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Abstract The energy resolution of a high-pulse-rate filtering algorithm recently in-
troduced by Hui Tan et al., based on running sums of TES microcalorimeter output
streams, is predicted from average pulse shape and noise autocovariance. We com-
pare with empirical resolution, and with optimal filtering predicted and empirical
resolution, for a 55Fe source measured by multiplexed 2 × 4, 2 × 8, and 2 × 12 arrays
of microcalorimeters.
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1 Introduction

One recent approach to cope with the data output of increasingly large arrays of mi-
crocalorimeters, proposed to reduce offline processing and storage requirements, to
increase throughput by rejection of fewer piled-up pulses, and to simplify processing,
is a set of algorithms due to Hui Tan et al. [1–3] that relies on running sums of the data
streams. We predict the energy resolution of the most recently reported algorithm [3],
based on analysis involving the average pulse and noise autocovariance, and compare
to both the empirical resolution of the algorithm and the predicted and empirical res-
olution for optimal filtering of transition-edge-sensor (TES) microcalorimeter mea-
surement of a 55Fe source for the 5.9 keV MnKα complex recorded in the spring of
2008 for Constellation-X/IXO technology demonstrations.
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2 Processing Algorithm

The algorithm [3] subtracts the height of the baseline from the height of a pulse on
top of the baseline. The pulse height is determined from a running sum of LRS signal
samples, recorded at the position where the sum reaches its maximum. The baseline is
determined, asynchronously from the pulse height, as the average value of a running
sum of LB signal samples. Each of these running sums is obtained from samples
taken at times free of other pulses, through latches timed from pulse triggers [3].

Reduction of pile-up losses is enabled by LRS being quite short (here for samples
spanning less than 1 ms), so that a second pulse does not spoil a pulse being recorded
even if the second arrives rather shortly after the first. The second pulse would, how-
ever, be discarded. In addition, the much greater length of LB (greater than 100 ms)
is not especially restrictive, due to its collection being asynchronous from that of the
pulses.

3 Analysis Method

3.1 Signal and Noise Model

3.1.1 Continuous Model

We assume a signal f consisting of a single pulse sitting on a baseline

f (t) = A · S(t − t0) + B,

where S is the pulse shape and A and B are the heights of the pulse and baseline. For
notational convenience, the time t0 of pulse arrival is henceforth zero. A noisy signal
consists of signal plus noise m(t) = f (t) + η(t), where the noise η is assumed to be
a realization of a stationary stochastic process with zero mean and autocovariance

Rη(τ) =
∫ ∞

−∞
η(t)η(t + τ)dt.

3.1.2 Discrete Model

The measurement apparatus obtains an approximation mi of m(i�) for i ∈ Z, where
� is the time spacing between samples, as a convolution of m with a response func-
tion

mi =
∫ ∞

−∞
m(i� − t)w(t)dt,

where we assume w is an approximate δ-function centered at the origin with unit
integral. We define fi , si , and ηi analogously for i ∈ Z so that

mi = fi + ηi

= A · si + B + ηi. (1)
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The pulse shape s = (s0, . . . , sn) is approximated by averaging many pulses to obtain
the estimate ŝ = (ŝ0, . . . , ŝn), and the noise covariance r = (r0, . . . , rn, . . .), given by
the expectation

rk = E[ηiηi+k] − E[ηi]2, (2)

is approximated by averaging over pulse-free samples of the sensor output to obtain
the estimate r̂ = (r̂0, . . . , r̂n, . . .).

3.2 Algorithm Mean and Variance

A running sum ML
j = mj + · · · + mj+L−1 beginning with sample j and running for

L samples has mean

E[ML
j ] = A

j+L−1∑
i=j

si + L · B + E

[
j+L−1∑

i=j

ηi

]

= A

j+L−1∑
i=j

si + L · B, (3)

and variance

Var[ML
j ] = E[(ML

j )2] − E[ML
j ]2

= E

[(
A

j+L−1∑
i=j

si + L · B +
j+L−1∑

i=j

ηi

)2]
− E[ML

j ]2

=
j+L−1∑

i=j

j+L−1∑
k=j

E[ηiηk]

= 1(L) · R(L) · 1(L), (4)

where R(L) is the L×L covariance matrix with R
(L)
ij = r|i−j | and 1(L) is the L-vector

consisting entirely of ones.
When j ≤ −L, the pulse contribution

∑j+L−1
i=j si vanishes and the mean is L · B .

With running sum M
LRS
j of length LRS within the pulse and running sum MLB of

length LB for the baseline, the amplitude estimate Â is defined as

Â = M
LRS
j /LRS − MLB/LB

LRS
−1 ∑j+LRS−1

i=j ŝi
(5)

with approximate mean A and its variance estimate is defined as

V̂ar[Â] = 1(LRS) · R̂(LRS) · 1(LRS)/LRS
2 + 1(LB) · R̂(LB) · 1(LB)/LB

2

(LRS
−1 ∑j+LRS−1

i=j ŝi )2
, (6)

where R̂
(L)
ij = r̂|i−j |. We have E[Â] = A provided ŝ = s and V̂ar[Â] = Var[Â] pro-

vided in addition r̂ = r . Under the model, the pulse arrival time is known.



J Low Temp Phys

Fig. 1 (Color online) Autocovariance of noise of SQUID-multiplexed TES microcalorimeter detector
array, two channels (top), is computed here from the power spectral density of source-free data. (For
lag 0, the variance is 100.5 (nA)2 for channel 17 and 100.9 (nA)2 for channel 21.) Resulting FWHM√

8 log(2)(1(L)C(L)1(L)/L2) of the current is obtained from the average of a running sum of length L

(bottom)

For any choice of LRS, the variance estimate is minimized when the offset j max-
imizes the denominator and LB is as large as possible. The optimal choice of LRS
depends on the pulse shape and covariance.

4 Experimental Results

To enable quantitative comparison with Hui Tan et al. [3], we have used data from the
same TES microcalorimeters excited by the same source, although the dates of data
collection, 2008/04/11 for the multiplexed 2 × 4 array, 2008/03/13 for the 2 × 8, and
2008/03/26 for the 2 × 12, differ somewhat from those presented by Hui Tan et al.
[3]. Processing of the pulses in 2008 included an optimal-pulse-height-estimation
[4] procedure using a typical implementation [5] involving fixed-length digitized
records, from which average pulse and noise power spectral density (PSD) for each
microcalorimeter were determined.

For the present analysis, the autocovariance was determined from the PSD, accord-
ing to the Wiener-Khinchin theorem that a function’s autocorrelation is the Fourier
transform of its PSD. In Fig. 1 the TES current noise autocovariance is shown with
the corresponding uncertainty of evaluating an average current by running sum.

The variance (6) in the amplitude estimate depends also on the pulse height cap-
tured by the running sum. The average pulse for two of the detectors of the 2 × 8
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Fig. 2 (Color online) The length LRS of the running sum to determine the pulse height can be chosen
to minimize the first of two terms of the variance (6). The average pulse (top) and the noise covariance
(Fig. 1) combined lead to minimum variance at running-sum duration 413 µs for channel 17 and 484 µs
for channel 21 (bottom). Within this range of durations the sensitivity of the energy resolution to LRS is
rather mild

Table 1 Predicted and
observed energy resolutions for
the running-sum algorithm and
optimal filtering are averaged for
three microcalorimeter arrays

Avg. res.
(eV)

2 × 4 2 × 8 2 × 12

RS Opt RS Opt RS Opt

Predicted 3.28 2.82 3.28 2.89 3.37 3.02

Observed 3.04 2.71 3.19 2.93 3.35 3.04

array is shown in Fig. 2, together with the dependence of the energy resolution on the
length LRS of the running sum.

Comparison of the energy resolution, predicted and observed, for the running sum
algorithm (RS) and optimal filtering (Opt) is shown in Fig. 3 and summarized in the
Table 1.

5 Discussion

Agreement between predicted and observed energy resolution for the running sum
algorithm is generally quite good, despite the analysis ignoring uncertainties of esti-
mating the autocovariance and average pulse, and other issues. The poor agreement
for a few detectors, in which predicted resolutions are typically elevated, is likely due
in part to undetected stray events in the noise record used for estimating the autoco-
variance, events that are unimportant in estimation of pulse height.
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Fig. 3 (Color online) Energy resolution (FWHM, eV) versus detector channel number, for running sum
algorithm compared with optimal filtering, predicted and observed, for detectors of 2×4 array (top), 2×8
array (middle), and 2 × 12 array (bottom). Choice of running sum lengths LRS and LB for durations of
435.2 µs for the pulse and 174.1 ms for the baseline, respectively, match those of Hui Tan et al. [3]. Legend:
running-sum algorithm (*) predicted, (×) observed [3]; optimal filtering (◦) predicted, (+) observed

References

1. H. Tan, D. Breus, W. Hennig, K. Sabourov, W.K. Warburton, W.B. Doriese, J.N. Ullom, M.K. Bacrania,
A.S. Hoover, M.W. Rabin, in IEEE Nuclear Science Symp. Conf. Record (2008), pp. 1130–1133

2. H. Tan, D. Breus, W. Hennig, K. Sabourov, J.W. Collins, W.K. Warburton, W. Bertrand Doriese, J.N.
Ullom, M.K. Bacrania, A.S. Hoover, M.W. Rabin, in AIP Conf. Proc. (American Institute of Physics),
vol. 1185, ed. by B. Cabrera, A. Miller, B. Young (2009), pp. 294–297

3. H. Tan, W. Hennig, W.K. Warburton, W.B. Doriese, C.A. Kilbourne, IEEE Trans. Appl. Supercond.
21(3), 276–280 (2011)

4. S.H. Moseley, R.L. Kelley, R.J. Schoelkopf, A.E. Szymkowiak, D. McCammon, J. Zhang, IEEE Trans.
Nucl. Sci. 35, 59–64 (1988)

5. A.E. Szymkowiak, R.L. Kelley, S.H. Moseley, C.K. Stahle, J. Low Temp. Phys. 93, 281–285 (1993)


	Predicted Energy Resolution of a Running-Sum Algorithm for Microcalorimeters
	Abstract
	Introduction
	Processing Algorithm
	Analysis Method
	Signal and Noise Model
	Continuous Model
	Discrete Model

	Algorithm Mean and Variance

	Experimental Results
	Discussion
	References


