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With the publication of Supplement 1 to the Guide to the Expression of Uncertainty in 

measurement (GUM), an alternative calculation method is available in metrology to 

evaluate measurement results and their uncertainties. The calculation method is based on 

Monte Carlo simulation techniques and it employs a large number of repeated numerical 

calculations. Depending on the measurement model, the computational effort can be 

large and time consuming. Processors with multiple CPU cores have become widely 

available. Therefore it is useful to implement and test concepts to parallelize the Monte 

Carlo simulation process in the context of metrology. The development of an Open 

Monte Carlo Engine (OMCE) for metrology in Python offers the possibility to implement 

some parallel computing concepts in practice. Different approaches for parallel 

computing including Monte Carlo simulations are available and have been studied. We 

choose an approach which is based on a client-server model and which allows the use of 

remote computing resources if they are available. The communication between clients 

and servers is socket based using a high level remote procedure call protocol which 

integrates different system architectures (e.g. Windows and Linux) in an overall 

simulation “network”. The user can access the simulation network via a lightweight 

client which delegates all calculations to his network entry server. The network entry 

server handles the job and employs other servers or CPU cores as far as they are 

available. The results are communicated back to the client when the simulation task is 

finished. The system is optimized to limit the communication between client and server 

to a minimum and it is buffered to allow the calculation processes to continue, even if 

communication might be slow. The concept is flexible enough to be used by computers 

with multiple CPU cores or by multiple computers connected by a fast local network 

(LAN) or any combination of both. The key element for the quality of the Monte Carlo 

simulation is the use of uncorrelated parallel random number generators in the 

cooperating servers. We analyze different techniques and implement an appropriate 

seeding method. We share some preliminary results about practical measurements of the 

simulation speed that can be achieved with a 48 CPU core system under Linux and we 
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analyze how well our concepts will scale with increasing number of CPUs included in 

the network. 

1.   Implementation of the Monte Carlo method 

The Guide to the Expression of Uncertainty in measurement (GUM) [1] defines 

the principles for the evaluation of results in measurement. In its Supplement 1 

[2] an alternative calculation based on the Monte Carlo method has been defined 

which employs a large number of repeated numerical calculations. These 

methods have been implemented in the Open Monte Carlo Engine (OMCE) [3] 

which is an open source general purpose simulator implemented in Python [4]. 

The OMCE is a command line tool (script) which uses a description of 

metrological model in XML-format as an input and creates text and binary 

output. The details of the processing are controlled by command line options. 

Figure 1 shows a block diagram with the processing task structure 

implemented by the OMCE. The OMCE uses multi-tasking to interleave 

calculations and binary data save, but cannot make use of multiple processing 

cores because of the Python global interpreter lock. 

 
Figure 1. Block diagram of the OMCE processing task structure. 

On modern personal computers, the time consuming section of the program are 

marked as Task 1 and Task 2 in Figure 1. These are the sections which should be 

improved by parallel computing. Since saving of the binary data is usually not 

required, we will limit our effort to implement parallel computing in Task 1. 

Generate input 
Quantity data 

& 
Calculate 

Result (raw) data 

Save binary 
Raw data 

Model- 
Description 

(XML) 

Result data 
(Table, CSV) 

Raw data 
(BIN) 

Expectation value 

Standard uncertainty 

Coverage intervals 

Number of runs 

Histogram 

Binary results 
Raw data 

 

Evaluate 
Results 

Prepare 
Calculation 

Task 1 

Task 2 (optional) 

Stat. analysis 
(Histogram) 



 3 

2.   Client/Server Model 

Different communication concepts can be used to establish parallel computing. 

Esward et. al. [5] used an approach with distributed executables and virtually no 

communication between the nodes during the simulation. This approach is useful 

in cases when the calculation of the result is computationally the most time 

consuming part and the communication effort to build the histogram and merge 

the results can be ignored compared to the calculation of results. In this case 

even a distributed random generator is not really needed. The random numbers 

could be generated centrally and communicated with little extra effort. 

In cases when the total computation effort is not several hours but a few 

minutes, it is still useful to improve the overall computation time. This allows 

increasing the number of simulation runs dramatically or enables the usage of 

MC simulation in the context of an interactive program. This is especially useful 

since multiple core systems are available already at the desktop. In this context 

the communication aspect becomes important. 

A well established paradigm in network computing is the client server 

model. Several (lightweight) clients require computational tasks and delegate the 

tasks to a central server specialized for the task, which returns the results to the 

clients as soon as they are produced by the server. Typical applications are cases 

which involve huge amount of central data (databases). 
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Figure 2. Block diagram of the OMCE client/server communication structure. 

The introduction of the client server model to the OMCE simulator as shown in 

Figure 2 allows the transparent usage of the server resources by the clients. The 

communication is TCP/IP socket based and bound to a pre-defined port at the 

server side. An optional TLS layer supports secure communication and client 

authorization. 

3.   Parallel Computing 

The client/server model does not automatically employ parallel computing since 

the client usually waits until the server completes the task (the MC simulation). 

But parallel computing can be realized if one MC simulation job is split up in 

smaller sub-tasks and several servers are employed with the sub-jobs 
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simultaneously. Since the client requires virtually no computing resources while 

the server is running, handling a large number of client interfaces simultaneously 

is easily possible. 
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Figure 3. Block diagram of the OMCE parallel computing network using a client/server 

communication model. 

Figure 3 shows the structure of the parallel computing network as it has been 

realized with the OMCE. An additional network entry server has been added 

which provides a standard server interface to the client, but does not perform any 

simulation. Instead, the entry server maintains a number of client interfaces to 

single task simulation servers which do the simulation. The entry server splits up 

the job in simulation sub-jobs and starts the servers, waits for them to finish and 

merges the result data. It should be noted that the same specification can be used 

for all interfaces between clients and servers. The entry server is reentrant and 

managed as a reusable server pool.  

3.1.   Remote Procedure Call (RPC) 

The protocol which is used for the communication between client and server is 

called RPyC [6] and is an implementation of a remote procedure call (RPC) 

protocol in Python. The idea of RPC is to allow calling functions on a remote 

computer transparently as if they would be available on the local machine.  The 

RPC protocol transparently handles all transportation aspects for parameters and 

the return values.  

RPyC is symmetric and supports remote objects which allow using objects 

on the remote computer as if they would be local. The RPyC protocol is also 
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independent from the operating system and the machine hardware allowing client 

and server to run on different platforms (e.g. Windows, Linux, Solaris, etc.).  

A special case is the use of RPC for between task communication when 

client and server are running on the same computer system. Although a socket 

base communication  needs more overhead compared to specialized concepts 

like the message passing interface (MPI), the RPC communication is still 

efficient in case of MC simulations. Therefore the concept can be used for 

modern desk top PCs employing quad and six core CPUs. 

In principle the RPC protocol blocks further execution until the remote 

function is executed completely. This can significantly delay the simulation 

especially in case of a slow network. FIFO buffers are used to compensate this 

effect whenever possible allowing the simulation server to continue its task 

without waiting for output operations to be completed. 

3.2.   Seeding 

The statistical quality of the MC simulation is highly dependent on the quality of 

the random number generation. The basis for all distributions used during the 

simulation is an equally distributed random generator which generates values 

within a specified interval (usually between 0 and 1). The challenge for 

distributed random number generation is to produce high quality sequences 

which do not even partly overlap. Any overlapping would create an unknown 

correlation and would compromise the validity of the statistical evaluation. 

The OMCE uses the Mersenne Twister (MT) algorithm for generating 

random numbers. The MT algorithm has a large period (2
19937

 − 1). Because of 

this very large period, it is very unlikely that sequences of two generators 

overlap if they are seeded differently. In the context of the MT algorithm with a 

small number of parallel generators the problem of independent random number 

generation can be reduced to a seeding problem. 

Esward et. al. [5] suggested the use of a parallel Wichmann–Hill random 

generator. For this generator it is guaranteed that the parallel sequences do not 

overlap. Matsumoto et. al. [7] suggested the use of a special technique to create 

independent MT random number generators by encoding a unique number into 

the characteristic polynomial of the individual generators. These techniques 

should be used if the number of parallel MC tasks is large (>100). 

The unique seeding is done by the network entry server and becomes part of 

the sub-job. The present method uses a series of seeds with a fixed offset 

between the seeds. The start value is either derived from the clock or given by 

the user. This method does not guarantee identical results for identical seeds 
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between sequential and parallel evaluation, but it guarantees identical results 

between identically seeded parallel simulations.  

3.3.   Error Handling 

An important aspect for the practical usability of the system is the error handling. 

The Errors a distributed system is confronted with can be divided in two 

categories. All Errors which are also possible in a sequential system belong to 

the first category. This includes all kind of I/O-errors, data-errors or logical 

errors. The simulation is stopped if such errors occur during the execution on 

one of the servers.  

Errors which are only possible in parallel systems belong to the second 

category. The OMCE can recover from a number of these errors during a 

running simulation job as long as the connection to the network entry server is 

available and the entry server is running. Examples of these errors are break- 

down of the communication to single servers or shutdown of single servers. The 

communication between client and server is constantly monitored and is 

reestablished if necessary. 

4.   Test and Performance Measurements 

The OMCE has been tested extensively using a number of problems where 

theoretical solutions were known upfront to prove that the simulator works 

correctly. 

The performance of the parallel version has been studies using the simple 

additive model 

 



n

i

iXY
1

. (1) 

The Xi are distributed normally N(0,1). The computational effort of this problem 

can be easily increased by increasing n or by increasing the number of MC runs. 

The tests were run using a client running Windows 7 which was connected (via 

Gigabit Ethernet) to a network entry server managing 40 simulation servers run 

by 4 x Opteron 6174 (2.2 GHz) CPUs (48 cores) under Ubuntu 10.04 64 Bit 

Linux. Linux ensures that the simulation servers are run by different CPU cores 

as long as the number of servers does not exceed the number of cores. 

Figure 4 shows the performance of the overall system for a medium size job 

which runs about 60 seconds using one single task simulator. The Performance 

depends on the number of CPU cores used. For this medium size job the minimal 

overall execution time is about 7 seconds employing 27 CPU cores. 
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Figure 4. Performance of the overall system for a medium size job. 

4.1.   Parallel Slowdown 

Figure 5 shows the performance of the same system as a function of employed 

CPU cores simulating a smaller job. Up to about 10 CPU cores the overall 

execution time is decreased, but beyond that point the execution time increases 

almost linearly with the number of CPUs used for the job. 

 
Figure 5. The performance of the overall system for a small job showing parallel slow-down. 

This effect is known as the parallel slowdown. It is caused by the necessary 

overhead to manage multiple CPU cores. Figure 5 suggests that the overhead is 

almost proportional to the number of CPU cores. Studies with different problems 

show that the performance diagram is dependent on the problem but it usually 

follows a similar function as shown in Figure 4 and 5. 

4.2.   Performance Model 

For a given problem the performance or overall execution time of the parallel 

simulation can be estimated as a function of the number of processing cores n 

used during the simulation by the following equation 
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where t0, t1, t2 and t3 are problem dependent timing constants. The timing 

constants can be found by linear regression fitting the data from multiple 

simulations to the model given in Equation (2).  Practical studies have shown 

that the timing constant t3 is very small. This can be explained by the fact that the 

communication structure is strictly a star with no inter-communication between 

the clients. The extra communication overhead is therefore proportional to the 

number of clients used during the simulation. Therefore Equation (2) can be 

simplified to 
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Based on this model the minimum overall execution time can be estimated using 
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which leads to  
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as the maximum number of processing cores that can be used before the parallel 

slow-down dominates the processing. It should be noted that this is the absolute 

limit for the number of processing cores, which should be used for a given 

problem. A significantly smaller number of cores usually results in almost the 

same performance.  

Table 1. Expected execution time for a midsized job (Figure 4). 

No. of 

cores 

Total exec. 

time in s 

Relative difference 

to minimum 

12 8.68 +21.57 % 

15 7.92 +10.93 % 

18 7.50 +5.03 % 

22 7.23 +1.18 % 

27 7.14 minimum 

32 7.22 +1.10 % 
 

Table 1 shows the expected execution time (based on Equation (2)) for the 

midsized test job with different number of CPU cores employed. A significant 

reduction of the execution time from about 60 seconds down to 8.7 seconds can 

be achieved by employing 12 CPU cores which is less than 50% of the number 
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needed to achieve the shortest overall execution time (7.14 s). The difference 

would be almost unrecognizable by the end user. 

The minimum job size for a sub-job is one simulation block which has 

usually a size of 10000 runs. The block size can be reduced but the presented 

concepts are not optimized for cases where the execution time is dominated by 

the evaluation of the model for example for iteration problems. In these cases a 

massively parallel system (>100 cores) should be employed using a centralized 

random number generator and sophisticated job scheduling similar to the 

solution presented in [5]. 

4.3.   Estimating the Performance Parameters 

The aim of the OMCE is a general purpose simulator which can be used for all 

kinds of problems in metrology. To avoid parallel slow-down in the parallel 

version it is useful to limit the number of CPU cores used for a specific job. The 

maximum number of CPU cores can be evaluated from Equation (5). 

Unfortunately the timing parameters t1 und t2 depend on the simulation problem. 

Studies with different problems have shown that the value of the timing 

parameter t2 varies only marginally between jobs and can be fixed for the test 

system to a value of 100 ms. 

The timing parameter t1 is basically proportional to the total execution time 

needed by a single task simulator. But it would be useless to run a complete 

simulation to estimate this parameter to make sure that the number of CPU cores 

is not exceeding the parallel slowdown limit. 

Studies have shown that the timing parameter t1 can be estimated from the 

execution time tb needed to simulate a fraction (one block) of the total 

simulation. After the execution of one simulation block, the maximum number of 

CPU cores can be evaluated based on tb and t2 as 

 
2
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t

tmp
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with m being the total number of simulation blocks and p1 and p2 being scaling 

factors to adjust the heuristic to a given hardware system. 

 The network entry server starts a predefined number of simulation servers 

to execute one block. The execution is timed and the network entry server 

calculates the maximum number of servers using Equation (6). The number of 

servers gets adjusted and the simulation is continued. 
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5.   Conclusions 

Parallel computing based on a client server communication model can be used to 

speed up Monte Carlo simulation. The presented concepts are especially suitable 

to employ multiple core CPUs with midsized problems. Applications are those 

cases where the model has a large number of quantities or when an increased 

number of simulation runs (>10
6
) is necessary. 

The presented solution automatically adapts the number of CPU cores to the 

size of the problem by using a heuristic based on the execution of one simulation 

block to prevent parallel slowdown. 

Fault tolerant communication and error recovery techniques are the basis for 

a robust simulation service which can be transparently integrated into a desktop 

environment. 
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