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The resolution ellipses for neutron diffraction peaks at small scattering vectors

lie along lines that point to a position vertically above the beam center on the

small-angle scattering detector. This gravity effect is only noticeable for neutron

beams at long wavelengths and with large wavelength spreads.

It is well known that the neutron, with mass m, experiences a grav-

itational field and that a beam of thermal neutrons follows a parabolic

path caused by the acceleration due to gravity g. McReynolds (1951)

was the first to measure the influence of gravity on a thermal neutron

beam. The effect is small and may be ignored in the vast majority of

neutron scattering measurements. However, the use of both long-

wavelength neutrons and long flight paths results in both the trans-

mitted beam and the scattered neutrons falling by a measurable

amount that is wavelength dependent. In the case of small-angle

scattering, simple kinematics shows that the change �yg in the

vertical height of a beam of neutrons of wavelength � at the detector

is given by

�yg ¼ �L2ðL1 þ L2Þðg=2Þðm=hÞ
2�2
¼ �A�2; ð1Þ

where L1 and L2 are the distances between the source and sample

apertures and the sample aperture and the detector, respectively, and

h is Planck’s constant. The neutron velocity is h/m�. Furthermore, the

wavelength spread of the incident beam causes vertical smearing of

both the transmitted and the scattered beams. For a scattering

function that has no azimuthal dependence for which the data can be

radially averaged, the scattering angle and location on the detector

vary with the incident wavelength. Consequently, with finite wave-

length spread, the Debye–Scherrer ring is no longer circular but oval,

with a broader vertical width at the bottom than at the top.

Boothroyd (1989) has given an analytic form for the gravity resolu-

tion function for symmetric data when the beam center is not

corrected for gravity. Barker & Pedersen (1995) have also developed

corrections to the resolution function for symmetric data to account

for gravity when the beam center corresponds to the mean wave-

length.

Forgan & Cubitt (1998) have shown a diffraction pattern from a

flux lattice in the low-Tc superconductor Nb with � = 19.4 Å wave-

length neutrons, with a wavelength distribution having a full width at

half-maximum (FWHM) of ��/� = 10%. The shape of the diffraction

spots is distorted by the combination of gravity and wavelength

spread. Their figure shows that the diffraction peaks below the

horizontal line through the instrument center line are elongated in

the vertical direction, whereas those above are more circular. In fact,

the wavelength contribution to the resolution is always in the direc-

tion of the scattering vector Q [Q = (4�/�)sin(�/2), where � is the

scattering angle] and increases with its magnitude, whereas gravity is

always in the vertical direction. They also show that the insertion of

suitable prisms immediately before the sample can compensate for

the distortion to the peaks caused by gravity.

In an effort to determine an analytic description of the resolution

of azimuthally asymmetric scattering data, we have re-examined

discarded data measured on single-crystal Nb more than ten years

ago on the NG7 SANS instrument (Glinka et al., 1998). Fig. 1 shows

the diffraction from the flux lattice at a temperature of 6 K taken with

20 Å neutrons and a wavelength spread ��/� = 22%. The flight path

lengths (L1 = 15.77 m and L2 = 15.85 m) give a value of A =

0.1564 mm Å�2. The data show the elongation of the Bragg diffrac-

tion peaks. However, we notice that the major axes of the elliptical

contours do not point towards the displaced beam center but to a

position significantly above. This can also be observed in the data of

Forgan & Cubitt (1998).

In the absence of gravity, the resolution of the vector Q0 located at

(R, ’) on the detector, where R is the distance to the instrument

center line and ’ is the azimuthal angle relative to the horizontal, is

Figure 1
The diffraction pattern, showing the sixfold symmetry of the Bragg peaks from the
vortex lattice of single-crystal Nb at T = 6 K, taken on beamline NG7 SANS at
NIST with 20 Å neutrons and with a wavelength spread ��/� = 22%. The point O
corresponds to the spectrometer axis and the point O0 to the center of the
diffraction pattern. The major axes of the diffraction spots tend to point towards M.
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best expressed in directions along and perpendicular to the direction

of the scattering vector (see Pedersen et al., 1990). The resolution

function of this vector Q measurement is

<ðQ0;Qjj;Q?Þ ¼ ð2��Qjj
�Q?
Þ
�1 exp �ðQjj �Q0Þ

2=2ð�Qjj
Þ

2
h i

� exp �Q2
?=2ð�Q?

Þ
2

h i
; ð2Þ

with values of the variances (Mildner & Carpenter, 1984) given by

ð�Q?
Þ

2
¼ �2

geom ¼
k2

12
3

R1

L1

� �2

þ 3
R2

L0

� �2

þ
�d

L2

� �2
" #

;

ð�Qjj
Þ

2
¼ �2

geom þQ2
0ð��=�Þ

2; ð3Þ

where the wave vector k = 2�/�, |Q0| = kR/L2 and �2
� is the wavelength

variance. R1 and R2 are the radii of the source and sample apertures,

respectively, �d is the size of the detector element or pixel, and

L0�1 ¼ L�1
1 þ L�1

2 . Hence, in the absence of the gravity term or when

it can be neglected, the resolution function of the vector Q is elliptical

with its major axis along Q and pointing towards the origin, the beam

center on the detector. We now show how this is different when

gravity is taken into account.

Gravity causes the mean of the center of the beam to be displaced

by �yg = �Ah�2
i relative to the instrument axis, where h�2i ¼

�2
0½1þ ð��=�Þ

2
� and �0 is the mean wavelength. This results in an extra

spatial variance in the y direction of the incident beam, given by

�2
g ¼ A2

½h�4
i � h�2

i
2
� ¼ 4A2�4

0ð��=�Þ
2: ð4Þ

If the incident beam has a triangular wavelength distribution FWHM

of �� around the mean wavelength �0, then the wavelength resolu-

tion is (��/�)2 = (1/6)(��/�0)2. Hence, �2
g ¼ ð2=3ÞA2�4

0ð��=�0Þ
2 must

be added to the variance of the incident-beam width in the vertical

direction (Mildner et al., 2005). The upper edge of the beam, defined

by the faster neutrons, moves down less than the lower edge, defined

by the slower neutrons. The result is an oval shape or distortion of the

incident beam on the detector. The magnitude of the scattering vector

should be determined relative to this mean beam center, which is

displaced by �A�2
0 from the instrument center line.

The centers of all the diffraction peaks are also displaced by the

same amount �A�2
0 as the mean beam center. However, each

diffraction spot has a different resolution ellipse. There is no wave-

length component in the direction perpendicular to Q, and only the

parallel component needs correction for gravity. The gravity contri-

bution (along ŷy, the unit vector in the vertical direction) to the

uncertainty in Q is not independent of the wavelength contribution

(which is in the direction of Q0). Hence, both contributions add as

vectors to give the resultant variance ½Q0 � 2A�2
0ðk=L2Þŷy�

2
ð��=�Þ

2.

We may resolve the wavelength contribution into horizontal and

vertical components, so that the overall wavelength contribution to

the variance along the major axis becomes ðk=L2Þ
2
½R2cos2’ +

ðR sin ’� 2A�2
0Þ

2
�ð��=�Þ

2, where ’ is the azimuthal angle of the peak

relative to the horizontal axis.

The resolution ellipse has its major axis along the line joining

(R, ’) and ð2A�2
0; �=2Þ with a variance

ð�Qjj
Þ

2
¼ �2

geom þ ð1=6Þðk=L2Þ
2
ð��=�Þ2½R2

� 4RA�2
0 sin ’þ 4A2�4

0�;

ð5Þ

assuming a triangular wavelength distribution. The expression makes

sense at various limits. If gravity is negligible (A’ 0), the variance for

the wavelength spread is its usual value [equation (3)]. If there is no

wavelength spread, there is no gravity component to the resolution,

and therefore there is only geometric smearing. Finally, it gives the

correct value for the incident beam (Q = 0). Note that the gravity-

dependent terms in equation (5) normally increase the variance, but

they can actually cancel all wavelength-dependent components at a

position offset vertically from the beam center by 2A�2
0, where the

contours of a diffraction spot would appear circular.

Fig. 2 illustrates the above result graphically. Consider the scat-

tering at a particular value of the scattering vector Q. Its location

(R, ’) on the detector as a function of wavelength � in the absence of

gravity is determined by

jQj ¼ k� ¼ ð2�=�ÞðR=L2Þ ¼ ð2�=�Þðy= sin ’L2Þ: ð6Þ

The variation in the vertical coordinate �y on the detector for the

scattering vector Q is related to the wavelength variation �� by

�y/y0 = ��/�0, where y0 is the vertical position for the mean wave-

length �0 of the incident beam. In the absence of gravity, the major

axis of the resolution function, which is determined by the wave-
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Figure 2
A schematic drawing showing the resolution ellipses for the diffraction spots in the
cases of no gravity and with gravity. With no gravity, the major axis (dotted line) of
the resolution ellipse for a scattering vector Q0(R, ’) lies on a line through the
origin (the instrument center line) with a gradient tan’. With gravity, the centers of
all ellipses are displaced vertically by�A�2

0, with the vector R (solid line) measured
relative to the displaced center (0;�A�2

0), but the major axes of the resolution
functions all point towards (0;A�2

0) (dashed line). Gravity changes the direction of
the major axes, and can either reduce or increase the variance in the major-axis
direction.



length contribution, lies along a line through the origin in the

direction of Q with a slope m0 on the detector given by

m0 ¼ tan ’ ¼ y0=x0 ¼ �y=�x; ð7Þ

where �y=�x is the gradient of the ellipse major axis at its center

corresponding to �0.

In the presence of gravity, locations on the detector with different

wavelengths and scattering angles that correspond to the same value

of Q are each displaced vertically by a distance �A�2 rather than

�A�2
0. That is, the major axis of the resolution function now lies along

a line with slope m00 and intercept yc on the detector given by

m00 ¼ ðy0 � A�2
0 � ycÞ=x0 ¼ �ðy� A�2

Þ=�x: ð8Þ

That is,

ðA�2
0 þ ycÞ ¼ 2A�0ð��=�xÞx0 ¼ 2A�2

0; ð9Þ

so that the intercept yc ¼ A�2
0 relative to the instrument center line as

the origin, or 2A�2
0 relative to the beam center line. Hence the lower

diffraction spots are elongated, as shown in Fig. 1, and the upper spots

are more circular. (Note that the major axis of the resolution ellipse is

in fact curved, since the gradient of the major axis varies with � and

the y intercept varies with �2.)

The resolution ellipse is distorted when gravity is taken into

account, with the major axis of the resolution function for a diffrac-

tion peak lying along a line that intercepts the y axis at a point A�2
0

relative to the instrument axis, where �2
0 is the mean-square wave-

length for the distribution, even though the center of the incident

beam on the detector lies at the vertical point �A�2
0. In general, both

the mean wavelength �0 and the width �� of the distribution are

sufficiently small that this effect may in fact not even be noticed.

The authors thank Boualem Hammouda for critical reading of the

manuscript. This work was supported by the National Science

Foundation under agreement No. DMR-0944772.

References

Barker, J. G. & Pedersen, J. S. (1995). J. Appl. Cryst. 28, 105–114.
Boothroyd, A. T. (1989). J. Appl. Cryst. 22, 252–255.
Forgan, E. M. & Cubitt, R. (1998). Neutron News, 9(4), 25–31.
Glinka, C. J., Barker, J. G., Hammouda, B., Krueger, S., Moyer, J. J. & Orts, W. J.

(1998). J. Appl. Cryst. 31, 430–445.
McReynolds, A. W. (1951). Phys. Rev. 83, 172–173.
Mildner, D. F. R. & Carpenter, J. M. (1984). J. Appl. Cryst. 17, 249–256.
Mildner, D. F. R., Hammouda, B. & Kline, S. R. (2005). J. Appl. Cryst. 38, 979–

987.
Pedersen, J. S., Posselt, D. & Mortensen, K. (1990). J. Appl. Cryst. 23, 321–333.

short communications

J. Appl. Cryst. (2011). 44, 1127–1129 D. F. R. Mildner et al. � Effect of gravity on neutron diffraction 1129

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ks5297&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ks5297&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ks5297&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ks5297&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ks5297&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ks5297&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ks5297&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ks5297&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ks5297&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ks5297&bbid=BB7

