
 

 

Construction of a High Power OPO Laser system for Differential 
Absorption LIDAR 

 
Kevin O. Douglass, Stephen E. Maxwell, David F. Plusquellic 

Optical Technology Division, NIST 
 

Joseph T. Hodges, Roger D. van Zee 

Process Measurements Division, NIST 
 

Daniel V. Samarov 
Statistical Engineering Division, NIST 

 
James R. Whetstone 

Special Assistant to the Director for Greenhouse Gas Measurements, NIST 
 
 

Abstract 
Our goal is to develop and characterize optical measurement technology to enable accurate quantification of 

greenhouse-gas emissions from distributed sources and sinks.  We are constructing a differential absorption LIDAR 
(DIAL) system that will be sensitive to the three primary greenhouse gases, carbon dioxide, methane, and nitrous oxide. 
Our system uses a high energy optical parametric oscillator (OPO) operating from 1585 nm to 1646 nm.  Here we 
describe this OPO system and initial characterization of its output. The OPO uses a Rotated Image Singly-Resonant 
Twisted RectAngle (RISTRA) design.   The commercially available RISTRA cavity is machined from a solid block of 
aluminum.  The compact single piece cavity design requires no mirror adjustments and image rotation provides efficient 
light conversion efficiency and excellent beam quality.  The injection seeded OPO has demonstrated total output energy 
of 50 mJ/pulse when pumped with 220 mJ/pulse of 1064 nm radiation.  The pump laser has a repetition rate variable 
from 1 Hz to 100 Hz and a temporal pulse width of 4.2 ns.  In the current configuration the seed laser is locked to a mode 
of the cavity.   
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1. Introduction 

A quantitative measure of the greenhouse gas (GHG) inventory, both sources and sinks, is of critical importance 
to understanding the science of global climate change and to facilitate sound environmental decision-making regarding 
GHG levels and trends.   Current inventory methods rely on estimates and emission factors. Their quantitative 
performance can be improved with improved measurement capabilities  that will also provide a validation method useful 
in a variety of settings 1. A major challenge for assembling an accurate inventory of GHG fluxes is in the estimation of 
fluxes from large distributed sources; for example landfills, agricultural sites, and large scale industrial sites where point-
based measurements may fail to give an accurate picture due to the heavy reliance on models.  Active optical remote 
sensing using DIfferential Absorption Light detection and ranging (DIAL) is an attractive method to meet this and other 
measurement challenges1, 2.  
 

 We are developing a DIAL system with laser emission in the eye-safe region near 1600 nm. The major 
greenhouse gases CO2, CH4, and N2O all have vibrational absorption bands here and the measurements are simplified 
due to low interference from water vapor absorption.  The targeted spectral region in the near infrared is illustrated in 
Fig.1.  This region also features the availability of sensitive detectors, the ability to generate high energy laser pulses, 
and the availability of off-the-shelf technology from the telecom industry. 
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Fig. 1   Left: The near IR spectrum of relevant greenhouse gases methane (green), carbon dioxide (blue), and nitrous oxide    
(black) are illustrated using their respective globally averaged concentrations and at atmospheric pressure and temperature with 
50% relative humidity.  The simulated spectrum is based on HITRAN3.  The weak spectrum of nitrous oxide is multiplied by a 
factor of 103. Absorption due to water (red) makes much of the near IR spectrum opaque, but is only a minor inference in the 
spectral region  near 1600 nm (6225 cm-1).  Right: A subregion of the spectrum showing a region of the spectrum where suitable 
choice of frequencies can result in DIAL measurements free from the confounding effects of water vapor.   

 
  The fundamental component of a DIAL system is a suitable laser source.  There are currently many groups 

developing laser sources to perform DIAL for the measurement of greenhouse gases.    Koch et al and Gibert et al  have 
developed high energy sources operating at 2000 nm for use in heterodyne or coherent DIAL4-7.  These systems were 
developed to measure carbon dioxide concentration and wind speed.  There are several groups developing laser sources 
in the same 1600 nm spectral region that is of interest to us for the detection of carbon dioxide, methane, water vapor, 
ozone, and to perform aerosol characterization.  

 
To produce the 1600 nm light, several groups are using quasi-phase matching (QPM) methods that use 

periodically poled materials.  The QPM method is attractive because of the ease of alignment and high efficiency of light 
conversion, but has limited tuning and low pulse energies.  Burris et al has demonstrated pulse energies of 180 µJ/pulse 
at 2 kHz repetition rate using a two stage optical parametric amplifier (OPA) that implements periodically poled lithium 
niobate (PPLN)8.  Numata et al has constructed a fiber based system that uses a single stage PPLN OPA to generate 10 
µJ/pulse energies at 6 kHz repetition rate2.  Recently available large area periodically poled materials have been used by 
Sakaizawa et al in a four mirror OPO ring cavity to generate pulse energies of 10 mJ/pulse at 110 Hz repetition rate9.  
Other groups that have been developing methods that use a high energy OPO systems to generate pulse energies on the 
order of 10 mJ/pulse10 to 100 mJ/pulse at repetition rates of about 10 Hz11. 

  
To perform DIAL remote sensing over large distances in the near IR a high energy laser pulse is required to 

achieve sufficient single-to-noise in the collected backscatter photon counts and a high repetition can minimize 
integration time so that measurements can be made under constant atmospheric conditions. The high energy is needed to 
overcome the 1/R2 power loss and the weak elastic backscatter cross sections. In the 1km to 3 km range of interest to us, 
we estimate that sufficient signal-to-noise can be achieved with pulse energies in the 10 mJ/pulse to 100 mJ/pulse range.  
A laser system based on an optical parametric oscillator (OPO) can achieve these pulse energies.  

 
 Laser systems based on OPOs have many features that make them suitable for a field-deployable DIAL system.  

These include frequency agility, solid-state construction, and the ability to generate high energy output.  The major 
drawback in conventional OPO systems is poor beam quality at output energies greater than a few mJ/pulse.  At the 
pump energies required to achieve output in the mJ/pulse range the pump beam diameter needs to be made large to avoid 
optical damage.  A pump beam with a large diameter entering a cavity can oscillate on multiple transverse modes and 
thus the output is degraded.  We chose to base our system on the Rotated Image Singly-Resonant Twisted RectAngle 
(RISTRA) cavity design pioneered by Armstrong and Smith12.  This ring cavity design induces a 90 degree image 
rotation on every round trip, which  maintains excellent beam quality with demonstrated M2 values as low as 1.1 even at 
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high pulse energies13-18. The RISTRA is machined from a solid block of aluminum which makes the cavity robust.  We 
have recently assembled a 1064 nm pumped high power RISTRA OPO with signal output in the range from 1585 nm to 
1646 nm (6050 cm-1 to 6400 cm-1) which corresponds to the spectral region illustrated in Fig. 1.   
 

2. OPO System Elements 
2.1 Pump Laser 

 
The pump laser for the OPO is a Coherent Infinity 80-100 Nd:YAG 12.  The fundamental output at 1064 nm is 

used to pump the OPO.  The Infinity has a variable repetition rate from 1 Hz to100 Hz and a maximum average output 
power of 40 Watts.  The repetition rate and high energy make the laser well suited for a DIAL system.   The Infinity is a 
hybrid between a solid-state laser and a flash lamp pumped system.  The combination of the solid-state design and use of 
an internal spatial filter typically provides a high quality beam profile and pulse-to-pulse energy fluctuations near 1 %.   
The beam profile of the pump laser is shown in Fig. 2 and has a measured 1/e2 diameter of 6.2 mm.   This image 
indicates a hot spot in the beam which will be remedied with realignment.  

 

  

     Fig. 2 The pump laser spatial fluence profile is shown as a contour and surface plots.    

All beam profile images shown in this paper were recorded using a Pyrocam III camera and acquired and analyzed using 
Beamgauge software (OPHIR-Spiricon) 12.  The Nd:YAG laser was set to a 30 Hz repetition rate, a flash lamp setting of 
480 Volts, and had an output energy of 210 mJ/ pulse.  These same settings were used in all experiments.  The pulse 
duration of the Infinity also varies slightly with output energy.   For the settings described the pulse duration was roughly 
4.2 ns. 

2.2 Seed Laser 
 

The RISTRA OPO is injection seeded at 1630 nm using an external cavity diode laser (New Focus Velocity 
series) 12.  The diode laser operates from 1650 nm to 1580 nm and is fiber coupled to single-mode polarization 
maintaining fiber and a 90 % / 10 % fiber splitter.  The 10 % portion is used to monitor the wavelength and the 90 % is 
used to seed the RISTRA.  The optical layout is illustrated in Fig. 3. 
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cavities due to the four-fold symmetry.  In the near future we will realign the pump laser system in order to eliminate the 
hot spot and anticipate that our pump and signal beam profiles will be significantly improved.  
 

4. Summary and Future Applications 
 

We are currently working to develop a DIAL system for the measurement of carbon dioxide, methane, and 
potentially nitrous oxide.  The work is in support of climate change research and efforts to support measurement of the 
greenhouse gas inventory to meet the needs of regulators, policy makers, and industry.  The needs are largely driven by 
cost, ease-of-use, and robustness.  We have demonstrated the construction of tunable near IR laser source generating 
output energies near 50 mJ/pulse and operating near the transform limit with a spectral width of 200 MHz.  The 
completion of the laser source is only the first step in the construction of the full DIAL system. Assembly of the data 
acquisition, receiver system, and new measurement methodologies are currently in progress. Upon construction of the 
DIAL system, it will be placed in a 100 meter long indoor facility that will be used for validation and characterization of 
the DIAL system and various analysis algorithms to provide a rigorous measure of uncertainty.  In addition to the indoor 
facility NIST also has a calibrated burn facility, where the precise contents of the exhaust from a smoke stack are well 
known and characterized.   Future work may include performing DIAL measurements on the plume release from the 
NIST smoke stack to perform realistic test conditions for the DIAL system.  
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