. (11)
Equation (11) is well known [12]. Furthermore, inspectidr{id) confirms that

Var(Z) = £{2Z*} = o2, (12)
where VafZ) denotes the variance @t

2.2. Truncated Gaussian

Consider now a realizatian= fel?® of a univariateruncatedcircular Gaussian random variatie
Here,r"e [0,a] and@«< [0, 2m) are realizations of a truncated Rayleigh distribution aritbam dis-
tribution, respectively. Again due to the circularity fits magnitude and phase distributions are
independent. In contrast, the real and imaginary compsr#itare dependent random variables.

We define the probability density function for the truncatéstribution as

(13)

- Cifz(F, ¢ for F<a
- { @09 :

Z - 0 otherwise ’

where fz(F, fp) is the probability density function corresponding to thevariate non-truncated
circular Gaussian distribution defined in (3), a&dis a normalization constant defined such that

1= / dF / dofs (7, §). (14)
Inserting (13) into (14) and solving f@; yields

1
C= = (15)

l-e o
It is important to emphasize that is a shape parameter for the truncated distribution —nibtshe
variance ofZ, as was the case for the non-truncated circular Gaussiaibdigon. The relationship
betweero? and the variance dof will be more fully explored toward the end of this section.
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Analogous to the non-truncated univariate case, we exginessioments of the truncated random
variableZ as

a 2n
A AL /dF /dfpimf"“fz(ﬂfp). (16)
0 0
Again, due to the circularity of, we have

£{Z™Z*" =0if m#n, (17)

whereby we need to consider only moments of the form

(22 / oF / Aoz (18)

Substituting (13) into (18) and performing tipéntegration yields

72
£{Z7" =15 /dr Pl g2 (19)

By introducing the incomplete gamma functigim, x), defined as [22]

X
y(n,x) = / dtt"tet, (20)

we can evaluate theifitegral, whereby (19) becomes

2
£{[ZZ*]"} = C1y <n+ 1%) o, (21)

Substituting (15) fo€; in (21) leads to our final result for the momentsZof

2n 2
£{(22]"} = —— (n+1,%>. (22)

l-e o2

Inspection of (22) shows that the varianceZat given by

. n o2 a2
Var(Z) = £{ZZ"} = —=V <2, ?) . (23)
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Figure 1: Comparison of the truncated circular Gaussian distribigishape parameter’ and
the distribution’s corresponding variance Y&} for different values o&?.

Using the recurrence relationships for the incomplete garfunction, [22]

y(n+1,x) = ny(n,x) —x"e *forn> 0 (24)

and

y(17 X) =1- eixv (25)

we may alternatively express the varianc& afs

o\ _a&
1 <1+ %> e~

_a2 '

l-e o2

Equation (26) agrees with that reported in [17]. Taking timeitl of (26) asa?/0?> — 0 and
a?/a? — o, we find that fora? > 02, Var(2) ~ 02 and fora? < ¢, Var(2) ~ a?/2. That is, when
the truncation radiua is large compared to the shape parameteihe variance of the truncated
circular Gaussian distribution approaches that of the tnemeated circular Gaussian distribution,
as defined in (12). Conversely, whaims small compared to, the probability density function of
the truncated circular Gaussian dlstrlbutlon is approxatyeconstant within a circle of raditesin
the complex plane. Thus, fe? < o2, the variance of approaches that of a “circular uniform”
distribution characterized by a constant probability dgrfsinction within a circle of radius in
the complex plane. This behavior is demonstrated in Figuiar tifferent values of?/a?. As
expected, we observe that the variance approaah@whena? > a? anda? wheno? < a2.

Var(Z) = (26)



3. Bivariate Distribution

We next consider moments of a bivariate distribution. Aseagt®n 2., we first review the deriva-
tion for the non-truncated circular Gaussian distributma then proceed to derive the moments
for the truncated circular Gaussian distribution.

3.1. Non-Truncated Gaussian

Consider the moments of a pair of identically distributed patentially correlated non-truncated
circular Gaussian random variabl&s,andz. As in Section 2.1., we assume the variables are zero
mean with a variance af?. Additionally, we denote the complex correlation coeffitibetween

Z, andZ, asp. Denotingz; = r1e/® andz = r,el® as realizations of; andZ,, the probability
density function for the associatedvariate circular Gaussian distribution is given by [13]

B r%+r%+2r1r2\p\ cog@—@1+TH£p)

riro
le,Zz(l'l,(PLI’z,(Pz) = me a2(1-|p2) (27)

for |p| € [0,1). In (27), Zp denotes the phase of the complex phassuch thap = |p|el“P, and
we considefp| = 1 in the one-sided limit thap| — 1™.

Again, allowing for moments of conjugated and non-conjadderms, we find that the most gen-
eral expression for the moments of the bivariate distrdyuis

00 211 [
£{Z1'252,°2;%) = /drl/d(pl/drz/d(pzzmz”z1 2,2, 7,(r1, @1,12,@). (28)
o 0

Due to the circularity o¥; andzg, we get

£{Z1'252,PZ;%} = 0if m+n+# p+q, (29)
whereby we need consider only moments of the form

‘E {Z ZZN mZIpZZ (N- p /drl/d(p1/dl’2/d([)22m22 fZ]_ Zz(r17(p17r27(p2) (30)

for N < m, p < 0. Substituting (27) and the phasor formspaindz, into (30) yields

1

264 (1—|p?) (1)

{ZTZN mz*pz (N— p)}

%+r%+2r1r2\p\cos(cp2—<p1+n+4p)

/drl/dq)l/drzfd(pzr““p*l 2N=—m—p+1.j(m—p)[@r—¢2] o~ o2(1|p2)




The@; andg, integrals may be evaluated by way of a change of variableiefollowing integral
valid for integem [23]:

||n| /deexcoseijne (32)

wherel,(x) is the modified Bessel function of the first kind of orderThereby, (31) becomes

B 4el(m—p)Zp
& {7M7N-m7p#(N=p)y _ (33)
e s T i)
mHp+1 2N m—p+1 # 2r1ro|p|
/drl/drzr e (1P Im—pl | =77 = |-
o?(1-1p[?)
To carry out the'; andr; integrations, we first substitute fy(x) its power series [24]
2k
g (3)
In(x) = (= 2l 34
() (2) kZOk!(n+k)! (34)
whereby (33) becomes
Im—p|gi(m—p)Zp
iz = AP @)
1 [p|*

X

kZO k! (K+ |m— p|)! [02(1— |p|2)]2k+Im—pl+1

i 7 7 2
X/drlrikererwLmp+le—02(1|p|2/dr2r§k+2Nmp+mp|+1e—02(lpz'

After evaluating the integrals with the aid of the gamma fiorcdefined in (8), (35) becomes

£{Z0Z)"Z;PZ, M Py = |p| m-Plel M-PI<PN (1 — [p|?)N+1 (36)
o (Ko Im= p\+m+p [m— pl m-—p
(ot o2y (lo e P m0)
X " Pl
o k! (k+[m— p|)!

where we have usdd(n+1) =n!.

For arbitraryN, m, p, the summation in (36) cannot be evaluated in closed formveyer, if either
m=0, p=0, orN = m+ p, we may apply the binomial series [23]

8



s |
1 (n+k).Xk

I 7
(1—x)n+1 kZO nik! 37)
valid for |x| < 1. Thereby, fom= 0, (36) becomes
£{ZVZ:PZ; NP} = Ni|p|Pe IP/P2N; (38)
forp=0,
£{Z]Z)""Z;"} = Nt|p|"e/m“Po?"; (39)
and forN = m+ p,
£{Z0'Z57;PZ5™} = (m-+ p)!|p| ™ Plel (M-P)2Pg2(miP). (40)

In terms of expectations, the correlation between two ramdariablesX; andX; is defined as

Corr{ X1, Xo} = CoviXs, X} : (41)
v/ Var{Xq }Var{X,}
where Coy Xy, X2} denotes the covariance betwegnandX; as given by
COV{Xl, Xz} =F {X]_Xék}. (42)
By use of (40) withm= 1 andp = 0, the covariance betweéi andZ; is thus
Cov{Z1,Z5} = po?. (43)
Substituting (43) and (12) into (41), we find that the cotielabetweery; andZ; is
Cori{Zy, 22} = p, (44)

which is the expected result for a bivariate non-truncateditar Gaussian distribution.

3.2. Truncated Gaussian

We now consider the moments of a pair of identically distiélouand potentially correlated trun-
cated circular Gaussian random variabiésandZ,. As in Section 2.2.02 is a shape parameter
for the truncated bivariate distribution that is relatethsvariance o1 andZ, by (26). Similarly,

Ip| € [0,1) is a complex shape parameter for the bivariate truncateédtdison that is related to
the complex correlation coefficient betwe&nandZ,. The exact relationship betweerand the

complex correlation coefficient will be explored toward #rel of this section.



Analogous to the univariate truncated circular Gaussia® gaesented in Section 2.2., we de-

note realizations of; andZ, as7; = reJ‘pl andz; = rzeJ‘pz respectively and define the bivariate
truncated Gaussian distribution’s probability densitydtion as

C2f21722(|71,|72,q.}_|_,(p2) for I717'72 <a

0 otherwise ’ (45)

f3,3,(F1,F2, @1, @) = {

wherefz, 7,(r1,r2, @1, @) is the probability density function defined in (27) for thensiouncated
bivariate distribution, an€, is the bivariate truncated distribution’s normalizatiammstant such
thatf; 5, (r17r2,(p1 (pz) integrates to unity. This normalization constant is defisgch that

2n

~ [dry [y for /dcmfZlZz 1.2, 1. 62). (46)
0 0

0 0

To solve (46) forCy, we use (45) and (35) withNh = m= p = 0 and change the upper integration
limits from oo to a. This leads to

2

2
P
1= C202 Z [02(1 | | SR /dr ritte e /dr rak+le e (47)

Using (20) to evaluate the integrals ylelds

[02(1— |pf2)]<? a2 ?
2 V(k“’02<1—rp|2>>]‘ (48)

Introducing the regularized incomplete gamma funcigp, x), defined as [22]

41 [p[*
1=C 02 Z KIK! [02(1— |p[2)]2+1

P(p.x) = YLPX)

(49)

allows us to express the reciprocal@fas

Ci2=<1—rprz>§[ (k+1 7 2| |))r\p\2k. (50)

k=0

Recognizing that & P(p,x) < 1 for all p,x > 0, we can show with the aid of (37) th@ > 1,
with equality approached @8/a2/(1— |p|?) — o

Similar to (28), we define the moments of the bivariate trted&ircular Gaussian distribution as

a 21 a

£ {70750 — /drl /d(pl /drz /d(pzzmz* f5, 7,(F1, P2, G0, @0). (51)
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Again due to circularity, we have

£ {Z'ZBRPRI} = 0if m+-n+# p+q, (52)
whereby we need consider only moments of the form

o0 21 ) 21

0 0 0 0

for 0 < m, p < N. Following (31)-(35), (53) simplifies to

4|p|/m-plel(m-p)Zp

£ {ZnZN-mz: Pz NP _ ¢, — (54)
y 1 [l
SRk =l 071 5
2 2

/ o7 k+m+p+|m p|+1e 2D ‘p‘g) /d~ ~2k+2N m—p-++|m— p|+1e 7021 o7
0 0

Using (20) to evaluate thg andr> integrals, we have

{2722 PZ NP} = Gyl p|ImPlel(MPI 2PN (1 — [N+ (55)
o [m—p|+m+p & |m—p|—m-p a?
y (kPR 4 G ) (ke N P L ) o
2 K (k-+ [m— p])! |

Unfortunately, the summation in (55) cannot be evaluatedidsed form forany m p, or N. Thus,
substituting into (55) the expression for our normalizatonstant given in (50) and simplifying,
we have

SmIN—mZ*p5*+(N—p —p)Zp ~2N 23N
{20277 NPy — |p|mopleimopiLegN (1 |pp2) (56)
- 2 — pl—m— 2
< V(H‘m p|2+m+p+1’02<1:p\2>>y(k+N+|m i p“’é(i\p@)) 2%
> Kl (k+|m—p])! |
=

(o]

3P P (kL ) | Il

By use of (56) withm= N = 1 andp = 0, the covariance betweéf; andZ, may be expressed
reasonably compactly as

11



[oe]

2 2 2k
. 5 S 2 2 kzo [P<k+2’ 07(1:9\2))] Pl (k+1)
CoV{Z1,25} = E{Z1zZ5} = po*(1— |p|%)

: (57)

00 2

a 2
Zo P (k1 g ) | Io
where we have used(k +2) = (k+ 1)l (k+ 1), along with the regularized incomplete gamma
function defined in (49). Combining (57), (26), and (41), welfthat the correlation betweefj
andZs is

& S Kk z,a_z 2| (k4 1)
COI’I‘{Zl,Zz} =p(1— |p|2) 1- ezo2 - kZO [5( + 02(1|p|2i>} p2 +1
1- (1+ %f> e 2 [P <k+ L EZ(ﬁ\p\Z‘))] |p|

(58)

Figure 2 compares the actual correlation G@sZs } to the truncated circular Gaussian distribu-
tion's shape parametegr for 0 < p < 1 and different values o&?/0%. Whena?/a? > 1, the
distribution closely resembles a non-truncated circulau$aian distribution, and the correlation
coefficient is approximately the shape parametes a?/a? is decreased, we observe that the
shape parameter becomes an increasingly poor estimate disthibution’s correlation coefficient,
with Corr{Z;Z;} < pin general. We also find that ad/o? decreases, the correlation coefficient’s
sensitivity top becomes skewed, whereby moderate correlation coefficednés requirg to be
increasingly large. Although Figure 2 considers purely aga positive values gb, inspection of
(58) indicates that similar comments apply to the magnitoideomplex correlation coefficients
based on the magnitude of complex valuep.of

4. Infinite Series of Moments

In recent and ongoing statistical analyses of scatteringpaters measured in reverberation cham-
bers, we have encountered the following two infinite series:

00

Z)C”f {(XX1"} (59)

n—=

and

ZOC”E{ [X1X3]"}. (60)

n=

In (59) and (60)c > 0O is a real, positive, and constant coefficient, 2, andX, are random
variables drawn from some circular distribution. For (38% underlying distribution is univariate;
for (60), the distribution is bivariate, with; and X, being identically distributed and potentially
correlated. Having derived expressions for arbitrary maisief the non-truncated and truncated

12
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Figure 2: Comparison of the truncated circular Gaussian distribigishape parametg@rand the
distribution’s corresponding correlation coefficent G&iZ;} for different values o&?/02,

circular Gaussian distributions in the previous sectiovesare now able to ascertain the conver-
gence of these two series for the different distributiond, avhere possible, evaluate the summa-
tions in closed form. As with the preceding discussion, w& ionsider the univariate case given

by (59) and then proceed to the bivariate case given by (60).
4.1. Univariate Distribution

41.1. Non-Truncated Gaussian

By use of (11), the infinite series for the univariate non-tated circular Gaussian distribution
takes the form

"z{[zZz']"} = Y c"nlc?". (61)
2 2
The factorialn! has thelower bound given by [25]
ny\n
| _
n! >+/2m (e) , (62)
whereby (61) has the lower bound
(o] (o] n n
"z{[2zZ]"} > V2n'§ vn|co?=| . (63)
2, 2, "l
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This lower bound diverges for atio® > 0. Thus, the infinite series given by (61) also diverges,
regardless of the choice ofor the variance of the distribution.

4.1.2. Truncated Gaussian

By use of (21), the infinite series for the univariate trundatgcular Gaussian distribution takes
the form

() - 00 a2
c"e{[z2 1"} =C1 § "y (n +1, —) o, (64)
nZO n; 02

By use of the integral representation of the incomplete gafomaion given in (20), (64) becomes

o a/0? o
Zocnz{[zz*]”} =C; / dtet Zo[ctoz]”. (65)
= 0 n=

Convergence of the summation in (65) requires toi?| < 1. Observing that the integration

region in (65) corresponds to0t < 3—2 we find that convergence thus requires toatt < 1.
Under this condition, (65) simplifies to

- a?/a?
5 % —t
n;c“z{[zz M =Cy 0/ dte™!— 5 for ca® < 1. (66)

By introducing the exponential integral function(€) defined as [24]

Ei(x) = / ?dt, 67)

we may alternatively express (66) as

ic”z{[ii*]”} _ Clc%ze“’lz [Ei (C%Z) _Ei <1g0c2a2)} for ca? < 1. (68)

In the Appendix, we provide a more general proof of conveecgdor (59) foranycircular random
variableX whose realizations are bounded such tkigt 1/,/c for all x.

4.2. Bivariate Distribution
4.2.1. Non-Truncated Gaussian

By use of (39) withm = N, the infinite series for the bivariate non-truncated cacubaussian
distribution takes the form
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[ee] [ee]

Zoc"z{[zlzg]“} — ;C”p”crz“n!. (69)

Re-examining the lower bound on the factorial given in (62, fimd that regardless of the value
of c|p|, the magnitude of the individual terms in the summation @) (®ill grow toward infinity
asn — o. Thus (69) diverges.

4.2.2. Truncated Gaussian

Starting from (55) and settingp= N = nandp = 0, we have

2{[21Z3]"} = Cop"0™'(1 - |p[*)"" (70)
5 (kL ) Y (ke n+ L o )|p|2k
2 K (k! '

Using (49) and (10), we re-express (70) as

{223 = Calo"e® (1~ [p)™ 71)
2
l V(k“‘“’ o%fi\p\?)) a’ oK
2T Tk P("*”“’02<1—1p|2>>'p"

A lower bound on the magnitude of (71) may be formulated bygezing thatP(p+ qg,x) <
P(p,X) [22], whereby

5 Sx1Nn n 2n n+1 a2
E{ZZM) < Calol'e® (1 o) P(n+1 T ,))

© Y k+n+17ﬁ
XZ ( (k+01() %) )|p|2k (72)
k=0

This inequality may be simplified by use of the following teda [24]

y(n+1,t(1 Y k+n+1t)
(1-X) n+1 Z rk+1) (73)
valid for |x| < 1. By use of (73), (72) becomes
a? a?
|2 {[Z1Z3]"}| < Co[|p|c?"P (n+1 21— >> (n+ 1,?) : (74)
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Substitution of (74)’s upper bound into the infinite seriegeg in (60) yields

0 o 2 2
nzoc“|f{[212§]”}|<C2nzoc”[|p\02]”P(n+1 (a| \)) <n+1,%>. (75)

Recognizing thaP(n+ 1,x) < P(1,x) and using (49) and (25), we find that (75)’s upper bound
becomes

00 s a2 a2
n *1N 02 2
5 B <o (1-e ) 5 pioy(ne1 ). 09)

which, analogous to the summation in (64), may be evaluatacb of the integral representation
of the incomplete gamma function in (20). The result is

i 2
~ = ___a 1

> (223 <Gy (1-e # o ) -

n=0

clp|o?

1 — cpa?
xe cplo? [Ei( 1 2) —Ei (%)] for c|p|a® < 1.
clplo clplo

The normalization consta@, defined in (50) is the reciprocal of the area underdhaormal-
ized probability density function. Thu<(, is guaranteed to be finite for amy> 0, and (77) is
guaranteed to converge fojp|a® < 1. This indicates that the infinite series of bivariate motaen
definzed in (60) converges for the case of a truncated cir€sdaussian distribution, provided that
clpla® < 1.

5. Summary

The truncated circular Gaussian distribution is a usefidrative to the non-truncated circular
Gaussian distribution, particularly when physical preessare described that have a finite range
of values. Here, we have developed expressions for anpitnaments of univariate and bivariate
truncated circular Gaussian random variables. We havesamined the convergence of a partic-
ular series of infinite moments that we have encounteredcentestatistical analyses of scattering
parameters measured in reverberation chambers. We olidbatehe series always diverges for
the non-truncated circular Gaussian case and converggsafticular parameterizations of the
truncated circular Gaussian case. Based on these findingsggest that statistical analyses of
reverberation-chamber measurements of scattering ptesuse truncated circular Gaussian ran-
dom variables rather than the more conventional non-ttedazrcular Gaussian random variables.
This is particularly important when moments of large orderlzeing calculated.
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Appendix A:  Bounds on the Infinite Series of Moments of Univariate Dis
tributions with Finite Support

Consider an arbitrary circular random variaklavith probability density functiorfx (r, ). Due to
the circularity ofX, the univariate probability density functidig (r, @) is in general given by [16]

f(,0) = 5 (), 79)

where fx(r) is the marginal probability density function corresporgio |X|. The non-zero mo-
ments ofX are given by

o 21T
£ XXM} = /dr/d(p[xx*]”fx(r,(p). (79)
0 0
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Defining a realization oK asx = rel?, and using (78), we find that (79) simplifies to

£ XX} :/drrznfx(r), (80)
0

whereby the non-zero momentsXfare determined by the even moments$xjt

Let us suppose thdi(r) = 0 for r > a; that is, we assuméx(r) is non-zero only for € [0, a.
Due to the monotonicity af?", (80) will be maximized iffy (r) = &(r — a), whered(-) denotes the
Dirac delta function. This leads to the following upper bdwm the moments of:

£ {[XX*]"} <a®if fx(r) =0forr > a (81)
Substitution of (81) into the infinite series defined in (5@®lgs

[oe]

zoc”z{[xx*]”} < ni[caz]", (82)

n=

which converges i< 1/,/c.
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