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ABSTRACT

In this paper, we examine the emerging field of quality
assessment for large-eddy simulation of fire dynamics.
The importance of model convergence is discussed and
the differences between validation and quality assess-
ment are highlighted. Briefly, validation compares a
model to experimental data, whereas quality assess-
ment fills the void between experiments and practi-
cal applications. Two quality metrics are discussed:
a measure of turbulence resolution and a normalized
wavelet error measure. The metrics are monitored in
a simulation of the Sandia 1 m methane pool fire and
target metric values are inferred based on the results of
a grid resolution study.

INTRODUCTION

The emerging field of quality assessment for computa-
tional models is not a panacea. But it is close.

Quality assessment (QA) represents a shift in thinking
away from the idea that model validation is the end
goal. Validation is certainly a necessary means to an
end. But it requires experiment, and if an experiment
exists, it is unlikely we need a model to begin with. QA
is about filling in the space between validation points.
It is about evaluating the quality of a model result with-
out the luxury of experimental data.

The intent of this paper is not to debate what we mean
by validation or when we may consider a model to be
validated. This has been done by Oberkampf [1] and
McGrattan [2]. In this paper, we discuss how to as-
sess the quality of numerical solutions in the absence
of corroborating data, where a model is most useful for
prediction.

QA for large-eddy simulation (LES) unofficially be-
gan in 1996 with the seminal work of Ghosal [3],
who demonstrated the resolution requirements for var-
ious numerical schemes in the context of explicit fil-
tering (see [4, 5] for a review of filtering in LES). In
short, Ghosal showed that with a second-order scheme
a filter-width-to-grid-spacing ratio of A/dx > 8 is re-

quired in order for numerical error to be small (<10%)
compared to the magnitude of the terms in the physi-
cal model (later we will discuss in more detail the roles
of both A and &x in generating numerical solutions to
the partial differential equations which form the basis
of LES). Thus, explicit filtering requires the model to
run 4096 times slower (84, eight levels of refinement
in each of three spatial dimensions and one temporal
dimension) for the same spatial resolution—a demor-
alizing prospect for engineering codes.

Fortunately, recent experience has shown that the prac-
tice of implicit filtering (A/dx=1) is permissible for
modeling statistically stationary or mildly statistically
transient flows (prevalent in engineering applications)
provided the numerical methods (a) conserve kinetic
energy [6, 7] and (b) are convergent (more on this
later). The Fire Dynamics Simulator (FDS), which is
the subject of the present paper, is an implicitly fil-
tered, second-order accurate LES code.

The QA methods presented in this paper are primar-
ily aimed at engineering applications. In what follows,
we narrow our scope to focus on mesh quality for gas
phase phenomena. The reader should note, however,
that sufficient mesh quality by no means guarantees
a sufficiently accurate model result. It is merely one
component of the fire model, but it is the only one
where QA methods exist. We hope the ideas presented
here will spark QA research in the more problematic
areas of fire modeling, such as the burning solid phase
material.

The important length scale for resolution of prescribed
buoyant pool fires is the minimum between the fire
height and the characteristic diameter of the fire [8],
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Here, O is the total heat release of the fire, P is the
ambient density, ¢, is the ambient specific heat, T., the
ambient temperature, and g is gravity. Current guid-
ance in FDS is to keep D*/dx = O(10) (results in the
FDS Validation Guide [9] generally range from 5 to



20). This has been the implied QA metric for LES
models of prescribed fires. The shortcoming of this ap-
proach is that it cannot be extended to modeling flame
spread and it is of little use for optimizing mesh den-
sity in adaptive mesh refinement (AMR), a technique
which holds promise for drastically improving fidelity
and speed of fire simulations.

The modern view on LES QA is summarized in the
proceedings of the Workshop on Quality and Reliabil-
ity of Large-Eddy Simulations [10]. The usual strategy
is to examine run-time mesh quality metrics, and to use
this information to guide refinement (or coarsening) of
the grid as necessary. In this paper, we present a met-
ric from the literature based on modeling the fraction
of unresolved kinetic energy (the Pope criterion [11]).
We also present a new error metric based on a simple
Haar wavelet transform. Both metrics can be output by
FDS.

The remainder of the paper is organized as follows:
Before examining the QA metrics in detail, we sur-
vey our challenge by trying to gain an appreciation for
the volume of application space not covered by exper-
imental validation and therefore squarely under the re-
sponsibility of quality assessment. Next, we comment
on an important prerequisite for the success of the QA
process, namely, that the LES code must be conver-
gent. After presentation of the metrics, we provide an
example of how they may be applied.

APPLICATION SPACE

We get asked all the time, “What are the limitations
of FDS?” Some limitations are obvious enough: the
code is not designed for compressible flows; it cannot
handle non-Newtonian fluids, liquids, or (at present)
curvilinear and moving goemetries. Some limitations
are not so obvious. For example, today flame spread
is still very much a research area. The limitations of
pyrolysis models (including the availability of material
properties) in addition to the chaotic nature of flame
propagation make this problem extremely difficult. As
aresult, some FDS simulations of flame spread may be
accurate while others may be way off mark. So how is
a user to know whether to trust the answer?

The usual response to this question is to look at the
Validation Guide [9]. If the code (in this case FDS) has
been “validated” for the application, then the answer
must be trustworthy. Right?

There are two issues to address here. The first is that
the setup and mesh resolution chosen by the user are

important to the quality of the results. We will dis-
cuss some aspects of this in the next section. But ac-
tually, the more vexing issue is that the probability of
the user finding the exact case they are looking for in
the Validation Guide is nil. More generally, if experi-
mental data (or a correlation) exists with which to vali-
date a simulation, from an engineering perspective, the
model may not be especially useful. The cases we are
usually interested in (the ones engineering firms get
paid to analyze) are the ones without validation data
(if we are designing a new skyscraper, we are proba-
bly not going to burn it down to see if our fire safety
design was accurate). Are all these applications out-
side the limitations of the model? Hopefully not.

This raises a serious and legitimate question: How far
can we stray from the experimental data? Usually, de-
velopers (of just about any model) make the claim that
the model has been validated for some class of ap-
plications (plumes, for example). This is clean and
tidy when the problem class can be well defined in
terms of one or two dimensionless parameters (maybe
a Reynolds number or a Froude number). Real life
is not so easy. The parameter space will have many,
many dimensions without nice clean scaling laws.

To help visualize the predicament, in Figure 1 we
present a hypothetical two-dimensional application
space (real application space is an n-dimensional hy-
percube). The interior of each black outlined region
(circle or rectangle) represents a problem class and the
blue dots represent individual validation experiments
within the class. The red box represents the theoret-
ical applicability of the model. There are two points
to make about this space. The first is that the volume
of space where the model is theoretically applicable
may be large compared to the volume of the validation
space. The second point is that the landscape of the
space between validation classes may not be smooth.
So, interpolation between validation classes or com-
bining model results from neighboring classes may
not be valid without additional analysis (and faith in
the physics of the model, which effectively becomes a
sophisticated interpolant between validated regions of
the space). An example of the type of argument of-
ten made is to say that a model has been validated for
plumes and that it has been validated for duct flows
and then to claim the model is therefore valid for the
problem of a plume in a compartment ventilated by
a duct (for which specific experimental data may not
exist). This would be a case within the red square (the-
oretical applicability of the model) but where quality
assessment of the result would be critical.
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Figure 1: A hypothetical two-dimensional application
space. Blue dots represent validation experiments.
The black outlined regions represent classes of flows.
The red square represents the region of theoretical ap-
plicability of the model. The empty space (the anti-
library [12]) is infinite in volume.

LES TO DNS CONVERGENCE

The notion of achieving “sufficient resolution” pre-
supposes that higher resolution yields better answers.
While this seems like an obvious requirement to build
into a computational fluid dynamics (CFD) model,
achieving this ideal in practice is not so simple. As
shown below, if we are not careful, we may run into
trouble with physical models or numerical methods or
both. (The reader not interested in devilish mathemat-
ical details may safely skip the rest of this section.)

First, we need to understand the difference between di-
rect numerical simulation (DNS) and large-eddy simu-
lation (LES). For simplicity, we will only examine the
species transport equation:
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Here, p is the density, Yy is the mass fraction of
species Q. u; is the ith component of velocity, Dy, is the
mixture-averaged diffusivity of o, and riz}y is the chem-
ical source term. Let us imagine that (2) is an adequate
representation of the physical system (Fick’s law with
mixture-averaged diffusivity is appropriate) such that
an accurate numerical solution may be considered a
DNS (if a simulation is truly a DNS, it may be con-
sidered a substitute for experiment—any user turning
to “DNS” mode in FDS should apply this standard of

quality).
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The LES equations are derived by applying a low-pass
filter, of characteristic width A, the filter width, to the

DNS equations. For our purposes, filtered fields may
be thought of as cell means, which we denote with an
overbar, and when the filter is applied to (2) we obtain
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Simple enough, we just put bars over everything.
Trouble is, we have no way of computing the stuff un-
der the bars to advance (3) in time. We must decom-
pose the terms, and this leads to closure problems.

The first step is to define a mass-weighted average
(Favre-average) such that for any quantity po = p.
Applying this decomposition to (3) and making a sub-
tle approximation to the diffusive term leads to
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Note that we still have no way to compute the correla-
tion Yyu; on the grid. We cannot simply substitute Yy,
(this is the old problem of “the mean of the square does
not equal the square of the mean”). Instead, we define
the subgrid flux,

Jo = p(Youti — Youli), (5)
and substitute this flux into (4) to obtain
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This is the LES species transport equation. It remains

that we find suitable models for J;5; and )/, and,
to achieve LES to DNS convergence, that we prove

J5 — 0 and m}] — riry as A — 1 (the smallest length

scales of the flow).

Convergence of physical models

In FDS, the subgrid flux is modeled with an eddy diffu-
sivity taken from the turbulent viscosity and a constant
turbulent Schmidt number,
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For convergence, we require gy — 0 as A — 1. For the
constant coefficient Smagorinsky model the turbulent
viscosity is given by

M = ﬁ(CsA)2|~§
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where C is the Smagorinsky constant, |S| is the mag-
nitude of the strain rate tensor with components S;; =



3(0ju; +d;u;). Note that both p — p and |S| — |S|
as A — 1 at a second-order rate, which suffices. But
now consider the evaluation of u, at A =m. First,
note that the kinetic energy dissipation rate is given
by € =2vS;;S;; = V|S 2 where V is the kinematic vis-
cosity of the fluid. Also, from Kolmogorov (see [5])
we have n = (v3/€)!/4. Using these relationships in
(8) we find the turbulent viscosity becomes
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As we can see, the turbulent viscosity never goes away,
we are left with a guaranteed 4% error (Cszv ~ 0.04v).

This is one reason why the dynamic procedure [ 13, 14]
for evaluating the model constant is preferred since
the dynamically computed Smagorinsky coefficient Cy
vanishes as A — M. This issue is more important than
it seems at first glance. Problems with the constant
coefficient model actually emerge with A > 1. Real
turbulent flows are intermittent (local pockets of lam-
inar flow) with large bursts of forward energy trans-
fer (large scale motions cascading to small scales) and
high levels of “backscatter” (small scales generating
large scale motions). Backscatter is extremely chal-
lenging to get right, but at a minimum we would like
our models to turn themselves off rather than transfer
energy in the wrong direction [22].

Practical Considerations

As another example of possible convergence issues,
consider the radiation source term. FDS operates
in either “LES mode” (default) or “DNS mode” and
this simple switch also switches the model for radiant
emission. In LES mode, the emission intensity is set
to the maximum of k6T* /7 and 4" /4w, where ¥, is
a constant radiant fraction, ¢" is the heat release per
unit volume, 7 is temperature, K is the absorption co-
efficient, and G is the Stefan-Boltzmann constant. In
most cases, the 7# law will dominate at fine grid reso-
lution, but this is not guaranteed (depends on ). Still,
this example illustrates a case where the solution is so
practical (simple, robust) that we are willing to live
with the potential convergence problem.

Convergence of numerical methods

Numerical methods to solve (6) involve approxima-
tions to mass fluxes and spatial derivatives, and tech-
niques for integrating the solution forward in time. To
illustrate how the numerics may lead to convergence
problems, consider the mass fluxes in the advective
term of the species transport equation. In 1D, for a
given cell i, the advective term is approximated by
O(pYait)  (PYadt)ir1/2— (PYadl)i1)2
& (10)
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In the staggered storage arrangement used by FDS
the velocity component lives at the cell face, denoted
i+ 1/2, so these values need no interpolation. The den-
sity and mass fractions, however, are stored at the cell
center and must be interpolated to the cell face to form
the flux. This simple task is of critical importance to
the accuracy, stability, and convergence of any CFD
code.

The two most common methods of handling the in-
terpolation are central differencing and upwinding
(Godunov’s method, see [15]). Central differencing
is second-order for smooth solutions and Godunov’s
method is first-order. When central differencing en-
counters any data variations which are not smooth, it
admits spurious (nonphysical) oscillations known as
Gibbs oscillations. The error generated by the cen-
tral scheme is called numerical dispersion. The error
generated by the first-order Godunov scheme is called
numerical diffusion. The character of the two types
of error are qualitatively different. The diffusion er-
ror ultimately convergences to zero, albeit at a slow
rate. The dispersion error does not converge and may
lead to instability. What often happens in a CFD code
is that the dispersion error is kept in check by physi-
cal diffusion. But in this case one never knows what
real damage is being done to the integrity of the solu-
tion. For LES, we have learned it is important to check
the integrity of the solution in the abscence of physi-
cal diffusion. If the character of the advection solution
is correct, physical diffusion is more accurately repre-
sented.

To show the qualitative difference one can expect with
different transport schemes (that is, different ways of
interpolating the density and mass fractions to the cell
face), below we present two solutions to the problem
of linear advection of square waves in 2D. The do-
main is a unit square with 80 x 80 grid resolution. The
Courant number (time-step criterion) is 0.25. The ini-
tial condition is shown in Figure 2. The color contours
represent a species mass fraction. The block in the



lower left (red) has a value of one and the block in the
upper right (green) has a mass fraction of one half. The
diffusivity is set to zero. The horizontal and vertical
components of velocity are held constant at u = 1 and
w = 1. In the true solution to this problem, the square
blocks simply advects diagonally to the upper right
and, with a periodic domain, after one flow through
time arrive again exactly at the initial state (Figure 2
is therefore both the initial state and final state of the
exact solution).

In Figure 3, we show the resulting numerical solution
at one flow through time for a convergent transport
scheme, the CHARM flux limiter [16]. This scheme is
second-order for smooth solutions (unlike Godunov)
and convergent for both square (not smooth) and sinu-
soidal waves. In Figure 4, we show the results from a
bounded central scheme. Bounded schemes use cen-
tral differencing except in locations where the scalar
value goes “out of bounds”, such as a mass fraction go-
ing outside the range [0,1]. The dispersion error of the
central scheme tries to create boundedness violations.
These violations are contained in the first block (lower
left), though the integrity of the solution is clearly de-
graded. For the second block, the dispersion generates
a “checker board” pattern. Such behavior can be prob-
lematic for reacting flows if fictitious new stoichiomet-
ric surfaces are created. And, to the point about con-
vergence, if the grid is refined, the dispersion error per-
sists.

Time: 0.000 | ]

Figure 2: Initial condition and exact solution final
state.

Figure 3: Convergent transport scheme (CHARM flux
limiter).
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Figure 4: Non-convergent scheme (bounded central).
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TURBULENCE RESOLUTION

In FDS, the user may output a scalar quantity which
we refer to as the measure of turbulence resolution
(MTR), defined locally as

kS A
MTR(x,1) = —% (11)
( ) kres + ksgs
where the resolved (res) and subgrid-scale (sgs) ki-
netic energies are given by

kres TATh (12)
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Here, i; is the resolved LES velocity and ii; is test fil-
tered at a scale 2A where A is the LES filter width
(recall, in FDS, A = 8x). The model for the subgrid
fluctuations is taken from scale similarity [ | 7].The ba-
sic idea is to provide the user with an easily accessible



approximation to the Pope Criterion [11]. In Smoke-
view (FDS visualization software), the user may read-
ily time average MTR in a specified plane. The time
average of MTR is a reasonable estimate of the Pope
Criterion. The measure falls within the range [0,1],
with 0 indicating perfect resolution (like the best high-
definition television picture possible) and 1 indicating
no resolution (as if the television screen had only one
pixel, one color). The concept is illustrated in Figures
5 and 6. Notice that in Figure 5 the difference between
the grid signal and the test signal is very small. In Fig-
ure 6, the grid signal is highly turbulent and the corre-
sponding test signal is much smoother. We infer then
that the flow is under-resolved.
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Figure 5: Resolved signal, MTR is small.
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Figure 6: Unresolved signal, MTR close to unity.

For the canonical case of isotropic turbulence Pope ac-
tually defines LES such that (MTR) < 0.2. That is,
LES requires resolution of 80% of the kinetic energy
in the flow field (for sufficiently high Reynolds num-
ber, this puts the grid resolution length scale within
the inertial subrange—the range of scales which ex-
hibit isotropy and universality, unaffected by the ge-

ometry of the flow problem). The question remains as
to whether this critical value is sufficient or necessary
for a given engineering problem.

WAVELET ERROR MEASURE

We begin by providing background on the simple Haar
wavelet [18]. For a thorough and more sophisticated
review of wavelet methods, the reader is referred to
Schneider and Vasilyev [19].

Suppose the scalar function f(r) is sampled at discrete

points r;, separated by a distance A, giving values s;.
Defining the unit step function over the interval [r, ;]

by
1
Olryra) = 0

the simplest possible reconstruction of the signal is the
step function approximation

F(r) = Y590,y (1) (15)
J

if n<r<n

otherwise (14)

By “viewing” the signal at a coarser resolution, say
2h, an identical reconstruction of the function f over
the interval [r;,r; +2h] may be obtained from

Sj+Sjq1

_f[rj,rj+2h] (r) = (P[rjvrj+2h] (f")

+ o (r) (16)
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where a is as the average coefficient and c is as the
wavelet coefficient. The Haar mother wavelet (Figure
7) is identified as

1 if r1§r<%(r1+r2)

W[rwz](r):{ —1 if %(r1—|—r2)§r<72 a7

Figure 7: Haar mother wavelet on the interval [0,1].



The decomposition of the signal shown in (16) may
be repeated at ever coarser resolutions. The result is
a wavelet transform. The procedure is entirely analo-
gous to the Fourier transform, but with compact sup-
port (only local grid data is required). If we look at
a 1D signal with 2 points, the repeated application
of (16) results in an m X m matrix of averages a with
components a;; and an m x m wavelet coefficient ma-
trix ¢ with components c¢;;. Each row i of a may be
reconstructed from the i + 1 row of a and c. Because
of this and because small values of the wavelet coeffi-
cient matrix may be discarded, dramatic compression
of the signal may be obtained.

Here we are interested in using the wavelet analysis
to say something about the local level of error due to
grid resolution. Very simply, we ask what can be dis-
cerned from a sample of four data points along a line.
Roughly speaking we might expect to see one of the
four scenarios depicted in Figures 8-11. After each
plot we also show the results of a Haar wavelet trans-
form for that signal. Note that with four points m = 2
(4 = 2?) and the average and coefficient matrices are
2x2.

Looking at Figures 8 and 9, first we have a straight line
and below this a step function. Intuitively, we expect
zero error for the line (over-resolved) and large error
for the step function (under-resolved). The following
wavelet error measure (WEM) achieves this goal:

WEM(x,t) = max(|ci; +c12—ca1])  (18)
Xy

Equation (18) represents the main contribution of this
paper. Note that the wavelet coefficients c;; are based
on the transform of a normalized signal. That is, the
four data points being transformed are first rescaled
to have min 0 and max 1. The metric compares the
wavelet coefficients at two different resolutions. Based
on this measure, a linear signal (Figure 8), which is
clearly over-resolved, has WEM=0, the step function
(Figure 9) has WEM=1/2, the extrema (Figure 10) has
WEM=0 (a quadratic curve is perfectly resolved by a
second-order scheme), and the noisy signal (Figure 11)
endemic of Gibbs oscillation (numerical dispersion er-
ror) gives the worst case with WEM=1.

In practice the transform is performed in all coordinate
directions and the max value is reported. The scalar
value may be output to Smokeview at the desired time
interval and averaged in time.

EXAMPLE

The Sandia 1 m methane pool fire, Test 17 (high flow

rate) [20, 21], is simulated using three grid resolutions:
6 cm, 3 cm, and 1.5 cm. These grid resolutions corre-
spond to D* /&x of 25, 50, and 100, respectively. Such
high resolution is atypical of engineering calculations
using FDS. But in this validation example, we are com-
paring the model results against detailed velocity mea-
surements within one diameter of the base of the pool.
Previous works [1, 22] have shown similar resolution
is required to capture the details of the flow in this re-
gion.

The computational setup is outlined in the FDS Vali-
dation Guide [9]. To provide the reader with a qual-
itative feel for the results, Figure 12 shows a snap-
shot of temperature contours from the 1.5 cm simula-
tion. The calculations are run in parallel on 16 proces-
sors. Data for vertical velocity and radial velocity are
recorded at three levels downstream from the base of
the plume, z = [0.3,0.5,0.9] m. Results for the mean
profiles are given in Figure 13. The means are taken
between ¢ = 10 and r = 20 s in the simulation.

As can be seen from Figure 13, the 3 cm and 1.5 cm
results seem to be converging. There are, however, still
inaccuracies near the outer edge of the pool. This may
be the result of insufficient grid resolution or inaccura-
cies in the boundary conditions. Or, even if the code is
convergent, these inaccuracies may be directly linked
to inaccuracies in specific model components, such as
a simplified reaction model. If the code has converged,
improving these results falls under the purview of val-
idation. But it is possible that we have fortuitously
reached a plateau in the statistics as a function of grid
resolution [11]. The model may have more than one
plateau before true convergence is achieved.

Here we are interested in saying something about the
quality of the gas phase grid resolution. Arguably, the
3 cm case is sufficiently resolved for our purposes—
the results are improved over the coarse simulation and
the refined simulation shows no appreciable change.
By examining the quality metrics defined earlier in
this paper, we can now draw conclusions about met-
ric targets for practical problems. Figures 14-19 show
split contour plots of (left) the measure of turbulence
resolution (MTR) and (right) wavelet error measure
(WEM). The metrics are averaged in time over the last
10 s of the simulation. The turbuence color contours
are split at the theoretical value of MTR=0.2 (80% of
the turbulent kinetic energy is resolved) and the WEM
contours are split at 0.3 (this choice will be discussed
later).

First, note that an output anomaly is present at mesh



boundaries. This is particularly noticeable in the MTR
cases where MTR is close to unity near the mesh
boundaries. This issue arises because we do not want
to consume computational time exchanging informa-
tion via message passing (parallel computing) during
the output phase of the run. Better handling of the met-
ric boundary values is work in progress.

Looking more closely at the turbulence metric, we can
see from Figure 14 (8x = 6 cm) that the bulk of the
domain is above 0.2. As the resolution is increased,
the metric decreases and at 3 cm—which we have
deemed sufficient resolution—MTR is generally be-
low 0.2. Notice that the shear layer near the edge of the
pool shows the highest legitimate values of the metric
(that is, aside from the mesh boundary anomaly). This
metric, therefore, appears to behave precisely as we
would like—there seems to exist a critical value where
reasonably accurate simulation results can be expected
(we take “reasonably accurate” to mean the simulation
results fall within experimental uncertainty).

Let us now examine Figures 17-19, which show the
normalized wavelet error for the fuel (methane) mass
fraction field. Unlike the turbulence metric, with
WEM we do not (as of yet) have a good theoretical
target. By examining the 3 cm results we can infer
that WEM=0.3 is adequate. By setting this as the color
contour split we notice something interesting: even the
1.5 cm case under-resolves the fuel mass fraction field
in the shear layer near the base of the pool. This raises
the question of whether the 1.5 cm simulation is re-
ally sufficiently resolved in this region, which may be
the cause of the inaccuracy in the mean velocity at the
outer edge. This is a perfect example to illustrate why
adaptive mesh refinement (AMR) is useful. The vol-
ume of the shear layer region is very small, yet requires
very high resolution to get right.

CONCLUSIONS

In this paper, we have presented two mesh quality met-
rics: a measure of turbulence resolution and a wavelet
error measure. Each of these may be output to an FDS
slice file or device for monitoring. Using the example
of the Sandia 1 m methane pool fire, we confirmed that
the theoretical value of MTR = 0.2 works well in prac-
tice for identifying adequate mesh resolution for cap-
turing velocity statistics in the near field of the pool
fire. We also found that keeping the species concen-
tration wavelet error (WEM) below 0.3 is an added
constraint. It is important to point out that this does
not imply D* /&x = 50 (recall, this corresponds to the
dx = 3 cm case) is required to achieve adequate results

for all engineering problems. It depends on the ques-
tion being asked of the model. In the example shown
here, we are trying to capture inflections in the mean
velocity contours at the base of a large-scale pool fire.
As stated earlier, most of the cases in the FDS Valida-
tion Guide [9] do not require such high resolution.

We should point out that species mass fractions are not
the only values which we can examine with the wavelet
metric. Any quantity valid for slice file output in FDS
may be examined for wavelet error. In the future we
plan to look at quantities such as temperature and heat
release rate to see if these metrics are better indicators
of mesh quality.
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Figure 10: Quadratic extrema perfectly resolved by a
second-order centered scheme, WEM=0.
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Figure 12: A snapshot of FDS results at 1.5 cm resolution for the Sandia 1 m methane pool fire (Test 17 — high flow
rate) showing instantaneous contours of temperature.
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Figure 13: FDS predictions of mean velocity profiles (left: vertical, right: radial) for the Sandia 1 m methane pool
fire experiment, Test 17. Results are shown for 6 cm, 3 cm and 1.5 cm grid resolutions (respectively, D*/dx = 25, 50,
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Figure 14: MTR, 6x = 6 cm.

Figure 15: MTR, 8x =3 cm.

Figure 16: MTR, 6x = 1.5 cm.
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Figure 17: WEM of CH4 mass fraction, dx = 6 cm.

Slice
wem_CH4

)
-

Figure 18: WEM of CH4 mass fraction, dx = 3 cm.
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Figure 19: WEM of CH4 mass fraction, dx = 1.5 cm.



