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The Computer Forensic Tool Testing (CFTT) project at the National Institute of 

Standards and Technology (NIST) has been active since 2000. The project develops 

methodologies for testing computer forensic software tools by the creation of general tool 

specifications, test procedures, test criteria, and test data sets. The results provide the 

information necessary for toolmakers to improve tools, for users to make informed 

choices about acquiring and using computer forensics tools, and for interested parties to 

understand the capabilities of such tools. Our approach for testing computer forensic 

tools is based on well-recognized international methodologies for conformance testing. 

Introduction [Heading type A] 

In 1999, members of US law enforcement involved in investigating computer crime 

approached NIST about the verification of the tools used to acquire and analyze digital 

evidence. This was partially motivated by the US Supreme Court in Daubert v. Merrell 

Dow Pharmaceuticals, 509 U.S. 579 (1993). The decision established four criteria that a 

trial judge may use to assess the admissibility of expert witnesses’ scientific testimony. 

One of the four criteria involved testing the theory or technique used by the expert 

witness. The CFTT project was created to provide independent testing of the software 

tools used in digital forensics and thereby address the need for the testing of tools. The 

National Institute of Justice (NIJ) published the first test report in August 2002. Since 

then, as of August 2010, a total of 75 test reports have been published. 
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The Computer Forensics Tool Testing (CFTT) program is a joint project of the National 

Institute of Justice (NIJ), the Department of Homeland Security (DHS), and the National 

Institute of Standards and Technology’s (NIST’s) Law Enforcement Standards Office 

(OLES) and Information Technology Laboratory (ITL). CFTT is supported by other 

organizations, including the Federal Bureau of Investigation, the U.S. Department of 

Defense Cyber Crime Center, U.S. Internal Revenue Service Criminal Investigation 

Division Electronic Crimes Program, the Bureau of Immigration and Customs 

Enforcement and U.S. Secret Service. Representatives from each agency form a steering 

committee that provides project guidance, technical support, and selects tools for testing. 

The objective of the CFTT program is to provide measurable assurance to practitioners, 

researchers, and other applicable users that the tools used in computer forensics 

investigations provide accurate results. Accomplishing this requires the development of 

specifications and test methods for computer forensics tools and subsequent testing of 

specific tools against those specifications. A secondary objective is to provide assistance 

and resources to forensic practitioners for doing their own testing of forensic tools. This 

is accomplished by making test requirements, test plans, test tools and test data available 

for general use. 

Test results provide the information necessary for developers to improve tools, users to 

make informed choices, and the legal community and others to understand the tools’ 

capabilities. The CFTT approach to testing computer forensic tools is based on well-

recognized methodologies for conformance and quality testing. Specifications and test 

methods are posted on the CFTT Web site for review and comment by the computer 

forensics community.
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Test methodology [Heading type A] 

There are several significant challenges to testing forensic tools. These include the lack of 

agreement on what capabilities a tool should offer, the lack of agreement on what should 

be done in some situations, and the rapid evolution of technology. Some tools are 

designed to do a single task, such as acquire all data on a device. Other tools are designed 
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like a Swiss army knife with a multitude of features. Write block devices protect 

secondary storage from modification by allowing some commands to be passed from the 

host computer to the storage device while blocking other commands. Different blockers 

do not agree on what commands should be allowed or blocked. When the CFTT project 

began there were two widely used interfaces to secondary storage: ATA and SCSI. Ten 

years later, as technology evolves, testing of tools needs to also accommodate SATA, 

USB, Firewire and Thunderbolt interfaces. 

CFTT organizes testing by forensic function rather than by the specific type of tool. This 

allows test development to focus on a group of related issues together. Some forensic 

functions are critical to the integrity of any acquired evidence. If the acquired data is not 

accurate, then any analysis result is suspect. Initially, CFTT began with two functions: 

disk imaging and write blocking. 

Disk imaging is the acquisition of all digital data present on a secondary storage device. 

Write blocking is used to control access to secondary storage such that no changes are 

written to the storage device. Write blocking can be accomplished either in software or 

with a hardware device. Other forensic functions identified by CFTT for tool testing 

include mobile device examination, forensic media preparation (erasure for reuse), string 

searching, live memory acquisition, metadata based deleted file recovery, file carving 

(signature based deleted file recovery) and first responder triage tools. This is not a 

complete list of possible functions, just the candidates under active development for 

testing by CFTT. 

The CFTT testing process is directed by a steering committee composed of 

representatives of the law enforcement community. The steering committee selects tool 

functions for test method development and the specific tools for testing by members of 

staff at CFTT. After a forensic function is selected, CFTT takes several steps in 

preparation for testing: 

1. CFTT obtains some of the more widely used tools that offer the forensic function 

that has been selected. 

2. CFTT develops a list tool features related to the selected function offered by the 

tools. Some features may be designated optional. 



3. CFTT, with input from forensic practitioners, develops a set of requirements for 

each related tool feature, describing the desired tool behavior. A requirement is a 

statement about something a tool must do. Requirement development becomes 

challenging if there is no widely held agreement on tool behavior. In this case, the 

requirement is written such that multiple behaviors are allowed, with the actual 

behavior noted in the tool test report. Another important consideration when 

writing requirements is the ability to test each and every requirement. 

4. A draft set of requirements is published on the CFTT web site for public comment. 

After the closure of a comment period, the comments are addressed and the 

requirements are finalized. 

5. CFTT develops a test plan. This is often the most complex and demanding step in 

the process. Several components need to be developed for the test plan, including 

test assertions, method for measuring the test assertion, tools to measure 

conformance of a test run to test assertions, test data sets, tools for the creation of 

test data and test cases. A test assertion is a simple statement about one condition 

that must be true after running a test case. Every test assertion must trace back to 

at least one requirement and every requirement must generate at least one test 

assertion. If a requirement does not generate any assertions, it cannot be tested 

and should be removed. A test case usually bundles several test assertions 

together for a single test run. 

6. A draft test plan is published on the CFTT web site for public comment. After the 

closure of a comment period, the comments are addressed and the test plan is 

finalized. 

Once a test plan has been created, tool testing can begin for tools selected by the steering 

committee. 

1. CFTT obtains the latest version of the selected tool. 

2. CFTT compares the features offered by the tool to the features listed in the test 

plan and selects test cases for each of the features offered by the tool. 

3. CFTT develops a set of tool specific procedures for executing each selected test 

case. 



4. CFTT executes the test cases. Any unexpected results are checked and possibly 

rerun. In some cases the vendor of the tool is contacted to ensure that the tool was 

used as designed by the vendor. 

5. CFTT writes a draft test report documenting the test results. 

6. The steering committee reviews the draft test report. 

7. The draft test report is sent to the tool vendor for review. This allows the vendor 

to catch any errors CFTT has made in testing and allows the vendor time to fix 

any problems found by CFTT before the test report is published. 

8. CFTT submits the report to NIJ. NIJ reviews the test report and publishes the 

report on the NIJ web site. 

The final tool test report is intended to provide the information necessary for toolmakers 

to improve tools, for users to make informed choices about acquiring and using computer 

forensics tools, and for interested parties to understand the tools capabilities. A test report 

is generally divided into five sections. The first section is a summary of the results from 

the test runs. This section is sufficient for most readers to assess the suitability of the tool 

for the intended use. The remaining sections of the report describe how the tests were 

conducted, discuss any anomalies that were encountered and provide documentation of 

test case run details that support the report summary. Section 2 gives justification for the 

selection of test cases from the set of possible cases defined in the test plan for the tested 

tool. The test cases are selected, in general, based on features offered by the tool. Section 

3 describes in more depth any anomalies summarized in the first section. Section 4 lists 

the hardware and software used to run the test cases with links to additional information 

about the items used. Section 5 contains a description of each test case run. The 

description of each test run lists all the test assertions used in the test case, the expected 

result and the actual result. 

Table 1 summarizes the number of test reports published for each type of tool tested by 

year of publication as of July 2011. Seven other test reports are in final editing steps 

before final publication later in 2011. Six additional tools are currently undergoing 

testing with test reports to follow either in 2011 or 2012. 

Table 1 Number of test reports published by year and tool type 



Year Disk imaging Write block Media prep Mobil device Total 

2002 1    1 

2003 3    3 

2004 1 4   5 

2005  3   3 

2006  13   13 

2007 1 7   8 

2008 6 4  4 14 

2009 2 2 1 4 9 

2010 2  6 9 17 

2011 1   1 2 

Total 17 33 7 18 75 

 

Lessons learned and test results by forensic function [Heading type A] 

This section describes lessons learned developing requirements, test assertions and test 

plans along with notable test results, presented by forensic function. 

Disk imaging [Heading type B] 

Disk imaging is the process of acquiring digital data from a secondary storage device, 

referred to as the source. The basic process is simple. Read the source and make a copy 

on a destination device. To make a copy in a forensically sound manner is another story. 

A typical acquisition usually proceeds as follows: 

1. A source storage device is obtained as evidence. This is usually a hard drive or a 

removable storage device. All devices are accessed through a hardware interface. 

On older devices this is usually ATA or SCSI. On more recent devices the 

interface is usually SATA or Thunderbolt. Removable devices are usually USB, 



Firewire or eSATA. Other interfaces are possible, but CFTT has not tested any 

tools using them. 

2. The source device must be attached to a computer for copying. The computer may 

be a single purpose device just for imaging or a general-purpose computer, either 

a desktop or a laptop. Some protection needs to be in place to prevent any changes 

to the source. The protection may be in the form of a write block device. The 

device must be attached through some interface and the host must use some 

interface to obtain access to the device. The interfaces may be different if there is 

a write blocker between the storage device and the computer. In this case the 

write blocker must translate commands from one interface to another. 

3. The imaging tool executes to produce a copy of the source. The copy may be in 

one of two forms, either a clone on to another device, or an image file in some 

format. Often an image file is compressed to occupy much less space than the 

source. 

Disk imaging testing [Heading type B] 

The two fundamental requirements are to acquire the source completely and accurately. 

Additional requirements include making no changes to the source, making a record of 

any deviations from completeness and accuracy, and having a method to validate the 

contents of the acquisition. 

The disk imaging requirements and test plan document, called collectively the 

specification, has gone through three versions. The first version was used to test a single 

tool and then significantly revised. The second version of requirements and test plan was 

used for testing four tools. At this point, several shortcomings became apparent and the 

requirements and test plan were again revised. One of the reasons for the revision was the 

pace at which the technology changed. The first two specifications were tied to the ATA 

and SCSI interfaces. Each test case specified the interface required for the test. With the 

introduction of USB and with Firewire, it became clear that a more flexible approach was 

needed. The original specification would have a set of test cases such as the following: 

01 Make a clone of an ATA drive. 

02 Make a clone of a SCSI drive. 



03 Make an image of an ATA drive. 

04 Make an image of a SCSI drive. 

05 Make an image of a FAT partition. 

06 Make an image of an NTFS partition. 

Etc. 

When USB was introduced, there was no test case specified to use that interface. The test 

plan at least needed to be revised to include cases for the USB interface. However, it 

would be inconvenient to make frequent revisions to such fundamental documents. 

Instead, CFTT decided on a more flexible approach by parameterizing the test cases. The 

new test cases are as follows: 

01-X Make a clone of a drive using interface X. 

02-X Make an image of a drive using interface X. 

03-Y Make an image of a type Y partition. 

Etc. 

Now test case 01-X can be executed once for each interface the tested tool supports. New 

interfaces can be introduced with no effect on the requirements and test plan. 

Test results [Heading type B] 

The following is a list of some of the tool behaviors we have seen. Some behaviors are 

serious errors, but most are just quirks that the forensic practitioner should take note. 

1. Source drive is changed. This can be quite serious, because it calls into question 

the evidence that is acquired. In an ideal case, a write blocker should always be 

used. However, the specific situation of the acquisition may preclude such use. 

Some tools are designed to function without a write block device. These tools are 

often designed to execute from a Linux boot CD that can be configured to not 

modify any storage devices that are attached. The configuration of the boot CD is 

complicated, and if not done correctly, subtle changes can occur. One possibility 

is if there is a swap partition on the source device. The Linux run environment 



will use a swap partition unless the boot CD is configured to ignore any swap 

partition. Another problem is with NTFS partitions; some Linux device drivers 

may change NTFS metadata regardless of the mount status of the partition and 

may make changes even if the partition is not mounted. Note that the tool per se is 

not the cause of the problem, but rather the run time environment. 

2. Acquisition fails to be complete or accurate over a specific interface. The 

acquisition may be successful over most interfaces, but fail to be accurate or 

complete over some specific interface or set of conditions. Examples are a tool 

that imaged a laptop drive in place over a PCMCIA interface, and an older tool 

imaging a SCSI drive with a specific type of SCSI card installed in the imaging 

computer. 

3. Acquisition is incomplete. Older versions of Linux used a block size of 1024 

bytes and did not acquire the last sector of a device or partition if it contained an 

odd number of sectors. Another situation where an acquisition is often incomplete 

is when there are hidden sectors present on a storage device. There are two 

methods for hiding sectors on ATA and SATA drives: host protected area (HPA) 

and device configuration overlay (DCO). Manipulation of DCO and HPA areas is 

easy to do, but the knowledge of how to do it is obscure and arcane. 

4. NTFS partition acquisition is incomplete and inaccurate. Some tools do not bother 

to acquire the last few sectors of an NTFS partition because those sectors are not 

used to contain user data. In one case, a block of sectors that had already been 

acquired replaced these unused sectors. 

5. Readable sectors are omitted from an acquisition if bad sectors are present. If a 

sector is faulty or unreadable, a tool should notify the user and replace the 

unreadable data with benign data such as zeros. There are several variations seen 

on this theme. For drives connected via an ATA interface and imaged from a 

Linux platform, seven readable sectors surrounding a bad sector are not acquired. 

Reading a device is done within the operating system in blocks of eight sectors. If 

one sector within the block is unreadable, the entire block is treated as unreadable 

and replaced with zeros. If another interface is used instead, a larger, variable size 



block is replaced with zeros. In other environments, the data not acquired is not 

replaced with zeros, but with something of undetermined origin. 

6. A restore is incomplete. A common feature of most imaging tools is the capability 

to restore a previously acquired image file to a secondary storage destination. 

Some tools that use a Microsoft Windows run time environment may not restore 

all of the data acquired from the source to the destination. This can happen if the 

source device and the destination device are identical in size. 

7. There are changes to the restored data. If a partition (also known as a logical 

drive) is restored from a Microsoft Windows run time environment, some of the 

file system metadata is modified during the restore. These changes can, in some 

cases, be avoided by removing the destination device as soon as the restore 

finishes. This prevents the operating system from making the changes to metadata 

because the actual changes are often not written until the normal shutdown is 

initiated. 

Write blocking [Heading type B] 

The basic idea of write blocking is to put a filter between the storage device and any 

program that might try to write to the storage device. The filter can be either software that 

monitors access to the interface connected to the protected device, or a hardware device 

that sits between the computer and the storage device. 

The normal way a computer reads and writes to a storage device is to issue a command 

over an interface connected to the device. There are several interface types, the main ones 

are ATA and SCSI. Some interfaces, such as USB, use a restricted set of SCSI commands 

to communicate. Both ATA and SCSI interface command sets have several commands 

that can be used to write to a storage device, and several read commands. Different 

operating systems may use different commands to obtain access to secondary storage. 

This means trying to test a write blocker by using the normal system programs available 

to a user to try to write to a protected drive is not likely to send more than one or two 

write commands over the interface. Such a test is incomplete. 

Write blocker testing [Heading type B] 



The CFTT approach to testing hardware write blockers is to develop a tool that can issue 

all possible command codes for both the ATA and the SCSI interface. In addition, a 

special hardware device, a protocol analyzer, is located between the computer and the 

blocker along with a second protocol analyzer located between the write blocker and the 

storage device. The protocol analyzers monitor the command traffic both going in and 

coming out of the write blocker. This gives a clear indication of the commands that are 

allowed and the commands that are blocked. 

A similar approach was used to test software write blockers that monitored the BIOS 

interface. The early BIOS interface had two write commands: WRITE and WRITE 

LONG. The software write blocker was able to insert itself just in front of the BIOS to 

intercept all commands that obtained access to the secondary storage. The write blocker 

would examine each command and pass along to the device any command that was not a 

write command; write commands would then be ignored. Later versions of the BIOS 

interface added a third write command for addressing larger drives. 

There were two basic requirements in the first draft of the specification: 

01 Allow all read commands. 

02 Block all write commands. 

The second draft of the specification revised the first requirement as follows: 

01 Allow at least one read commands. 

Test results [Heading type B] 

Some read commands are blocked. The first hardware write blocker tested blocked not 

only all write commands, but any read command that was dropped from the current 

interface specification. For example, the ATA command specification has evolved over 

eight versions, adding new commands and dropping others. 

The write blocker replaces some read commands with a different command. 

A write command is allowed. This was seen in a BIOS interface software write blocker. 

When a new write command was added to the BIOS of newer computers, the old write 

blocker did not know that the new command should be blocked. This highlights a 



fundamental design decision for write blockers. There are more than just read and write 

commands implemented on a given interface. Some command codes are not assigned any 

function currently, but may be assigned to new read or write commands in the future. 

One design is block writes, allow everything else; the other is allow reads, block anything 

else. There can be problems with both designs. 

Forensic media preparation [Heading type B] 

Forensic media preparation is the erasing of a drive for reuse within the organization. 

This is not to be confused with erasing a drive for disposal or transfer to another 

organization. The idea is to remove information to prevent cross contamination from one 

case to another, not try to prevent extraction of previous content by extraordinary means. 

Drive wipe testing [Heading type B] 

ATA and SATA drives have a special instruction, SECURE ERASE, defined for wiping 

drives. The implementation is optional. If SECURE ERASE is not implemented, the 

drive can be overwritten with other content. Some tools offer both methods. Some tools 

also offer multiple overwrites with user selectable patterns and wipe verification. CFTT 

did not find either of these options testable in a practical way for most implementations. 

To test multiple overwrites, the state of the drive would need to be examined at the end of 

each pass. This could be done, but at the expense of significant effort. Given that a single 

pass is adequate for the purpose at hand (reuse within the same organization), it would 

not be cost effective to develop test procedures to test this feature. As for testing post 

wipe verification, the process would need to be stopped after the wipe phase so that the 

wipe could be corrupted before starting the verification phase. Otherwise, there is no 

verification that wipe failure would be detected. As for a tool that writes random data to a 

drive, it should be pointed out that random data is difficult to distinguish from encrypted 

data. A tool that claims to write random data might just encrypt existing data unless the 

tool has a mechanism to provide assurance that the data really is random. 

Test results [Heading type B] 



SECURE ERASE fails to function. The implementation of SECURE ERASE in 

particular drives is sometimes not what the tool developer expected and the invocation of 

the command fails. 

Hidden sectors (HPA or DCO) are not erased. Sometimes this is a design decision to 

ignore hidden sectors. Sometimes the tool would attempt to remove the hidden sectors, 

but fail to remove the sectors. Sometimes the tool will remove the hidden sectors, but not 

erase them. 

Mobile devices [Heading type B] 

The development of mobile device forensic tools and acquisition techniques continues to 

develop within the field of digital forensics. Mobile subscribers far out number personal 

computer owners, and studies have shown an increase of mobile device personal data 

storage compared to personal computers. At the time of writing, four times the number of 

mobile subscribers exists compared to the owners of personal computers. Higher-end 

mobile devices present users with advanced features and capabilities similar to those of a 

personal computer. Mobile devices provide users with the ability to maintain contact 

information, future appointments, day to day activities, inform us of important news 

events and provide us with the ability to correspond with friends and family via text 

message, e-mail, chat and social networking sites. Over time, mobile devices can 

accumulate a sizeable amount of information about their owner. Data acquired from these 

devices may be useful in criminal cases or civil disputes. 

While the use and sophistication of mobile devices continues, so does the need for the 

validation of tools. In order for the information acquired from such devices to be 

admissible in legal proceedings, verification of a tools behavior and strict forensic 

acquisition methods are paramount. Potentially, one piece of data acquired from a mobile 

device may play a critical role in shedding light on an incident or possibly criminal 

activity. The need for rigorous testing conducted on a combination of forensic tools and 

specific families of mobile devices is critical for providing law enforcement and forensic 

examiners informative test results yielding known expectations of the behaviour, 

capabilities and limitations of a tool. Over the past three years, the CFTT project at NIST 

has tested numerous mobile device forensic tools that are capable of acquiring data from 



mobile devices operating over Global System for Mobile (GSM) communications and 

Code Division Multiple Access (CDMA) networks. 

Test results [Heading type B] 

The CFTT project has currently tested many versions of thirteen mobile device forensic 

tools capable of acquiring data from SIMs, the internal memory of GSM and CDMA 

devices. As of 2011, this testing has resulted in a total of nineteen documents providing 

an overview of the test results.
3
 The test reports describe how the tests were conducted 

and provide documentation of test case run details that support the report summary. 

Mobile device forensic tools have continued to improve, providing forensic examiners 

with acquisition solutions for multiple devices operating over various cellular networks. 

As new mobile devices continue to enter the market, tool updates often introduce 

problematic areas in software and hardware. Over the years of testing mobile device 

forensic tools, anomalies within tools tend to reoccur, such as the following: 

1. Lack of Unicode support – Address book entries and/or text messages containing 

non-ASCII characters are not displayed in their native format. 

2. Truncated entries – Long address book entries or text messages over 160 

characters are partially acquired. 

3. Connectivity issues – Connectivity between the mobile device and the forensic 

workstation or the mobile device forensic tool is not established. 

4. Acquisitions ending in errors – Acquisitions abruptly ending due to connectivity 

errors between the mobile device and mobile device forensic tool resulting in an 

unsuccessful acquire. 

5. Incorrect date/time stamps – Incorrect date/time stamps for call logs and text 

messages. 

6. Inconsistencies between preview-pane data and generated reports – Data 

inconsistencies between what is presented in the preview-pane compared to the 

generated report. 
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7. Subscriber related data not reported (IMEI, MSISDN) – Subscriber data either 

incorrectly reported or not acquired. 

8. Deleted data acquisition – Unsuccessful recovery of recoverable deleted data 

objects. 

9. Internet related data – Unsuccessful acquisition of Internet related data. 

10. Application related data – Unsuccessful acquisition of application related data. 

Recovery of deleted files [[Heading type B] 

The specification for metadata based deleted file recovery tools is currently under 

development. The recovery tool uses file system metadata that remains after a file is 

deleted to recover allocated blocks and file attributes. Each file system leaves different 

pieces of metadata behind, so the tool needs to be tested on each file system and 

significant versions of the file system. CFTT is focused on the following file systems: 

FAT12, FAT16, FAT32, NTFS, Ext2, Ext3 and Ext4. The HFS+ file system is ignored 

because when a file is deleted from HSF+ all metadata is deleted. No formal testing has 

been completed, but we have some partial results. For example, consider a fragmented 

file that has been allocated two blocks, X and Y. Suppose the blocks are separated by an 

allocated file A. The block layout of just those three blocks would be XAY. Three tools 

have given three different results. Tool 1 returns just block A. Tool 2 returns both blocks 

X and Y. Tool 3 returns blocks X and A. It can also be shown that if the layout is more 

complicated, tool 2 is not always correct. If the layout adds block Z from another deleted 

file such that Z is between A and Y, XAZY, then tool 2 returns XZ as the recovered file. 

Errors and Daubert [Heading type A] 

In addition to testing as a criterion for admissibility of scientific testimony, Daubert 

includes an error rate for the technique. At first glance, it would seem useful to try to 

derive error rates from the test results. However, it is not obvious how to describe the 

error rates for digital forensic tools. The Daubert decision motivates attempts to establish 

error rates for digital forensic tools. The legal decision in 1993 by the Supreme Court of 

the United States indicates four criteria that a trial judge may use to assess the 

admissibility of expert witnesses’ scientific testimony during federal legal proceedings 

1. Whether the theory or technique has been tested, 



2. Whether the theory or technique has been subjected to peer review and 

publication, 

3. Whether there is a known or potential rate of error and whether standards exist to 

control the technique’s operation, and 

4. Whether the technique has general acceptance within the relevant scientific 

community. 

Establishment of an error rate for using digital forensic tools is complicated by the 

difference between the underlying algorithm or technique and its implementation in 

software and process. For example, consider picking up a deck of cards that have been 

dropped in a room. The theoretical error rate for picking up the cards is zero because 

there is no reason why all the cards cannot be picked up. However, the dealer may 

introduce an implementation error into the process by not checking under furniture. 

Providing none of the cards fall under the furniture, there are no errors. The condition of 

cards under furniture allows the error (not systematically checking under furniture) to be 

manifest. 

For digital forensic software tools there are three broad sources of error that can occur in 

using a tool: 

1. The algorithm intended for the process. 

2. The software implementation of the algorithm. 

3. The performance of the process by a person in a specific situation. 

There are two issues (not one) related to error rates of forensic evidence: (1) does the 

technique work? (2) Did the expert do it right? 

For the first question, the issue is scientific validity of the technique. The intent is to filter 

out testimony based on bad science and pseudoscience. No astrology, water witching, 

cold fusion or contact with the spirit world is allowed into court. The error rate for a 

Daubert hearing is about the science. For example, what is the error rate for using a hash 

or checksum to determine if two files are identical? If an expert wants to offer an opinion 

about two files based on a 4-bit CRC checksum, the court should not allow the testimony 

to be admitted, since the error rate is two high (1 in 8). If an expert wants to offer an 

opinion about two files having the same content based his own hash algorithm that almost 



no one else has seen, but some of the people that have seen it claim that it is easy to 

generate files that have a given hash value, then this too is not admissible (untested, not 

reviewed, not accepted). On the other hand, the SHA1 algorithm is open for independent 

review and has a known error rate that is vanishingly small for determining if two files 

are the same. 

The second question is about the specific expert opinion at hand. Was the technique 

implemented correctly? An error rate can be calculated here too, but with less certainty 

due to the number of independent variables. For digital evidence, the relevant parameters 

that make for systematic error have too much variation for a meaningful error rate to be 

constructed based on empirical testing. 

For many forensics applications, the error rate for the algorithm is zero. For example, the 

copying techniques and algorithms that underlie disk acquisition have an error rate so 

small that for all practical purposes it is zero. The software implementation may have an 

error rate as well as the performance of the examiner. For example, the software may not 

correctly handle drives with an odd number of sectors, or the examiner may fail to follow 

correct procedure. 

Software is more likely to contain systematic errors rather than random errors that can be 

described using an error rate. Systematic errors are normally seen in software errors 

(cases where the code is incorrect) and in cases where software is asked to do something 

it was not programmed to do. The software might appear to act randomly in these 

situations, but, most likely, the underlying cause can be explained as a software flaw and 

the behavior is logical; that is, it follows the logic of the (poorly written or misused) 

software. It is therefore, systematic and does not have an associated error rate. 

The main issue is whether the software algorithm is implemented correctly and is 

appropriate for the given situation. For example, software to copy a drive needs to be able 

not only to copy, but to be able to handle the type of drive being used, to know what to do 

if the drive contains unreadable sectors, to know what to do if the drive being copied to is 

smaller than the source, and many other factors. Within the constraint that the software 

can handle the situation, the error rate is that of the physical attributes of the hardware 

and creates an error rate that is infinitesimal and not useful. To address this, the tool must 



be tested. Therefore, requiring an error rate is not relevant – what is needed is a test 

report. 

Summary and conclusions [Heading type A] 

The CFTT project has been writing tool requirements, test plans and testing forensic tools 

for the last 10 years. In general, the results are correct for the critical functions the tools 

are asked to do. Some serious errors have been found, and the tool vendors have been 

able to correct the problems quickly. Most of the problems are just quirky behaviors that 

can be avoided if the practitioner is aware of them. 

Over the next few years CFTT will expand into testing other functional areas such as 

string searching, live memory acquisition, triage tools and e-mail extraction. Another area 

will be to try to make the CFTT testing methodology available to forensic laboratories in 

a form that is easy for a laboratory to test forensic tools in a common manner and to 

facilitate sharing of test results and test materials. 
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