
1

RAPID MONTE CARLO SIMULATIONS USING PARALLEL

COMPUTING AND A CLIENT-SERVER MODEL

RÜDIGER KESSEL†

Fachbereich Stoffeigenschaften und Druck, Physikalisch-Technische Bundesanstalt

(PTB), Bundesallee 100 D-38116 Braunschweig, Germany

RAGHU KACKER

Applied and Computational Mathematics Division, National Institute of Standards

and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899-8910, USA

With the publication of Supplement 1 to the Guide to the Expression of Uncertainty in

measurement (GUM), an alternative calculation method is available in metrology to

evaluate measurement results and their uncertainties. The calculation method is based on

Monte Carlo simulation techniques and it employs a large number of repeated numerical

calculations. Depending on the measurement model, the computational effort can be

large and time consuming. Processors with multiple CPU cores have become widely

available. Therefore it is useful to implement and test concepts to parallelize the Monte

Carlo simulation process in the context of metrology. The development of an Open

Monte Carlo Engine (OMCE) for metrology in Python offers the possibility to implement

some parallel computing concepts in practice. Different approaches for parallel

computing including Monte Carlo simulations are available and have been studied. We

choose an approach which is based on a client-server model and which allows the use of

remote computing resources if they are available. The communication between clients

and servers is socket based using a high level remote procedure call protocol which

integrates different system architectures (e.g. Windows and Linux) in an overall

simulation “network”. The user can access the simulation network via a lightweight

client which delegates all calculations to his network entry server. The network entry

server handles the job and employs other servers or CPU cores as far as they are

available. The results are communicated back to the client when the simulation task is

finished. The system is optimized to limit the communication between client and server

to a minimum and it is buffered to allow the calculation processes to continue, even if

communication might be slow. The concept is flexible enough to be used by computers

with multiple CPU cores or by multiple computers connected by a fast local network

(LAN) or any combination of both. The key element for the quality of the Monte Carlo

simulation is the use of uncorrelated parallel random number generators in the

cooperating servers. We analyze different techniques and implement an appropriate

seeding method. We share some preliminary results about practical measurements of the

simulation speed that can be achieved with a 48 CPU core system under Linux and we

† E-mail address: ruediger.kessel@ptb.de

 2

analyze how well our concepts will scale with increasing number of CPUs included in

the network.

1. Implementation of the Monte Carlo method

The Guide to the Expression of Uncertainty in measurement (GUM) [1] defines

the principles for the evaluation of results in measurement. In its Supplement 1

[2] an alternative calculation based on the Monte Carlo method has been defined

which employs a large number of repeated numerical calculations. These

methods have been implemented in the Open Monte Carlo Engine (OMCE) [3]

which is an open source general purpose simulator implemented in Python [4].

The OMCE is a command line tool (script) which uses a description of

metrological model in XML-format as an input and creates text and binary

output. The details of the processing are controlled by command line options.

Figure 1 shows a block diagram with the processing task structure

implemented by the OMCE. The OMCE uses multi-tasking to interleave

calculations and binary data save, but cannot make use of multiple processing

cores because of the Python global interpreter lock.

Figure 1. Block diagram of the OMCE processing task structure.

On modern personal computers, the time consuming section of the program are

marked as Task 1 and Task 2 in Figure 1. These are the sections which should be

improved by parallel computing. Since saving of the binary data is usually not

required, we will limit our effort to implement parallel computing in Task 1.

Generate input
Quantity data

&
Calculate

Result (raw) data

Save binary
Raw data

Model-
Description

(XML)

Result data
(Table, CSV)

Raw data
(BIN)

Expectation value

Standard uncertainty

Coverage intervals

Number of runs

Histogram

Binary results
Raw data

Evaluate
Results

Prepare
Calculation

Task 1

Task 2 (optional)

Stat. analysis
(Histogram)

 3

2. Client/Server Model

Different communication concepts can be used to establish parallel computing.

Esward et. al. [5] used an approach with distributed executables and virtually no

communication between the nodes during the simulation. This approach is useful

in cases when the calculation of the result is computationally the most time

consuming part and the communication effort to build the histogram and merge

the results can be ignored compared to the calculation of results. In this case

even a distributed random generator is not really needed. The random numbers

could be generated centrally and communicated with little extra effort.

In cases when the total computation effort is not several hours but a few

minutes, it is still useful to improve the overall computation time. This allows

increasing the number of simulation runs dramatically or enables the usage of

MC simulation in the context of an interactive program. This is especially useful

since multiple core systems are available already at the desktop. In this context

the communication aspect becomes important.

A well established paradigm in network computing is the client server

model. Several (lightweight) clients require computational tasks and delegate the

tasks to a central server specialized for the task, which returns the results to the

clients as soon as they are produced by the server. Typical applications are cases

which involve huge amount of central data (databases).

S
o
c
k
e
t

S
o
c
k
e
t

T
L
S

T
L
S

OMCE
client
(RPC)

OMCE
server
(RPC)

Port Port

LAN/Internet

Figure 2. Block diagram of the OMCE client/server communication structure.

The introduction of the client server model to the OMCE simulator as shown in

Figure 2 allows the transparent usage of the server resources by the clients. The

communication is TCP/IP socket based and bound to a pre-defined port at the

server side. An optional TLS layer supports secure communication and client

authorization.

3. Parallel Computing

The client/server model does not automatically employ parallel computing since

the client usually waits until the server completes the task (the MC simulation).

But parallel computing can be realized if one MC simulation job is split up in

smaller sub-tasks and several servers are employed with the sub-jobs

 4

simultaneously. Since the client requires virtually no computing resources while

the server is running, handling a large number of client interfaces simultaneously

is easily possible.

OMCE
client
(RPC)

Port Port

LAN/Internet

Socket

TLS

OMCE
entry

server
(RPC)

Socket

TLS

Port

OMCE
server
(RPC)

Socket

Port

Port

Port

Port

OMCE
server
(RPC)

Socket

Port

OMCE
server
(RPC)

Socket

.

.

.

.

.

.
Figure 3. Block diagram of the OMCE parallel computing network using a client/server

communication model.

Figure 3 shows the structure of the parallel computing network as it has been

realized with the OMCE. An additional network entry server has been added

which provides a standard server interface to the client, but does not perform any

simulation. Instead, the entry server maintains a number of client interfaces to

single task simulation servers which do the simulation. The entry server splits up

the job in simulation sub-jobs and starts the servers, waits for them to finish and

merges the result data. It should be noted that the same specification can be used

for all interfaces between clients and servers. The entry server is reentrant and

managed as a reusable server pool.

3.1. Remote Procedure Call (RPC)

The protocol which is used for the communication between client and server is

called RPyC [6] and is an implementation of a remote procedure call (RPC)

protocol in Python. The idea of RPC is to allow calling functions on a remote

computer transparently as if they would be available on the local machine. The

RPC protocol transparently handles all transportation aspects for parameters and

the return values.

RPyC is symmetric and supports remote objects which allow using objects

on the remote computer as if they would be local. The RPyC protocol is also

 5

independent from the operating system and the machine hardware allowing client

and server to run on different platforms (e.g. Windows, Linux, Solaris, etc.).

A special case is the use of RPC for between task communication when

client and server are running on the same computer system. Although a socket

base communication needs more overhead compared to specialized concepts

like the message passing interface (MPI), the RPC communication is still

efficient in case of MC simulations. Therefore the concept can be used for

modern desk top PCs employing quad and six core CPUs.

In principle the RPC protocol blocks further execution until the remote

function is executed completely. This can significantly delay the simulation

especially in case of a slow network. FIFO buffers are used to compensate this

effect whenever possible allowing the simulation server to continue its task

without waiting for output operations to be completed.

3.2. Seeding

The statistical quality of the MC simulation is highly dependent on the quality of

the random number generation. The basis for all distributions used during the

simulation is an equally distributed random generator which generates values

within a specified interval (usually between 0 and 1). The challenge for

distributed random number generation is to produce high quality sequences

which do not even partly overlap. Any overlapping would create an unknown

correlation and would compromise the validity of the statistical evaluation.

The OMCE uses the Mersenne Twister (MT) algorithm for generating

random numbers. The MT algorithm has a large period (2
19937

 − 1). Because of

this very large period, it is very unlikely that sequences of two generators

overlap if they are seeded differently. In the context of the MT algorithm with a

small number of parallel generators the problem of independent random number

generation can be reduced to a seeding problem.

Esward et. al. [5] suggested the use of a parallel Wichmann–Hill random

generator. For this generator it is guaranteed that the parallel sequences do not

overlap. Matsumoto et. al. [7] suggested the use of a special technique to create

independent MT random number generators by encoding a unique number into

the characteristic polynomial of the individual generators. These techniques

should be used if the number of parallel MC tasks is large (>100).

The unique seeding is done by the network entry server and becomes part of

the sub-job. The present method uses a series of seeds with a fixed offset

between the seeds. The start value is either derived from the clock or given by

the user. This method does not guarantee identical results for identical seeds

 6

between sequential and parallel evaluation, but it guarantees identical results

between identically seeded parallel simulations.

3.3. Error Handling

An important aspect for the practical usability of the system is the error handling.

The Errors a distributed system is confronted with can be divided in two

categories. All Errors which are also possible in a sequential system belong to

the first category. This includes all kind of I/O-errors, data-errors or logical

errors. The simulation is stopped if such errors occur during the execution on

one of the servers.

Errors which are only possible in parallel systems belong to the second

category. The OMCE can recover from a number of these errors during a

running simulation job as long as the connection to the network entry server is

available and the entry server is running. Examples of these errors are break-

down of the communication to single servers or shutdown of single servers. The

communication between client and server is constantly monitored and is

reestablished if necessary.

4. Test and Performance Measurements

The OMCE has been tested extensively using a number of problems where

theoretical solutions were known upfront to prove that the simulator works

correctly.

The performance of the parallel version has been studies using the simple

additive model

 



n

i

iXY
1

. (1)

The Xi are distributed normally N(0,1). The computational effort of this problem

can be easily increased by increasing n or by increasing the number of MC runs.

The tests were run using a client running Windows 7 which was connected (via

Gigabit Ethernet) to a network entry server managing 40 simulation servers run

by 4 x Opteron 6174 (2.2 GHz) CPUs (48 cores) under Ubuntu 10.04 64 Bit

Linux. Linux ensures that the simulation servers are run by different CPU cores

as long as the number of servers does not exceed the number of cores.

Figure 4 shows the performance of the overall system for a medium size job

which runs about 60 seconds using one single task simulator. The Performance

depends on the number of CPU cores used. For this medium size job the minimal

overall execution time is about 7 seconds employing 27 CPU cores.

 7

Figure 4. Performance of the overall system for a medium size job.

4.1. Parallel Slowdown

Figure 5 shows the performance of the same system as a function of employed

CPU cores simulating a smaller job. Up to about 10 CPU cores the overall

execution time is decreased, but beyond that point the execution time increases

almost linearly with the number of CPUs used for the job.

Figure 5. The performance of the overall system for a small job showing parallel slow-down.

This effect is known as the parallel slowdown. It is caused by the necessary

overhead to manage multiple CPU cores. Figure 5 suggests that the overhead is

almost proportional to the number of CPU cores. Studies with different problems

show that the performance diagram is dependent on the problem but it usually

follows a similar function as shown in Figure 4 and 5.

4.2. Performance Model

For a given problem the performance or overall execution time of the parallel

simulation can be estimated as a function of the number of processing cores n

used during the simulation by the following equation

 8

   2
32

1
0 ntnt

n

t
tnt  , (2)

where t0, t1, t2 and t3 are problem dependent timing constants. The timing

constants can be found by linear regression fitting the data from multiple

simulations to the model given in Equation (2). Practical studies have shown

that the timing constant t3 is very small. This can be explained by the fact that the

communication structure is strictly a star with no inter-communication between

the clients. The extra communication overhead is therefore proportional to the

number of clients used during the simulation. Therefore Equation (2) can be

simplified to

   nt
n

t
tnt 

2
1

0 . (3)

Based on this model the minimum overall execution time can be estimated using

 

0
2
max

1
2

max

max 


 

n

t
t

n

nt
, (4)

which leads to

2

1
max

t

t
n  (5)

as the maximum number of processing cores that can be used before the parallel

slow-down dominates the processing. It should be noted that this is the absolute

limit for the number of processing cores, which should be used for a given

problem. A significantly smaller number of cores usually results in almost the

same performance.

Table 1. Expected execution time for a midsized job (Figure 4).

No. of

cores

Total exec.

time in s

Relative difference

to minimum

12 8.68 +21.57 %

15 7.92 +10.93 %

18 7.50 +5.03 %

22 7.23 +1.18 %

27 7.14 minimum

32 7.22 +1.10 %

Table 1 shows the expected execution time (based on Equation (2)) for the

midsized test job with different number of CPU cores employed. A significant

reduction of the execution time from about 60 seconds down to 8.7 seconds can

be achieved by employing 12 CPU cores which is less than 50% of the number

 9

needed to achieve the shortest overall execution time (7.14 s). The difference

would be almost unrecognizable by the end user.

The minimum job size for a sub-job is one simulation block which has

usually a size of 10000 runs. The block size can be reduced but the presented

concepts are not optimized for cases where the execution time is dominated by

the evaluation of the model for example for iteration problems. In these cases a

massively parallel system (>100 cores) should be employed using a centralized

random number generator and sophisticated job scheduling similar to the

solution presented in [5].

4.3. Estimating the Performance Parameters

The aim of the OMCE is a general purpose simulator which can be used for all

kinds of problems in metrology. To avoid parallel slow-down in the parallel

version it is useful to limit the number of CPU cores used for a specific job. The

maximum number of CPU cores can be evaluated from Equation (5).

Unfortunately the timing parameters t1 und t2 depend on the simulation problem.

Studies with different problems have shown that the value of the timing

parameter t2 varies only marginally between jobs and can be fixed for the test

system to a value of 100 ms.

The timing parameter t1 is basically proportional to the total execution time

needed by a single task simulator. But it would be useless to run a complete

simulation to estimate this parameter to make sure that the number of CPU cores

is not exceeding the parallel slowdown limit.

Studies have shown that the timing parameter t1 can be estimated from the

execution time tb needed to simulate a fraction (one block) of the total

simulation. After the execution of one simulation block, the maximum number of

CPU cores can be evaluated based on tb and t2 as

2

b1
2max

t

tmp
pn


 , (6)

with m being the total number of simulation blocks and p1 and p2 being scaling

factors to adjust the heuristic to a given hardware system.

 The network entry server starts a predefined number of simulation servers

to execute one block. The execution is timed and the network entry server

calculates the maximum number of servers using Equation (6). The number of

servers gets adjusted and the simulation is continued.

 10

5. Conclusions

Parallel computing based on a client server communication model can be used to

speed up Monte Carlo simulation. The presented concepts are especially suitable

to employ multiple core CPUs with midsized problems. Applications are those

cases where the model has a large number of quantities or when an increased

number of simulation runs (>10
6
) is necessary.

The presented solution automatically adapts the number of CPU cores to the

size of the problem by using a heuristic based on the execution of one simulation

block to prevent parallel slowdown.

Fault tolerant communication and error recovery techniques are the basis for

a robust simulation service which can be transparently integrated into a desktop

environment.

Acknowledgments

We would like to thank Felix Maibaum at PTB for supporting our work by

providing access to a Linux multi-core system for implementation and tests of

the OMCE parallel support.

Disclaimer

Some product names are identified in this paper in order to specify the test

environment adequately. Such identification are not intended to imply

recommendation or endorsement by NIST or PTB, nor is it intended to imply

that the products identified are necessarily the best available for the purpose.

References

1. Guide to the Expression of Uncertainty in Measurement, International

Organization for Standardization, 1995

2. Guide to the Expression of Uncertainty in Measurement Supplement 1:

Propagation of distributions using a Monte Carlo method, JCGM 101:2008

3. Open Monte Carlo Engine (OMCE) – Python based Open Source program,

developed by R. Kessel at NIST (e-mail: ruediger.kessel@gmail.com).

4. Python – Programming Language, open source, http://www.python.org

5. T J Esward, A de Ginestous, P M Harris, I D Hill, S G R Salim, I M Smith,

B A Wichmann, R Winkler and E R Woolliams: A Monte Carlo method for

uncertainty evaluation implemented on a distributed computing system.

Metrologia 44 (2007), pp 319–326.

6. RPyC – Remote Python Call, open source, http://rpyc.sourceforge.net

 11

7. M Matsumoto, T Nishimura: Dynamic creation of pseudorandom number

generators, Monte Carlo and Quasi-Monte Carlo Methods 1998, Springer,

2000, pp 56–69.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dgene.pdf

