
Double Focusing Thermal Triple Axis Spectrometer at the NCNR 

 

J. W. Lynn1, Y. Chen1,2, S. Chang1, Y. Zhao1,2, S. Chi1,2, W. Ratcliff, II1, B. G. Ueland1, and R. W. 
Erwin1  
1NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, 
MD 20899-6102 
2Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 
 

Abstract 
 

The new thermal triple-axis spectrometer at the NIST Center for Neutron Research 
(NCNR) is located at the BT-7 beam port.  The 165 mm diameter reactor beam is 
equipped with a selection of Söller collimators, beam-limiters, and pyrolytic graphite 
(PG) filter to tailor the beam for the dual 20X20 cm2 double-focusing monochromator 
system that provides monochromatic fluxes exceeding 108 n/cm2/s onto the sample.  The 
two monochromators installed are PG(002) and Cu(220), which provide incident energies 
for 5 meV to above 500 meV.  The computer controlled analyzer system offers six 
standard modes of operation, including a diffraction detector, a position-sensitive detector 
(PSD) in diffraction mode, horizontal energy focusing analyzer with detector, a Q-E 
mode employing a flat analyzer and PSD, a constant-E mode with the analyzer crystal 
system and PSD, and a conventional mode with a selection of Söller collimators and 
detector.  Additional configurations for specific measurement needs are also available.  
The capabilities and performance are described for this new state-of-the-art neutron 
spectrometer. 
 

1.  Introduction 

The NCNR has operated as many as four thermal triple-axis instruments over the 
years, that typically were developed in the early stages of the facility and with quite 
limited budgets.  As the NCNR developed into a national user facility a modernization of 
the thermal neutron spectrometers became essential.  As part of this modernization, a new 
state-of-the-art triple-axis instrument has been designed and is now installed at the BT-7 
thermal beam port.  In addition, a second spectrometer of similar design is under 
development to be installed at another thermal beam port.  These new instruments will 
take full advantage of the large 165 mm diameter beam tubes, with two interchangeable 
20×20 cm2 double focusing monochromators that provide 400 cm2 in reflecting area for 
each monochromator.  A pyrolytic graphite (PG) monochromator will be available for 
both instruments, and for BT-7 the second monochromator is Cu(220).  Ge(311) will also 
be available for at least one of the instruments in the future.  The analyzer system uses 
PG, with horizontal focusing capabilities in a variety of configurations, and together these 
new capabilities can provide signals that are two orders-of-magnitude larger than 
available with the original thermal triple-axis instruments.  

 
2.  Overview of the design 
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maximum (FWHM) angular acceptance, along with an 18X9 cm2 Open position to 
provide an unobstructed beam withmaximum intensity, or when using horizontal energy 
focusing. 

 
3.  Detailed Specifications 

 
3.1  Monochromator Drum 

The monochromator drum is 213 cm in diameter, with a 40.6 cm inner diameter to 
accommodate the (separate) monochromator systems.  The angular range of the drum is 
from the straight-through position (for optical alignment purposes) to 115 degrees 
scattering angle.  The practical angular range will be from the smallest angle possible due 
to radiation considerations (~17°), to the largest angle possible given the geometrical 
constraints imposed by interference with other instruments and facilities.  This will be 
~75° on BT-7, and is expected to be the full 115° on the second instrument. 

There are three additional components that have been designed for the 
monochromator drum.  One is the stationary "pipe" that goes from the edge of the drum 
on the source side, to the center post.  This is an essential piece of shielding, as it 
determines to a substantial extent the lowest achievable drum angle that can be used on 
the working instrument.  It also contains a vertical magnetic field for polarized neutrons 
if a white-beam polarizer (such as 3He) for the incident beam becomes available.  The 
maximum size of the neutron beam onto the monochromator is 20 cm high and 11 cm 
wide.  The drum design itself can accommodate a beam considerably wider than 11 cm, 
and this allows substantial neutron and gamma shielding here. 

The design of the double-focusing monochromator system was taken after the 
multiple blade design [1] that has been employed on the SPINS spectrometer [2], but 
with the addition of vertical focusing capability so that double focusing would be 
possible.  An important aspect of the concept was to minimize the amount of material in 
the beam for the support structure.  Initial efforts at development became delayed [3], and 
instead a separate cooperative research program was initiated to develop monochromator 
systems for both the new thermal and cold triple-axis instruments. [4].  The double-stack 
system developed for the thermal instruments is shown in Fig. 2, with the PG(002) and 
cold-pressed Cu(220) monochromator crystals installed for the BT-7 instrument [5].  
Each monochromator consists of 100 squares that are 2x2 cm2 each, for a total height and 
width of 20 cm.  They provide a continuous incident energy range on BT-7 from 5 meV 
(with PG) to 500 meV (with Cu).  The monochromator systems are on an elevator and 
can be readily interchanged by computer control. 
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indicated.  Neutron energies above 500 meV are available, but of course the flux drops 
off quickly at such high energies as shown in the inset. 
 

Table 1.  Absolute flux values for the PG(002) and Cu(220) monochromators.  d-spacing 
for Ge(311) has been included as the hot-pressed monochromator crystals [7] for that 
monochromator are under development. 
 d spacing (Å) Energy (meV) Collimation PG filter Flux (107 n/cm2/s)
PG(002) 3.3542 40  Open-50′ No 10 
  40 Double Focus No 18 
  14.7 Open-50′ Yes 2.4 
  13.7 Double Focus Yes 4.6 
Cu(220) 1.273 100 Open-50′ No 2.0 
  50 Double Focus No 6.1 
Ge(311) 1.702     
 

 
3.2 Sample stage 

The sample table system is fixed to the monochromator drum in a cantilevered 
design (see Fig. 1), and consists of three concentric non-magnetic Huber axes for the 
sample rotation angle, horizontal field magnet axis, and scattering angle (2θ).  The 
sample axis accommodates a Huber x-y tilt/translation goniometer for the sample and 
standard sample environment equipment.  The sample axis is mounted on an elevator 
which has a vertical travel of +2.5 cm above the standard mounting-surface-to-beam 
distance of 15¼ cm, and 7.5 cm below.  The goniometer is removed and the table 
lowered to its base to accommodate the 15 Tesla magnet which requires additional room 
in the vertical direction.  The entire sample stage has a travel of 35 cm along the 
monochromatic beam direction (toward the monochromator).  This can allow the 
experimenter to vary the maximum scattering angle from the sample, and to allow some 
flexibility when adding ancillary equipment.  The default position is with the M-S 
distance a maximum to achieve a maximum scattering of 120° and incorporate maximum 
shielding along the M-S beam.  A pair of x-y beam limiters inside the sample enclosure 
on the monochromator side move symmetrically about the nominal beam center both 
horizontally and vertically to reduce the size of the incident beam onto the sample.  All 
motions are computer controlled.  An additional manual masking system allows a mask 
to be placed immediately outside the sample environment system to further restrict the 
beam size. 

With the exception of the openings for the incident beam and neutrons scattered 
toward the analyzer/detector system, the sample is surrounded by borated aluminum 
neutron absorbing shielding about 77 cm in diameter and 76 cm tall, to form a sample 
enclosure that both reduces experimental background and restricts access to the sample 
area when the beam is on.  The beam stop immediately follows this sample enclosure to 
"catch" the incident neutron and gamma beams transmitted through the sample.  This is 
30 cm thick to provide adequate shielding for health physics purposes under all operating 
conditions.  For scattering angles below ≈17° the analyzer system moves behind the beam 
stop.  To allow for low-angle operation of the analyzer system, the upper-front portion of 



the beam stop is designed to lift up to allow the scattered beam through.  The neutron 
shielding for the direct beam can be reduced in this case as the analyzer system itself 
provides the necessary additional shielding, while single crystal Bi, located in the back of 
the beam stop at beam height, attenuates gammas in the direct beam.  Below about 10° 
the scattered beam traverses the single crystal Bi, but detailed measurements show that 
there is no significant small angle scattering (beam broadening) from the Bi so that the 
measurement results are not compromised, other than a reduction in intensity of about 2×. 

 
3.3 Analyzer/Detector Systems 

The design philosophy of the energy analyzer portion of the spectrometer is to 
allow several different styles of systems to be available and easily interchanged.  Each 
system would be attached to the 2θ arm of the sample table through a pinned, hinge 
mechanism, which will allow modest vertical displacements while providing the lateral 
rigidity and alignment necessary to assure the proper angular precision.  The essential 
feature is that the connection is designed in a “quick” coupling modular fashion so that 
the analyzer/detector systems can be readily accommodated and most importantly, 
quickly interchanged.  To achieve this rapid interchangeability, the detector electronics 
and analyzer motor controllers must be integrated into each analyzer unit so that the only 
connections are power, a communications cable, and compressed air.  The units move 
along the floor on an air-pad suspension to accommodate the weight and varied footprints 
of the sample-analyzer distance.  The floor is a poured epoxy base covered by anodized 
aluminum tooling-plate tiles that are level to within ±0.75 mm over its entire area.  The 
standard analyzer system, currently the only one available on BT-7, is a 13 vertical blade 
pyrolytic graphite analyzer system.  A second proposed type of analyzer system would 
consist of a series of up to 30 individual and isolated analyzer/detector systems, where 
each analyzer/detector combination would be limited to a maximum of ≈75° for the 
detector (i.e. Ef = 5.0 meV minimum energy).  This style of analyzer has now been 
adopted for the MACS double-focusing monochromator cold triple axis instrument [8], 
but employs a double-crystal analyzer system for each detector in order to accommodate 
higher detector scattering angles needed for cold neutrons.  Other analyzer options 
proposed include incorporating a velocity selector into the analyzer system, and 
developing a "conventional" analyzer/detector system where the analyzer crystals can be 
interchanged, double-focused, etc., and with a buried, well-shielded detector. 

The analyzer system installed on BT-7 is shown schematically in Fig. 4.  An x-rail 
is mounted externally to accommodate a variety of equipment between the sample and 
analyzer and is aligned toward the sample.  Standard equipment includes computer 
controlled x-y beam-limiter slits, PG filters, a liquid-nitrogen cooled Be filter, and 
polyethylene shields for background reduction.  Söller-slit collimations of 10', 25', 50', 
and 80', as well as open channels of various widths, are available and interchanged 
manually.  In addition, radial collimators of 40' and 80' that accept a ≈5° angular range 
are available for diffraction and for horizontal focusing arrangements.  The entire 
analyzer system can be translated by 300 cm under precision computer control to increase 
the sample-analyzer distance and accommodate additional components such as cold 
filters, 3He polarizers, and spin flippers. 

 



show

eleme
Si sin
extin
blade
while
as de
diam
of the
120′, 
detec
the an
indiv
diffra
in fro
meas
5×15
contin
prima
spuri
the in
collim
resolu

friend
move
are ob
analy
This 

Figure 4. 
wing the sing

 
Inside the

ents, each 2 
ngle crystal 1
ction-limited

es of the anal
e the entire u
tailed below
eter and 15 c
e analyzer fo
or an open c

ctor is also co
nalyzer syste

vidual wires c
action detect
ont of the ana
urement of B
 cm2 3He de
nuously mon
arily used to
ous count ra

nstantaneous
mator to dete
ution (instea

The gener
dly as possib
ements are c
btained with

yzer system, 
type of analy

 Schematic c
le detectors,

e analyzer as
cm wide and
1 mm thick t
d crystal ess
lyzer can be

unit can be ro
w.  A ‘single’
cm high can
ocused on th
channel of 5
ontained in t
em and PSD
covering an 
tor identical 
alyzer if the 
Bragg peak i
tectors are im
nitor the neu
 check for in

ate in the sign
s (energy inte
ermine a diff
ad of the PSD
ral design ph
ble while stil
omputer con

hout any nee
which is ess
yzer system 

cutaway of t
 PSD, radial

ssembly, the 
d 15 cm high
to minimize 
entially elim
 freely rotate
otated as a w
’ detector co
 be used as t
e detector, o
×15 cm2.  A
the system, a

D that focus t
active area o
to the ‘singl
energy-integ
intensities, o
mbedded in 
utron flux en
ntense scatte
nal detector,
egrated) corr
fraction patt
D). 
hilosophy is 
ll meeting al
ntrolled and 
d for manua
sential as the
offers vario

the inside of
l and Söller c

analyzer cry
h.  The graph
any phonon

minates Brag
ed by 360 de

whole to achi
omposed of t
the signal de
or with Sölle

An Ordela 13
along with a
to the sample
of 36° with a
le’ detector i
grated signa
or for alignm
the door beh

ntering the an
ering from th
, but they ca
relation func
ern over a li

to make the
ll the desired
all the vario

al operations 
e Si crystals 
ous ways to c

f the current 
collimators. 

ystal system 
hite element

n scattering, w
gg scattering 
egrees and in
ieve the desi
three He3 det
etector, eithe
er-slit collim
348N linear p
an 80′ radial 
e position.  T
a height of 1
is also provid
al is to be me
ment purpose
hind the anal
nalyzer syste
he sample th
an also be use
ction, for ex
imited angul

e analyzer sy
d operating c
ous analyzer 

or user inter
holding the 

collect data d

analyzer sys
  

m consists of 
t is mounted
while the hig
from the mo

ndividually p
ired focusing
tectors 2.5 c

er with (up to
mations of 25

position-sen
collimator m
The PSD det
16.5 cm.  A s
ded, which c
easured, for t
es.  In additio
lyzer crystal
em.  These d

hat might giv
ed for measu
ample, or w
lar range wit

ystem as flex
criteria.  All 
modes of da
rvention ins
PG are very

depending o

stem, 

13 PG 
d on a perfec
ghly perfect
ount.  The 
positioned, 
g conditions

cm in 
o) 13 blades 
′, 50′, and 
sitive 

matched to 
tector has 48
separate 
can be move
the 
on, eleven 
ls to 
detectors are 
ve rise to a 
urements of 
ith a radial 
th coarse 

xible and use
the internal 

ata collection
ide the 

y delicate.  
n the 

t 
t 

s 

8 

ed 

 

er 

n 



scientific needs, and a similar capability is now available on the RITA-II spectrometer at 
the Paul Scherrer Institute [9-11]. 

 
4.  Analyzer Modes of Operation 

 
The analyzer system has six basic modes of operation that are computer- controlled 

and can be selected and interchanged by the experimenter without requiring any 
mechanical reconfiguration or hands-on user intervention inside the analyzer housing.  
These measurement capabilities provided by the new analyzer system greatly increase the 
flexibility and ease of use of the spectrometer for the experimenter.  The first two modes 
use the analyzer system without energy analysis, while the four standard additional 
modes use the analyzer and detector systems as indicated in Fig. 5.  Additional 
configurations are also possible for specific measurement needs, two of which are also 
indicated in Fig. 5. 
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 Each of the modes described above have scripts to set up the modes on the 
spectrometer, and software in DAVE [18] to visualize and analyze the data.  In addition 
to these capabilities, the flexibility of this blade design offers additional configurations 
that can be tailored to specific measurement needs.  For example, Fig. 5(e,f) shows two 
configurations that use a Söller collimator in the sample-analyzer position, and the PG 
crystals oriented approximately along the direction of kf but with each blade set to scatter 
a different energy.  Fig. 5(e) shows a configuration where all the scattering is focused 
onto a single detector, while Fig. 5(f) uses the PSD to discriminate the (Q,E) values 
measured.  This flexibility of the analyzer system can be employed to adjust the 
measurement conditions, such as the slope of the (Q,E) measurement, to take best 
advantage for a specific measurement need. 
 
 One final comment about these various modes.  In comparing modes 4) and 6), 
for example, the counts detected using the PSD in mode 6) can be summed and are then 
equivalent to what is detected via mode 4).  However, by using mode 4) the neutrons are 
focused on a small area on the PSD, or equivalently onto the single detector, which has 
the advantage that the active size of the detector is smaller, and presumably better 
shielded.  Thus the signal-to-noise should be better using mode 4), but at the cost of 
losing the wave vector differentiation.  The same argument can be made when comparing 
the configurations shown in Fig. 5(e) and (f). 
 

5. Performance 
 

The overall dimensions of the complete instrument as presently configured are:  1) 
source to monochromator distance, 488 cm;  monochromator to sample distance, 206 cm;  
sample to analyzer distance, variable from 165 cm to 229 cm;  analyzer (center blade) to 
detector distance, 35 cm.  The instrument can accommodate the full range of sample 
environment equipment to vary temperature, pressure, electric field, and magnetic fields.  
In particular, temperatures from 20 mK to 2000 K are available, and magnetic fields to 15 
Tesla.   
 

6. Polarized beam option 
 

A polarized beam option has been developed for BT-7, utilizing 3He polarizers 
immediately before and after the sample.[19]  This gives BT-7 full polarized beam 
capability for experiments where a guide field (only) is applied at the sample position to 
control the direction of polarization, and thereby the cross sections, with either 
monochromator and the PG analyzer.  In particular, all the above configurations can be 
utilized with 3He polarizers before and after the sample, along with computer controlled 
polarization direction at the sample, to enable measurements of all eight of the 
conventional polarized neutron cross sections [20].  There are two spin rotators that can 
be mounted before and after the sample.  Alternatively, the polarization of the 3He itself 
can be inverted to achieve the alternate spin state before or after the sample.  An 
adjustable guide field at the sample position is under computer control to manipulate the 
polarization direction perpendicular or parallel to the scattering plane. 
 



7. Operational Notes 
 
The electronic systems for the new instrument are distributed among its 

components.  Controls for the primary spectrometer (beam conditioning, sample table, 
monochromator drum, double focusing monochromator, scattering angle) reside atop the 
monochromator drum.  All controls for the secondary spectrometer (analyzer motors, 
detector electronics, airpad controls), on the other hand, are housed in an enclosure on top 
of the analyzer itself.  The only physical connections of the analyzer system to the rest of 
the instrument are a mechanical coupling, compressed air (for the air-pad system), 
electrical power, and computer communications.  The distributed nature of the electronics 
and the simple linkage of the analyzer to the primary spectrometer are designed to both 
alleviate heavy cabling burdens and to facilitate interchangeability of the analyzer.  In 
particular, if a different type of analyzer capability is required, such as a double focusing 
array with a detector buried in shielding, an analyzer with a different crystal choice, or a 
multi-crystal/multi-detector array, then the separate analyzer can be installed by floating 
it in on air pads, attaching it to the scattering angle arm, and simply connecting power, 
air, and communications.  The future development of additional types of analyzers will 
add important measurement capabilities both for the thermal as well as for the cold triple 
axis instruments.  Current information about the instrument and many additional details 
of the operation are available on the instrument webpage [21]. 

 
8. Future Options 

 
One of the drawbacks of the triple-axis spectrometer is that monochromator and 

analyzer crystals reflect higher order wavelengths, and these can not only contribute to 
background but also cause spurious peaks to occur in measurements.  A PG filter in the 
incident beam can remove higher order wavelengths, but only at discrete values of the 
energy.  One idea we investigated to try to alleviate this problem on the new instrument 
was to rotate the PG filter in the reactor beam to scatter the second-order wavelength, 
acting like a “pre-monochromator” to reduce the intensity of the higher order 
contamination.  One could then vary the scattering angle of the “filter” to deplete the 
higher-order wavelength over a continuous range of energies.  However, we found that 
the transmission through the PG of the primary wavelength was greatly reduced, making 
this impractical.  We only mention this because for the configuration shown in Fig. 5(e), 
the first blade (closest to the sample) scatters a higher energy than subsequent blades, so 
that the transmission of the longer wavelengths through each blade of the analyzer may 
not be optimal.  We note that for the configuration shown in Fig. 5(f) we have the 
opposite situation, with the each blade scattering a lower energy than subsequent blades, 
so there should be no significant transmission problem in this case. 

 The original design called for three separate low-background monochromator 
systems with three different d-spacings and corresponding energy ranges and resolutions;  
PG(002), Ge(311), and Cu(220).  Shielding needs dictated that there is only room for two 
monochromators, and the initial choice for BT-7 was PG and Cu(220).  One advantage of 
Ge(311), besides the different d-spacing, is the suppression of λ/2, and this will be the 
monochromator of choice on the second thermal TAS instrument.  However, the recent 
availability of velocity selectors with a large beam acceptance and energies up to 60 meV 



may allow these to be incorporated into our thermal triple-axis instruments.  In particular, 
there is sufficient room along the reactor beam of BT-7 to accommodate such a velocity 
selector, and this would be the ideal situation, providing a clean, truly monochromatic 
incident beam over a continuous energy range.  This would represent a major advance in 
thermal triple-axis spectrometry. 

 Finally, we note that we plan to accommodate a four-circle goniometer on the 
new instruments.  Coupled with the diffraction detector or PSD, this will greatly increase 
our ability to determine crystal and magnetic structures, as well as the nature of diffuse 
scattering and short range order.  For inelastic scattering, this capability will enable 
measurements of excitations in different scattering planes without the need for 
remounting the crystal, greatly increasing the efficiency of data collection and the 
completeness of the data obtained. 
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