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Small-Angle Scattering From Branched
Polymers
Boualem Hammouda
The single-polymer form factor is determined for branched polymers using a scaling
argument in order to recover the low-Q Porod exponent characteristic of the overall
structure. The high-Q Porod exponent characterizes the local branching structure. An
alternative approach based on a high-Q expansion con-
tains information about functionality, branch length and
branch content. The specific case of a starburst dendrimer
for which the form factor is known is discussed. The
model predictions are compared to small-angle neutron
scattering data from a dilute solution of dendrimer
in D2O.
1. Introduction

Modeling branched polymers has been a difficult research

undertaking since the advent of polymers. Multifunctional

polymerization reactions produce branched structures and

chemical cross linking produces networked structures.

The original Stockmayer theory laid out the basic

equations describing statistical branching,[1] the Zimm-

Stockmayer model for branched polymers derived the mean

square radius of gyration for various branched polymers as

well as polymer networks containing rings.[2] The modeling

of simple (regular) branching has been handled analytically

for cases such as star-branched, comb-branched, pom-pom

branched, starburst dendrimers, and hyperbranched struc-

tures. Approaches have been devised to handle some

statistical (random) branching as well using approaches

such as the cascade theory.[3,4] More complex branching and

polymer networking that contain closed loop structures are

harder to model. A generic model of self-assembling chains

that includes branching and network formation of arbitrary

functionality has been presented using a mean-field
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approach.[5] A statistical theory of regular (non-random)

polycondensation has also been published.[6] Average sizes

and conformations can be calculated. Computer simula-

tions have been useful at generating branched polymer

architectures with arbitrary multifunctionality, branching

schemes and even chain stiffness.[7,8]

Focus of this paper is on modeling of the form factor P(Q)

needed for small-angle scattering from branched polymers.

Two approaches are used: one based on a simple scaling

argument and the other one based on a high-Q expansion

(Q being the scattering variable).
2. Model Development

2.1. Fractal Model for Linear Polymers

The fractal model for linear polymers (needed for our

modeling approach) is introduced first. Consider a linear

polymer chain comprising n monomers and assume

excluded volume interactions. The inter-monomer con-

formational distribution is given by
elibrary.

the
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along with
rly V
rij
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� �
¼ a2ji� jj2n (2)
where rij is the inter-monomer distance. Here n is defined

as the excluded-volume parameter and a is the statistical

segment length. The single-chain form factor can be

calculated as follows[9–11]:
PLðQÞ¼
1

n2

Xn

i;j

hexp½�i~Q�~rij�i
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n2

Xn
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Z
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exp �Q2a2

6
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(3)
Q is the scattering variable. The following useful identity

is used:
Xn

i;j¼1

Fðji� jjÞ ¼ nþ 2
Xn

k¼1

ðn� kÞFðkÞ (4)
to obtain:
PLðQÞ ¼
1

n
þ 2

n2

Xn

k¼1

ðn� kÞexp �Q2a2

6
k2n

� �
(5)
For long polymer chains, one can go to the continuous

limit (i.e., assume that n >> 1):
PLðQÞ ¼ 2

Z1

0

dxð1� xÞexp �ULx2n
� 	

(6)
The following ‘‘scattering’’ variable has been used:
UL ¼
Q2a2n2n

6
¼ an2n (7)
where a ¼ Q2a2=6 has been introduced. This integral

can be performed after defining the incomplete gamma

function as:
gðd;ULÞ ¼
ZUL

0

dtexpð�tÞtd�1 (8)
The form factor for a linear polymer chain with excluded

volume (i.e., following self-avoiding walk statistics) is
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gð1=n;ULÞ (9)
The high-Q limit of the form factor is given by the

asymptotic limit:
PLðQ!1Þ ¼
1

nUL
1=2n

Gð1=2nÞ � 1

nUL
1=n

Gð1=nÞ (10)
The gamma function G(x)¼ g(x,1) has been used. This

approach is approximate but yields tractable analytical

results.
2.2. Scaling Approach for Branched Polymers

Now, consider a branched polymer consisting of nt total chain

segments of statistical length a. The network is swollen with

an excluded volume parameter nt corresponding to a mass

fractal dimension dt¼ 1/nt. Consider a ‘‘minimum path’’[12]

corresponding to the main chain backbone comprising nm

chain segments and with excluded volume parameter nm and

minimum fractal dimension dm¼ 1/nm (Figure 1).

A simple scaling argument is used to relate the minimum

path to the entire branched polymer.[12]
nt ¼ nm
c (11)
Here nt is the total number of statistical segments in the

branched polymer, nm is the number of segments in the

minimum path and c is a scaling exponent.

Note that the branched polymer size and the minimum

path scale according to the following mass fractal relations:
r � nm
nm � nt

nt (12)
The last two relations yield the following scaling

relations:
dt ¼ cdm

nm ¼ cnt
(13)
2.3. Fractal Model for Branched Polymers

Using the fractal model for the minimum path and the

scaling relation introduced in the previous section, the single-

polymer form factor for the branched polymer becomes:
PBðQÞ ¼
1

Norm
2

Z1

0

dxð1� xÞxc�1exp �UBx2n
� 	

(14)
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Note the introduction of the multiplicative term xc � 1

which is the ratio nt/nm of the total number of segments to

the number of segments in the minimum path.

Here the scattering variable depends on the minimum

path ‘‘length’’ nm instead.
www.M
UB ¼
Q2a2nm

2nm

6
(15)
In order to perform the integral, a change of variable is

made:
t ¼ UBx2nm

dt ¼ 2nmUBx2nm�1 dx
(16)
After straightforward manipulations, one obtains:
PBðQÞ ¼
1

Norm

�
1

nmUB
c=2nm

gðc=2nm;UBÞ

� 1

nmUB
ðcþ1Þ=2nm

g


ðcþ 1Þ=2nm;UB

�� (17)
The high-Q limit is given by:
PBðQ!1Þ ¼
1

Norm

�
1

nmUB
c=2nm

Gðc=2nmÞ

� 1

nmUB
ðcþ1Þ=2nm

G


ðcþ 1Þ=2nm

�� (18)
The normalization factor (Norm) is chosen so that

PBðQ! 0Þ ¼ 1.
Norm ¼ 2

Z1

0

dxð1� xÞxc�1 ¼ 2

cðcþ 1Þ (19)
Recall that the total number of segments in the branched

polymer is equal to nt¼nc
m so that the ‘‘branching ratio’’ is

given by nt/nm¼nc�1
m . Note that setting c¼ 1 (i.e., nt¼ nm or

dt¼dm) yields the result for the linear chain case as it

should.
2.4. Radii of Gyration and Scattering Variables

The radius of gyration for a linear (not branched) polymer is

given by:
RgL
2 ¼ 1

2n2

Xn

i;j

hrij
2i ¼ a2

2n2

Xn

i;j

ji� jj2n (20)
As before:
rij
2

� �
¼ a2ji� jj2n (21)
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The same procedure is used for the summation and

integration (in the large degree of polymerization limit) to

yield:
OI: 10.1
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k2n ¼ a2n2n

Z1

0

dxð1� xÞx2n

R2
gL¼

a2

ð2nþ 1Þð2nþ 2Þn2n

(22)
The radius of gyration for a branched polymer is

calculated using the same scaling argument as follows:
R2
gB¼ a2n2nm

m

Z1

0

dxð1� xÞxc�1x2nm

R2
gB¼

a2

ð2nm þ cÞð2nm þ cþ 1Þn2nm
m

(23)
c is the scaling parameter and nm is the number of

segments in the minimum path defined before.

Given the above definitions, the scattering variables are

expressed in terms of the radii of gyration as follows:
UL¼
Q2a2n2n

6
¼ Q2RgL

2 ð2nþ 1Þð2nþ 2Þ
6

R2
gL¼

a2n2n

ð2nþ 1Þð2nþ 2Þ

UB¼
Q2a2n2nm

m

6
¼ Q2R2

gB

ð2nm þ cÞð2nm þ cþ 1Þ
6

R2
gB¼

a2n2nm
m

ð2nm þ cÞð2nm þ cþ 1Þ

(24)
Either form (with or without using the radii of gyration)

can be used in this model for the scattering from branched

polymers.
2.5. The Blob Model

Some polymer systems are characterized by different

excluded volume parameters for different length scales.

The blob model has been used to model this condition.

It has been used, for instance, to model excluded

volume effects in semidilute polymer solutions through

the concentration blob model[10] whereby chains are swollen

between entanglement points and follow ideal chain

statistics for length scales larger than the entanglement

distance. The blob model is reviewed here in its generality.

Consider a polymer chain comprised of n2 monomers of

segment length a. Blobs containing n1 monomers each are

defined. Two excluded volume parameters are defined:

one inside the blobs denoted n1 and one outside the blobs
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denoted n2. The form factor is expressed as before:
PðQÞ

rij
2

� �
¼

rij
2

� �
¼

PðQÞ

PðQÞ

U1 ¼

PðQÞ

rly V
¼ 1

n2
2

Xn2

i;j¼1

exp �Q2hrij
2i

6

� �
(25)
The intermonomer distance (squared) is now split into

two contributions:

P

a2ji� jj2n1 for ji� jj � n1 ðinside each blobÞ

j1
2 ji� jj

n1

� �2n
2

for n1 � ji� jj � n2ðoutside the blobsÞ

(26)
Note that the blob size (squared) has been defined as

j1
2 ¼ a2n1

2n1 . Therefore:
F

¼ 1

n2
2

( X
i;j
insideblob

exp �Q2a2

6
ji� jj2n

1

� �

þ
X

i;j
outsideblob

exp �Q2j1
2

6

ji� jj
n1

� �2n
2

" #) (27)
Using the identity introduced before, P(Q) becomes:
¼ 1

n2
2

(
n2 þ2

Xn1

k¼1

ðn2 � kÞexp �Q2a2

6
ji� jj2n1

� �

þ 2
Xn2

k¼n1þ1

ðn2 � kÞexp �Q2j1
2

6

ji� jj
n1

� �2n
2

" #) (28)
Defining the scattering variables (squared) here also as:
F

Q2a2n1
2n1

6
and U2 ¼

Q2j1
2

6

n2

n1

� �2n
2

(29)
Approximating the summations by integrations (but

keeping n1 and n2 finite), one obtains:
¼ 1

n2
2

(
n2 þ 2n1

2

Z1

1
n1

dx
n2

n1
� x

� �
exp �U1x2n1

� 	

þ 2n2
2

Z1

n1þ1
n2

dx0 1� x0ð Þexp �U2x02n
2

� 	)

(30)
The variable changes x¼ k/n1 and x’¼ k/n2 have been

performed. The integration variables are modified as
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1 and t0 ¼ U2x02n

2 (31)
After a couple of manipulations, the following result is

reached:
ðQÞ ¼ 1

n2
2

"
n2 þ n1

2

(
1

n1 U1
1=2n1

n2

n1
F1

1

2n1
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� �

� 1
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1
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;U1

� �)
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2
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1
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1

2n2
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n2 U2
1=n

2
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1

n2

;U2

� �)#

(32)
The following functions have been defined:
1
1
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These functions have been expressed in terms of

the incomplete gamma function gðd;UÞ defined before.

Note that this function simplifies for integer fractal

dimensions:
gð1
gð2
gð3

PðQ

PðQ

www.M
;UÞ ¼ 1� expð�UÞ
;UÞ ¼ �Uexpð�UÞ � expð�UÞ þ 1

;UÞ ¼ �U2expð�UÞ þ 2 �Uexpð�UÞ � expð�UÞ þ 1½ �
(34)
2.6. Blob Model for Branched Polymers

In order to capture the two-length scale feature, the

blob model is used to describe branched polymers. A blob

is defined between two adjacent branch points. This

model captures the two-length-scale feature whereby the

local length scale (index 1) could have a different fractal

dimension and the branched polymers feature described by

the second length scale (index 2) is based on the scaling

argument described above.
Þ¼ 1

Norm
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2

"
n2 þ n1
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� �

� 1

n1 U1
1=n

1

F2
1

n1

;U1

� �)
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1
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� �
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n2 U2
ðcþ1Þ=n

2

F4
cþ 1
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;U2

� �)#

(35)
This is a general result describing the form factor for

branched polymers.

For large degrees of polymerization (n2>n1 �1), this

result simplifies to:
Þ ¼ 1

Norm

"
n1

n2

1

n1 U1
1=2n1

F1
1

2n1

;U1

� �

� n1
2

n2
2

1

n1 U1
1=n1

F2
1

n1

;U1

� �

þ 1

n2 U2
c=2n

2

F3
c

2n2

;U2

� �

� 1

n2 U2
ðcþ1Þ=n

2

F4
cþ 1

n2

;U2

� �#
(36)
Figure 1. Schematics of the branched polymer showing the mini-
mum path (backbone) in dark.
This result applies to long-branch polymers with a large

number of branches. The F functions also simplify in the
aterialsViews.com
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(37)
Here also the normalization factor (Norm) is chosen so

that PðQ! 0Þ ¼ 1.
Norm ¼ 1

n2
2

(
n2 þ 2n2

1

Z1

1
n1

dx
n2

n1
� x

� �

þ 2n2
2

Z1

n1þ1
n2

dx0 1� x0ð Þx0ðc�1Þ

) (38)
Figure 2 contains plots of the normalized form factor when

the branching scaling exponent is varied. The excluded

volume parameters are taken to be n1¼ n2¼ 0.6 which

corresponds to a high-Q Porod exponent d1¼ 1/n1¼ 5/3 (fully

swollen chain portions). The low-Q Porod exponent is given

by cd1 in each case (mass fractal branched polymer). When

used on high quality data that contain both the low-Q and

high-Q features, one could back out the branch length n1, the

scaling exponent c (ratio of the low-Q to the high-Q Porod

exponents) and the branch content given by nc
2.

This scaling approach reproduces the two Porod expo-

nents; one for correlations inside the blobs (at high-Q) and

one for the entire branched polymer (at low-Q). It, however,

cannot yield information about the functionality of the

branched polymer. Another approach is presented next.
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n1¼ 100, n2¼ 10 000, and a¼4 Å. The scaling exponent c is varied
from c¼ 1 (for linear polymers with no branching) to c¼ 2 (for
highly branched polymer).

6

REa

www.mts-journal.de

B. Hammouda
2.7. An Alternative Approach to Describe Branched

Polymers

Another approach[13] is followed here to describe the form

factor for a regularly branched polymer (with no loops). This

approach focuses on the high-Q expansion.

The high-Q expansion for the form factor for a simple

linear Gaussian chain (for which n¼ 1/2) is given by:
rly V
PLðQ!1Þ ¼ �
2

ðanÞ2
þ 2

ðanÞ (39)

a ¼ Q2a2

6

i j 

1 

j 

1 

n 
This high-Q asymptotic limit is obtained by removing the

exponential term from the so-called Debye function and

keeping only the 1/Q2 and the 1/Q4 terms.

Consider a regularly branched polymer with n segments

per branch (each segment of size a), and functionality f (i.e.,

there are f branches connected to each branch point). There

are summations over monomers within each branch and

summations over monomers in different branches. If there

are s total branches containing n monomers each, the (non-

normalized) scattering function contains two main terms:

 )Q(E )Q(F )Q(P

Figure 3. Schematic representation of the summations over
monomers for the various scattering factors for Gaussian poly-
mer chains.
=ðQÞ ¼ 1

sn

Xs

b¼g

Xn

i;j

:::þ
Xs

b„g

Xn

i;j

:::

2
4

3
5 (40)
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The summation over Greek letters is over branches

while the summation over Roman letters is over

monomers in each branch. The first term involves the

Debye function and its high-Q expansion. The second term

involves the product F(Q)E(Q)F(Q) where the following

form factor amplitude F(Q) and propagator E(Q) have been

defined:
OI: 10.

H & Co

e nu
FðQÞ ¼ 1� expð�anÞ
ðanÞ

EðQÞ ¼ expð�anÞ
(41)
F(a) involves one monomer summation over a branch

while E(a) represents the propagation over the intermediate

branches (without any monomer summation) as shown in

Figure 3.

The high-Q expansion is obtained by setting the

exponential factors equal to zero. The entire product

F(Q)E(Q)F(Q) becomes equal to zero except for the case of

adjacent branches for which EðQÞ ¼ 1. The total number of

adjacent branch pairs in the polymer is equal to bf(f – 1)

where b is the total number of branch points. Adding the

two contributions (summations over the same branch

and over different branches) yields the following high-Q

expansion:[13]
=ðQ!1Þ¼ 1

sn
sn2 �2

ðanÞ2
þ 2

ðanÞ

 !
þ n2 bf ðf � 1Þ

ðanÞ2

" #

¼ �2

na2
þ 2

a

� �
þ bf ðf � 1Þ

sna2

(42)
The parameters s (total number of branches), b (total

number of branch points) and f (functionality) can be

related as follows. There are f branches connected to the

first branch point (chosen randomly) but there are ( f� 1)

branches connected to the remaining (b� 1) branch points.

The total number of branches s is therefore the sum
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s¼ fþ (b� 1)( f� 1) or simply s¼ 1þ b( f� 1). Therefore,
=

=

=

www.M
ðQ!1Þ ¼ �2

na2
þ 2

a

� �
þ ðs� 1Þf

sna2

¼ 2

a
þ 1

na2
f � 2� f

s

� � (43)
The 1/a2 term contains valuable information. For

example, the Zimm plot consists in plotting 1==ðQÞ versus

a/2 which in the high-Q limit gives:
1

ðQ!1Þ ¼
a

2
� 1

4n
�2þ f � f

s

� �
(44)
The intercept of the Zimm plot �ð1=4nÞ �2þ f � f=s½ �
contains information about branching. For large branched

macromolecules, f/s<< 1, and the intercept reduces to

�ð1=4nÞ �2þ f½ �. If the number of segment lengths per

branch n is known, one can obtain the functionality f and

vice versa.
a

2.8. Including Polydispersity

Polydispersity can affect all parameters n, f, b (or s). Since

it is hard to include all these effects, focus here will

be on polydispersity in n and f. Since polydispersity in

the length of each branch n and polydispersity in the

functionality f are independent of the polymer architecture,

these could be averaged separately.[13] The branch length

polydispersity is represented by the number-average

n ¼
P

i

niwi=
P

i

wi. If one assumes linear deviation from

average functionality f ¼ f þ Df , accounting for polydis-

persity in f involves the product: f ðf � 1Þ ¼ f ðf � 1Þ þ Df 2

where Df ¼ 0 has been eliminated (by definition) and Df 2

represents the variance of the functionality distribution.

The result with polydispersity included follows:
major 
branch 

1

2

3

4

5

sb
s

S  

sb
S  
ðQ!1Þ ¼ 2

a
þ 1

na2
f � 2þ Df 2

f � 1
� 1

s
fþ Df 2

f � 1

 !" #

(45)
block 

sb
f

S  

ib
S  
2.9. Reintroducing Excluded-Volume Effects

Based on the previous discussions, one can introduce

the excluded volume effect into the high-Q approach.

In the simple case of linear chains, recognizing that

=ðQÞ ¼ nPLðQÞ, one obtains the following high-Q

expansion:
Figure 4. Schematic representation of a starburst dendrimer
showing two major branches.
=ðQ!1Þ ¼ 1

na1=2n
Gð1=2nÞ � 1

na1=n
Gð1=nÞ (46)
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In the case of a regularly branched polymer for which

=ðQÞ ¼ snPðQÞ, the ad-hoc result is:
OI: 10.1

H & Co

the
=ðQ!1Þ

¼ 1

na1=2n
Gð1=2nÞ � 1

na1=n
f � 1

n
Gð1=nÞ � f

s

� �
(47)
Note that when excluded volume is included (i.e.,

for good-solvent conditions), the simple factorization

FðQÞEðQÞFðQÞused for Gaussian chains is only approximate.
2.10. Starburst Dendrimers

The case of starburst dendrimers is a typical case of

regularly branched polymers. It is used here to get some

insight into the methods discussed above. The form factor

has been calculated.[14] Consider a dendrimer with Nb

major branches that start the dendrimer growth (for

example Nb¼ 3). Each major branch contains Ng genera-

tions (the case Ng¼ 5 will be considered). Correlations

within a single local branch (block) are called Ss
sb, those

within the same major branch going forward are called Sf
sb,

those within the same major branch going across are called

Sa
ab, and interbranch correlation are called Sib (Figure 4).

The single block form factor is given by:
PðanÞ ¼ 2
expð�anÞ � 1þ an½ �

ðanÞ2

Ss
sbðQÞ ¼

ðf � 1ÞNg � 1

f � 2
n2PðanÞ

(48)
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Here ðf � 1ÞNg � 1
.
ðf � 2Þ is the total number of blocks

per branch. The form factor amplitude for a single block

is given by:
P

S

S

rly V
FðanÞ ¼ 1� expðanÞ
ðanÞ (49)
The various contributions involve the following

summations:[14]
f
sbðQÞ¼ 2jnFðanÞj2

XNg

k¼1

ðf � 1Þk�1
XNg

l¼kþ1

ðf � 1Þl�kexp �anðl� k� 1Þ½ �

a
sbðQÞ¼ 2jnFðanÞj2

XNg

k¼2

ðf � 1Þk�1
X2k�3

m¼1;3

ðf � 2Þðf � 1Þðm�1Þ=2exp �anðm� 1Þ½ � 
 1þ 2
XNg

i¼kþ1

ðf � 1Þl�kexp �anðl� kÞ½ �
( )

SibðQÞ¼ jnFðanÞj2
XNg

k¼1

ðf � 1Þk�1
XNg

l¼1

ðf � 1Þl�1exp �anðlþ k� 2Þ½ �

(50)
The dendrimer form factor is obtained by gathering all

contributions:
1

n = 10, a = 4 Å, N
g
 = 5 
ðQÞ ¼
Nb Ss

sbðQÞ þ Sf
sbðQÞ þ Sa

sbðQÞ
� 	

þ NbðNb � 1ÞSibðQÞ
1

f � 2
nNb ðf � 1ÞNg � 1

h i
(51)

Ng
.

0.001

0.01

0.1

0.04 0.06 0.08 0.1 0.3 0.5

f = 3
f = 2 P

(Q
) 

Q (Å-1) 

-2 

-2 

-3 

Figure 5. Porod Plot for starburst dendrimer with n¼ 10 (10
monomers per block), a¼ 4 Å (a is the statistical segment length),
and Ng¼ 5 (five generations). The top curve corresponds to f¼ 2
(linear chain) and Nb¼ 2 (two major branches). The bottom curve
corresponds to f¼ 3 (number of monomers doubles at each
generation) and Nb¼ 3 (three major branches start the dendrimer
growth).
Note that s ¼ nNb½ðf � 1Þ � 1� ðf � 2Þ is the total

number of blocks in the dendrimer. The various summa-

tions are performed using the Mathematica software.

In order to check that all needed term have been

included, the limit a¼ 0 is taken. For the following

parameters: n¼ 1, f¼ 3, Nb¼ 3, Ng¼ 5, one obtains the

following block pairs: Sf
sb ¼ 196, Sa

sb ¼ 1468, Sib ¼ 961. The

number of blocks per branch is: Ss
sb ¼ 31. The total number

of blocks is s¼ 93 and the total number of branch points

(where two blocks come together) is b¼ 46 (¼3� 15þ 1).

This analysis results in a Porod plot, a Zimm plot and a

modified Kratky plot (Figure 5–7).

For the case with functionality f¼ 2 (no branching), one

recovers the result for linear polymer for which the high-Q

limit has a Porod exponent of �2. The high-Q expansion

yields an extrapolated intercept in the Zimm plot which is

positive. When the functionality increases to f¼ 3 (doubling

the number of blocks at each dendrimer generation), the

high-Q Porod exponent is around�3. This gives an estimate

of the scaling exponent c	 3/2¼ 1.5. The PðQÞ � 1=Q3

region, however, is rather narrow, squeezed between the

1/Q4 and the 1/Q2 regions. Note that Porod exponents

between 3 and 4 are conventionally associated with

‘‘surface fractals’’ whereas this (dendrimer) case involves
Macromol. Theory Simul. 2012, D
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no surface at all. This shows that mass fractal Porod

exponents can be higher than 3 for branched polymers.

In order to compare this model with experimental

data, small-angle neutron scattering (SANS) data from a

fifth-generation poly(amidoamine) (PAMAM) dendrimer

in D2O solution are used. SANS data were taken for four

dendrimer volume fractions in the dilute regime then

extrapolated to the infinite dilution limit (i.e., to zero

volume fraction) in order to isolate the single dendrimer
form factor P(Q). A Zimm plot of the inverse form factor

1/P(Q) versus Q2 in a high-Q region (Q> 0.076 Å�1) window

yields an extrapolated measured intercept around –22.2 as

shown in Figure 8. This intercept is in agreement with the

calculated value of –22.5 reported in Table 1. Alternatively,
OI: 10.1002/mats.201100111
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Figure 8. Zimm plot from SANS data for fifth-generation PAMAM
dendrimer solution in D2O extrapolated to the infinite dilution
limit (zero concentration). A linear fit of the high-Q data yields an
intercept around �22.2. Statistical error bars correspond to one
standard deviation.

Table 1. Intercept of the Zimm Plot for a dendrimer for n¼ 10,
a¼4 Å and Ng¼ 5.

0

50

100

150

200

250

0 0.05 0.1 0.15 0.2

n = 10, a = 4 Å, N
g
 = 5 

f = 2
f = 3

 1
/P

(Q
) 

 Q2 

Figure 6. Zimm Plot for starburst dendrimer for the same con-
ditions as in the previous figure. Note that for f¼ 2, the high-Q
extrapolation intercept is positive while for f¼ 3, it is negative.
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setting a dendrimer functionality f¼ 3, one obtains from

the relationship s ¼ ðf=4� int erceptÞ�4=ðf � 2Þ the total

number of branches s¼ 92 which is close to the calculated

value s¼ 93 for the fifth-generation dendrimer.
0.0001

0.001

0.04 0.06 0.08 0.1 0.3 0.5

n = 10, a = 4 Å, N
g
 = 5 

f = 3
f = 2

 Q
3 *P

(Q
) 

Q (Å-1) 

P(Q) ~ 1/Q2 

P(Q) ~ 1/Q3 

Figure 7. Modified Kratky plot for starburst dendrimer for the
same conditions as in the previous figure. The P(Q)� 1/Q3 region
is clearly observed. The regions right before and right after
this region correspond to the scaling P(Q)� 1/Qd with Porod
exponents d> 3 and d< 3, respectively.

Functionality

f
Number of

branches

Nb

Total

number of

blocks s

Intercept

� s

4
f � 2� f

s

� �

2 2 10 0.50

3 3 93 �22.5
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3. Discussion

Two approaches have been used to model polymer

branching. The first approach uses a simple scaling

argument, assumes random branching, and yields

no information about the functionality. The second

approach uses a high-Q expansion for regularly branched

polymers, assumes no closed loops, and contains

information about the functionality and branch length

as well as branch content. The effect of polydispersity

has been included. Each approach has its limitations.

The high-Q expansion approach considers the 1/Q2

and 1/Q4 terms only. These correspond to correlations

between neighboring branches. In practice, other correla-

tions would contribute as well. On the other hand,

the scaling approach is supposed to implicitly include
OI: 10.1002/mats.201100111
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such contributions. It, however, cannot yield information

about functionality. Both approaches suffer from short-

comings. It is, for instance, difficult to find pure scaling

regions (with linear behavior in a Porod plot) over a

wide Q range. Branched polymers are complex systems

to model; the tractable approaches described here

constitute another contribution.
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