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Using event-driven molecular dynamics simulations, we quantify how the self diffusivity of confined
hard-sphere fluids depends on the nature of the confining boundaries. We explore systems with fea-
tureless confining boundaries that treat particle-boundary collisions in different ways and also various
types of physically (i.e., geometrically) rough boundaries. We show that, for moderately dense fluids,
the ratio of the self diffusivity of a rough wall system to that of an appropriate smooth-wall reference
system is a linear function of the reciprocal wall separation, with the slope depending on the na-
ture of the roughness. We also discuss some simple practical ways to use this information to predict
confined hard-sphere fluid behavior in different rough-wall systems. © 2011 American Institute of
Physics. [doi:10.1063/1.3651478]

I. INTRODUCTION

Predicting the dynamic properties of moderate-to-high
density bulk fluids from first principles remains an out-
standing scientific challenge. This already-difficult problem
becomes considerably more formidable when the fluid is
confined to small spaces, a situation that is commonly en-
countered across a broad range of technologically important
settings.1 In recent years, an important step toward solving
this problem for confined fluids was taken by identifying
physically meaningful static (i.e., thermodynamic) variables
(or combinations thereof) against which dynamic fluid prop-
erties scaled independently of the degree of confinement.2–9

This identification suggested that dynamic properties such as
the self diffusivity of confined fluids could be predicted based
on knowledge of their static properties and the corresponding
static-dynamics scaling relationship obtained from, e.g., bulk
fluid data. To date, tests of this scaling strategy for predict-
ing how confinement affects dynamics of model systems have
been carried out by molecular simulation of monatomic2–5, 8, 9

and a limited number of molecular10 fluids. Although these
tests suggest that the scaling method can successfully predict
the dynamic behavior of a variety of fluids confined to pores
with different geometries, little attention has been paid to the
nature of the confining walls themselves and how it affects the
relationship between static variables and dynamic properties.
In this paper, we address this issue by investigating how sur-
face roughness impacts the self diffusivity of model confined
fluids.

a)Author to whom correspondence should be addressed. Electronic mail:
william.krekelberg@nist.gov.

b)Electronic mail: vincent.shen@nist.gov.
c)Electronic mail: jerring@buffalo.edu.
d)Electronic mail: truskett@che.utexas.edu.

Smooth, flat structureless walls represent a mathemati-
cally convenient and idealized theoretical construct, and thus,
historically, have been commonly used in the study of model
confined fluids. However, real solid surfaces do in fact exhibit
structure, which can significantly impact the thermodynamic
and dynamic properties of the fluids they contact. Wetting and
lubrication are two obvious examples of phenomena where
the structure and shape of the fluid-exposed solid surface
have significant implications.11, 12 This should not be surpris-
ing because surface roughness, which arises from the struc-
tural arrangement of “wall” particles, ultimately influences
the fluid-wall interaction. Also, it is clear that surface rough-
ness greatly impacts dynamics. For low density gases, where
Knudsen diffusion13 dominates, self diffusion decreases with
surface roughness.14–17 Furthermore, experiments of confined
colloids find that some particles stick to walls, further slowing
dynamics.18 Simulations have shown that position-dependent
relaxation processes near rough surfaces are much slower than
those near smooth surfaces.19, 20

A question which has received comparatively less at-
tention is how surface roughness impact the self-diffusivity
of moderate-to-dense confined fluids. The goal of this pa-
per is to answer this question systematically via molecular
simulations. The most obvious way in which roughness in-
fluences dynamic properties is through the modification of
fluid particle–wall collisions. Here, we investigate how dif-
ferent representations of this collisional modification lead to
changes in the self-diffusion of a simple, confined fluid. As
a starting point, we study the monodisperse hard-sphere (HS)
fluid confined between smooth hard walls. Despite its sim-
plicity, we choose the HS fluid because it captures many of
the important effects arising from the dominant excluded vol-
ume interactions in liquids.21, 22 Obviously, a smooth hard
wall does not possess any roughness whatsoever, but it still
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serves as a useful reference point for studying confined flu-
ids, specifically the dynamic properties in this paper. In fact,
the slit pore geometry is often assumed when determining
the pore size distribution from adsorption isotherms in real
porous materials.23–27 In our simulations, we introduce sur-
face roughness in two separate ways (i) by modifying the
boundary conditions for collisions between fluid particles and
a flat wall surface and (ii) by giving the surface of the con-
fining walls physical roughness or shape. The former crudely
represents surface roughness on a length scale much smaller
than the diameters of the fluid particles (e.g., confined col-
loids), while the latter models physical roughness on a length
scale comparable to the diameter of the fluid particles (e.g.,
confined molecular fluids). While neither of the above types
of walls can be said to completely represent the roughness
present in real physical systems, they represent the types of
roughness that can be incorporated in molecular simulations,
and serve as a good starting point to address the impact of
surface roughness on self-diffusivity.

We find that surface roughness reduces average particle
mobility relative to a smooth flat wall, where the collisions
between fluid particles and the wall surface are perfectly re-
flecting. Moreover, the reduction appears to be systematic
with increasing degree of confinement (i.e., decreasing pore
width). In the case of physically rough walls, we show that
it is necessary to make the distinction between the spatially
homogeneous and inhomogeneous directions because the as-
sociated self-diffusion coefficients can differ significantly. Fi-
nally, we find that the dynamic properties of the hard-sphere
fluid confined between rough surfaces can be regarded as a
perturbation on the dynamic properties of an appropriately
chosen smooth-wall reference system.

This paper is organized as follows. In Sec. II, we describe
the model fluid studied in this work, as well as the simulation
methods used. We then discuss how wall-surface roughness is
implemented in Sec. III. Results are presented and discussed
in Sec. IV. Finally, we present conclusions and directions for
future work in Sec. V.

II. MODEL FLUID

Event-driven microcanonical molecular dynamics (MD)
simulations28 were used to study a fluid composed of hard
spheres of diameter σ and mass m with interaction potential

φ(rij ) =
{

∞ rij ≤ σ,

0 rij > σ,
(1)

where rij is the distance between particles i and j. Event-driven
MD consists of four basic steps: (1) Calculate future events
(collisions) times. (2) Sort events to determine next event to
occur. (3) Advance system to next event using Newtonian dy-
namics (free flight). (4) Execute event (collision) to determine
new particle velocities, and return to (1). Various methods are
available to speed up the general algorithm. The exact method
used in this study is described in Ref. 28. A rectangular simu-
lation cell of dimensions Lx × Ly × Lz with N = 4000 particles
was used throughout this work. Periodic boundary conditions
were applied in the x and y directions in all cases, and in the

z direction for the bulk fluid. For the confined fluid, where
the z direction was non-periodic, appropriate wall-boundary
conditions (see below) were employed. The dimensions of
the simulation box were chosen to correspond to a desired
reduced number density ρσ 3 (or packing fraction = πρσ 3/6),
and such that the dimensions of the simulation box in the
periodic directions were (nearly) equal. Initial configurations
for the MD simulations were generated by randomly insert-
ing hard spheres at low density with no overlaps, followed
by compression and (Monte Carlo) relaxation steps until the
desired density was obtained. The systems were deemed equi-
librated when the number of collisions (particle-particle and
particle-wall) per unit time reached a constant value as a
function of time. Equilibration times of 1000 (mσ 2/kBT)1/2

were found to be sufficient to meet this requirement. Produc-
tion simulations spanned times exceeding 105 (mσ 2/kBT)1/2,
which allowed the slowest system to display displacements
on the order of 50σ . The (pore-averaged) self-diffusion coef-
ficients were calculated by fitting the long-time behavior of
the mean-squared displacement in a periodic direction to the
Einstein relation, e.g., Dx = limt → ∞〈�x2〉/(2t). Where ap-
propriate, self-diffusion coefficients in equivalent periodic di-
rections were averaged together.

III. SURFACE ROUGHNESS AND BOUNDARY
CONDITIONS

We study the hard-sphere fluid confined between parallel
hard walls in a slit-pore geometry. To avoid any confusion,
we point out that none of the walls studied here exhibits in-
ternal structure. That is, the walls are of uniform density and
can be regarded as a continuum solid. Let H denote the aver-
age distance between the two surfaces of the confining walls.
In this work, we study two general types of wall surfaces.
The first involves flat walls where the boundary conditions for
the particle-wall collisions have been modified. These walls
model surface roughness on a length scale much smaller than
the diameters of fluid particles, and thus, because the surfaces
are geometrically flat, they are referred to as featureless sur-
faces (walls). The second type of surface studied here pos-
sesses physical (i.e., geometric) roughness, i.e., the height of
the wall surface varies with lateral position, and thus they are
referred to as physically rough surfaces (walls). Schematics
of each type of surface are given in Fig. 1.
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FIG. 1. Schematics of the geometries of the confined fluid system, as de-
scribed in the text. (a) Featureless walls and (b) physically rough walls.
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A. Featureless walls

We considered three different types of boundary condi-
tions for particle collisions with featureless walls. As a useful
reference state, we first considered flat, smooth walls (SW),
where the fluid-wall collisions are specular. The second type
of featureless surface studied was a so-called thermal wall
(TW). This model boundary attempts to reproduce particle
collisions with a surface uneven on length scales consider-
ably smaller than the particle diameter, the essential feature
being that pre- and post-wall collision velocities are uncor-
related. More importantly, the distribution of post- collision
velocities is determined by the temperature of the wall. The
third type of featureless surface gives an alternative approach
to generate uncorrelated pre- and post-wall-collision veloci-
ties. We refer to it as a rotational wall (RW) for reasons that
will become apparent below.

In order to distinguish between the featureless walls with
different boundary conditions, consider a particle with a pre-
wall-collision velocity v = (vx, vy, vz), and a post-wall colli-
sion velocity v′ = (v′

x, v
′
y, v

′
z). For the cases considered here,

the components of v′ are as follows.

� SW: v′
x = vx , v′

y = vy , and v′
z = −vz

� TW: v′
z is chosen according to the following

distribution29 depending on wall temperature Tw (set
equal to fluid temperature T),

φz(v
′
z) = m

kBTw

|v′
z| exp

[−mv′2
z

2kBTw

]
, (2)

where the sign of v′
z depends on the location of the

wall collision (i.e., positive for lower wall collisions
and negative for upper wall collisions). v′

i (where
i = x, y) is chosen randomly from a Gaussian distri-
bution,

φi(v
′
i) =

√
m

2πkBTw
exp

[−mv′2
i

2kBTw

]
(3)

� RW: v′
z = −vz, and the lateral components v′

x and v′
y

are determined by rotating the corresponding compo-
nents of the pre-wall-collision velocity vx and vy by an
angle θ ,

v′
x = vx cos θ ′ − vy sin θ ′,

v′
y = vx sin θ ′ + vy cos θ ′,

(4)

where θ ′ = ±θ , with the sign chosen randomly. Note
that θ = 0 corresponds to smooth walls, while θ = π

corresponds to bounce-back boundary conditions.

Note that the boundary conditions described above af-
fect the dynamics of the system only. Because all three of the
above walls have the same geometrical form and produce the
same velocity component distributions, they lead to identical
thermodynamic and structural properties.29 This was verified
by the simulation results.

We note that the featureless walls described above are not
intended to model any specific physical system. Rather, they
are mathematically convenient course-grained models for sur-
face roughness. For example, the motivation for the thermal

walls goes back to Maxwell,30 who considered collisions with
a highly uneven low density granular surface. Particles that
strike this type of surface undergo a series of collisions with
many different surface molecules. The resulting outgoing ve-
locity is expected to be randomized, with a distribution de-
termined by the temperature of the wall. We also stress that
the rotational walls introduced here are not intended to mimic
any type of real system. Instead, they should be considered a
mathematical construct that allows us to change the surface
boundary condition in a continuous fashion from perfectly
smooth (θ = 0) to rough (bounce-back, θ = π ) walls, with the
system having identical thermodynamics for all values of θ .
This allows us to study how different levels of surface rough-
ness impact the dynamics of the model fluid without changing
thermodynamics.

B. Physically rough walls

For a physically rough surface, we intuitively expect that
the height of the surface should vary with lateral position. For
simplicity, we use the following expressions for the upper and
lower wall surfaces in a slit-pore geometry,

fU(y) = H

2
+ aw cos

[
2πy

λ
+ π

]
,

fL(y) = −H

2
+ aw cos

[
2πy

λ

]
, (5)

where the subscripts L and U denote the lower and upper
surfaces, respectively, and aw and λ are the amplitude and
wavelength of the well-behaved surface variations, respec-
tively. Figure 1(b) displays the geometry of the physically
rough walls employed. As written in Eq. (5) and depicted in
Figure 1(b), minima in the upper wall and maxima in the
lower wall are aligned, which imposes a maximum value upon
aw if a fluid particle is to have access to the entire pore length.
The average surface-to-surface distance is H as long as the
quantity Ly/λ is an integer, which is true throughout this work.
Because we have chosen to have the height of the surface be
a function of only y, the system is spatially inhomogeneous in
the y-direction and homogeneous in the x-direction. This will
have important consequences for the self diffusivity of a fluid
confined between these surfaces.

The rigid character of the confining walls was maintained
by requiring perfectly reflecting specular particle-surface col-
lisions. However, instead of solving the set of nonlinear equa-
tions to determine particle-surface collision times, which is
computationally expensive, the curved walls were discretized
into a set of short, connected line segments of length 0.015σ .
Using smaller segments does not lead to noticeable changes
in the resulting properties of the systems studied here.

We stress that the specific form of the physically rough
walls studied here is not intended to mimic a specific physical
system. Rather, they allow us to systematically determine the
impact of different surface feature sizes on the self-diffusivity
of our model fluid.
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FIG. 2. Self diffusivity D versus total density ρ = N/(AH) for the hard-sphere
fluid confined between smooth walls in slit-pore geometry.

IV. RESULTS

A. Featureless flat walls

We first present results for the hard-sphere fluid confined
between smooth, flat hard walls. In Fig. 2, we plot the self-
diffusion coefficient, DSW, where the superscript SW signi-
fies smooth wall case, as a function of the total density ρ

= N/(AH). Data are shown for a number of pore widths H.
As previously pointed out elsewhere,2, 8 all data points seem
to fall approximately onto a single curve independently of H
for ρσ 3 � 0.75. Below, we investigate how modifying the na-
ture of the confining surfaces changes the results obtained in
this basic reference system.

B. Thermal walls

Figure 3 displays the self-diffusion coefficient DTW for
the hard-sphere fluid confined between featureless thermal
walls as a function of ρ for various values of H. Compared
to the smooth, flat wall, roughness due to the thermal wall has
a clear and noticeable influence on particle dynamics. Ther-
mal walls reduce particle mobility, with the magnitude of the
reduction increasing with decreasing H. That average mobil-
ity of fluid particles confined between thermal walls decreases
with ρ at fixed H has been previously reported.31
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FIG. 3. Self diffusivity D versus total density ρ for the hard-sphere fluid
confined between thermal walls, for various wall separations H.
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FIG. 4. Fraction of collisions in the system involving the wall surface fw for
the hard-sphere fluid confined to a slit-pore geometry. Symbols have the same
meaning as in Fig. 3.

The interesting trend we quantify in this study is the re-
duction of DTW with increasing degree of confinement at fixed
ρ. This behavior can be understood by considering the quan-
tity fw, the fraction of collisions in the system involving the
surfaces of the confining walls. Intuitively, we expect non-
specular particle-surface collisions, such as those that take
place in the thermal-wall systems, to slow dynamics in the
transverse direction relative to specular particle-surface colli-
sions. We base this expectation by considering the free flight
of a single particle. In this case, specular particle-wall colli-
sions do not change the transverse motion, while non-specular
particle-wall collisions do. We also expect that the fraction of
wall collisions grows with the prominence of the walls (the
fraction of the fluid particles near the walls), that is, with
decreasing H. That is, in order to maintain a fixed N and
V, a decrease in H must be compensated by an increase in
fluid-exposed wall surface area. Figure 4 shows that this is
indeed the case. Decreasing H at constant ρ systematically
increases the fraction of wall collisions. Clearly, the reduc-
tion in DTW with decreasing H observed in Fig. 3 is directly
linked to the increasing fraction of wall collisions. Also, note
that the results given in Fig. 4 are not unique to the thermal-
wall systems. In fact, all three kinds of featureless surfaces
studied in this work yield identical wall-collision statistics.
As noted above, the collision boundary conditions only affect
the dynamic properties of the fluid and not the thermodynamic
properties. The thermodynamic pressure of the system is inti-
mately related to the wall-collision statistics.

While there are clear differences between the smooth-
wall and thermal-wall self-diffusion coefficients, DSW and
DTW, respectively, these differences appear to depend system-
atically on H. This suggests that it might be possible to de-
velop an approach to predict the self-diffusivity of the hard-
sphere fluid confined between thermal walls using a limited
amount of information. In particular, note the dependence of
the fraction of wall collisions on density. Initially, increasing
density leads to a pronounced decrease in the fraction of wall
collisions. This is due to the associated increase in particle-
particle collisions compared to particle-wall collisions (not
shown). However, the fraction of wall collisions eventually
becomes a weak function of density. Since we expect the
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FIG. 5. Ratio of the self-diffusivity between thermal walls DTW to its value
when confined between smooth walls DSW at the same ρ and H versus (a) ρ

and (b) H−1. Symbols in (a) are the same as those in Fig. 3. In (b), all data is
for ρσ 3 > 0.2, and dashed line is a fit to the form DTW/DSW = 1.0–1.44σ /H.

reduction in self diffusivity due to the presence of rough
walls to scale with the fraction of wall collisions, we should
likewise expect a similar density dependence of the ratio
DTW/DSW.

In Fig. 5(a), we plot the quantity DTW/DSW as a function
of density. The ratio of the diffusivities is taken at the same
thermodynamic state of the fluid, namely at the same den-
sity ρ and average wall separation H. Notice that, for each
pore width, the ratio of self-diffusion coefficients initially
increases with density before reaching a limiting value. Fur-
thermore, the behavior of DTW/DSW vs ρ reflects that of fw
vs ρ. Again, this points to the strong connection between the
self-diffusion in a system with rough walls to the prominence
of the walls (i.e., the fraction of the fluid near the walls). The
diffusivity ratio takes its smallest value at low density, condi-
tions where surface collisions are most influential, and thus,
where the greatest difference between the two surfaces is ob-
served. Also, the density at which the ratio reaches a plateau
value (ρσ 3 ≈ 0.2) is independent of pore width. This is due
to the dominant influence of particle-particle collisions on the
mobility of hard-spheres at moderate-to-high densities.

The most striking feature of Fig. 5(a) involves the H-
dependent plateau values for ρσ 3 � 0.2. In Fig. 5(b), we plot
all of the data points for which ρσ 3 � 0.2 versus the inverse
pore width H−1. Figure 5(b) shows that the ratio of diffusiv-
ities can be well described in this density range by a linear
function of H−1

Drough

Dref
= 1 − C

( σ

H

)
, (6)

where the constant C is a fitting parameter, Drough is the self-
diffusivity of the fluid between the rough surface of interest,
and Dref is the self diffusivity of the fluid at an appropriately
chosen reference state under the same thermodynamic con-
ditions. We note that Eq. (6) has, to first order, the same de-
pendence on H as the self-diffusivity of a Brownian particle
in the center of a slit-pore.32 This, in fact, was the inspira-
tion for the functional form chosen in Eq. (6). For the thermal
walls, we take Drough = DTW and Dref = DSW, and we find that
C ≈ 1.44σ .

Assuming sufficient smooth-wall self-diffusivity data are
available as a function of density, this provides the basis for
estimating the diffusivity of the hard-sphere fluid confined be-
tween thermal walls for ρσ 3 > 0.2. To estimate the diffusiv-
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FIG. 6. Ratio of predicted to observed self diffusivity (see text) for the ther-
mal wall system. Dotted blue and red dashed lines provide 5% and 25% error
bounds, respectively. Symbols are the same as those in Fig. 3.

ity of a fluid confined between thermal walls in a slit pore of
width H at density ρ, one calculates two quantities. The first
quantity is the H-dependent ratio DTW/DSW using Eq. (6), and
the second quantity is the self-diffusion coefficient of the ref-
erence system, DSW, which, as discussed in Sec. I, may be
approximated by a scaling analysis. Knowledge of these two
quantities then allows for an estimate of the self diffusivity be-
tween thermal walls. In Fig. 6, we test the predictive ability of
this approach. The ratio of the predicted to observed thermal
wall self diffusivity is plotted against the observed self dif-
fusivity for the thermal-wall system. If the predictions were
perfect, the points would fall on the horizontal line DTW/DSW

= 1, and this is clearly not the case. However, the pre-
dicted data points do fall within the indicated 5% error
bounds. Moreover, we emphasize that to truly make predic-
tions, one must still have knowledge of C and the reference
self-diffusivity.

C. Rotational walls

In Figure 7, we present results for the self-diffusion
coefficient DRW of the hard-sphere fluid confined between
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and (b) H/σ = 7 and various values of θ .
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respectively. In (c), all data points are for ρσ 3 > 0.2; lines are linear fits of
the form DRW/DSW = 1 − C(H/σ )−1; the inset to (c) shows the value of C as
a function of θ from linear fits in main panel of (c).

rotational walls as a function of density ρ with (a) θ = π /2
and various values of H, and (b) H/σ = 7.0 and various val-
ues of θ . Qualitatively similar results were observed for other
choices of rotational-wall parameters and can be found in the
supplemental material.33 Recall that θ is the angle of rota-
tion that the lateral velocity of a particle undergoes after it
collides with the surface. Figure 7(a) shows that self diffusiv-
ity decreases with increasing density at fixed H and fixed θ .
In addition, at fixed density ρ, the self-diffusivity decreases
with decreasing H. This latter trend, which was also observed
in the the thermal-wall systems, is not surprising consider-
ing rotational walls, like thermal walls, inherently retard par-
ticle mobility, an effect that is most apparent at small wall
separations (at the same fluid density). Therefore, recalling
that the collision statistics are independent of the boundary
condition for featureless walls, the same physics explaining
the reduction in mobility due to thermal walls mentioned in
Sec. IV B also applies to rotational walls. We also expect that
the reduction in mobility should increase with θ , since θ con-
trols the effective roughness of the walls. The data presented
Figure 7(b) bear this out.

Figures 8(a) and 8(b) again show that rotational walls in-
fluence self diffusivity relative to smooth walls in a manner
qualitatively similar to thermal walls. Specifically, the ratio of
self diffusion coefficients DRW/DSW initially increases with
density and then levels off beyond ρσ 3 � 0.2. In fact, for a
given θ , the plateau value appears to be systematically de-
pendent upon H, which suggests that an approach similar to
that adopted for the thermal wall system can be used to esti-
mate the diffusivity in the rotational-wall system. Figure 8(b)
shows that the ratio DRW/DSW decreases with increasing θ ,
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FIG. 9. Ratio of predicted to observed self diffusivity (discussed in text) ver-
sus the observed self diffusivity for the rotational wall system with the value
of θ denoted in each figure. Dotted blue and red dashed lines provide 10%
and 25% error bounds, respectively. Symbols have the same meaning as in
Fig. 7(a).

indicating that the constant C in Eq. (6) is dependent upon
θ . This just reflects the θ dependence noted in Fig. 7(b). Ac-
counting for this θ dependence, Fig. 8(c) shows that diffu-
sivity ratios with densities ρσ 3 > 0.2 are well described by
Eq. (6). The inset to Fig. 8(c) displays the values of C(θ )
from the fits. For simplicity, we fit C to the function C = 2.0
sin(θ /2), which as shown in Fig. 8(c) fits the data well. The
specific form of the fit was based on the fact that C = 0 for θ

= 0 (by definition), C is a maximum at θ = π , and C is
periodic in θ . Using the procedure outlined above for ther-
mal walls, the self-diffusion of the hard-sphere fluid between
rotational walls can be estimated in an analogous fashion.
Figure 9 tests these estimates, plotting the ratio DRW

pred/D
RW

versus DRW, where DRW
pred is the predicted value and DRW is

the value observed from simulation. In the case of rotational
walls, the estimation procedure yields predictions that fall
within 10% of the actual values. More accurate predictions
can clearly be obtained by making use of a more quantitative
model for C(θ ).

D. Physically rough walls

Here, we present results for physically rough surfaces
at fixed wavelength λ/σ = 3 and several densities ρ = N/V,
where V is the surface accessible volume, while (1) fixing the
amplitude of the features aw/σ = 1.0 and varying H and (2)
fixing H/σ = 7.5 and varying aw. Since the surface height
of a physically rough wall depends on lateral position, these
parameters (see Eq. (5) and Fig. 1(b)) allow us to study the in-
fluence of surface height variation on mobility in a systematic
way. Results for λ/σ = 1.5, 2.0, and 6.0 give results qualita-
tively similar to those presented below, and can be found in
the supplemental material.33
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cally rough walls (see Fig. 1) with λ/σ = 3.0 and ((a) and (b)) aw/σ = 1.0
and various H and ((c) and (d)) H/σ = 7.5 and various aw.

Notice that in the geometry of the physically rough wall
system studied (see Fig. 1(b)), the x and y directions, though
both infinite, are not equivalent. Because the surface height
is a function of y only, the y direction is termed rough (in-
homogeneous), while the x direction is termed smooth (ho-
mogeneous). Also, because of this height variation, we ex-
pect the self diffusivities in the x and y directions at the
same state point to be significantly different, with Dx > Dy.
Figure 10 shows these two self-diffusion coefficients sepa-
rately as a function of density for various values of H and aw.
Observe that the self diffusivity in the x direction has little de-
pendence on H or aw. That is, the Dx–ρ correlation is almost
equivalent to the bulk correlation, much like the case for hard
spheres between smooth flat walls (see Fig. 2). This seems
consistent with previous results for hard-spheres in cylindri-
cal pores where the surface is smooth and exhibits curvature.8

In contrast, the self-diffusion coefficient in the y direction
depends strongly on the degree of confinement (Fig. 10(b))
and on the amplitude aw of the surface variation (Fig. 10(d)).
Specifically, decreasing H at fixed wall feature size (con-
stant aw and λ) systematically decreases Dy. This behavior
resembles that for the fluid confined between thermal walls
(Fig. 3) and rotational walls (Figs. 7(a)). Also, at fixed H,
Dy systematically decreases with increasing aw (i.e., increas-
ing surface roughness). This effect is analogous to increas-
ing surface roughness (θ ) in the rotational wall system (see
Fig. 7(b)). Also, the slowing down of dynamics due to physi-
cal roughness is consistent with previous studies.34

The disparity between Dx and Dy grows with decreasing
H at fixed aw and λ, and with increasing roughness (aw) and
fixed H. Given the close parallels between Dy and the self-
diffusion coefficient of the fluid between featureless rough
walls, we expect the reduction in Dy due to surface roughness
should be connected to the fraction of collisions in the system
involving the walls. In Figure 11, we plot fw versus density
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FIG. 11. Fraction of particle collisions that involve the wall fw for the hard-
sphere fluid confined between physically rough walls versus density. (a) aw/σ
= 1.0 at various H and (b) H/σ = 7.5 and various aw. Symbols have the same
meaning as in Fig. 10.

for the state points considered in Fig. 10. Figure 11(a) shows
that fw grows with decreasing H at fixed ρ and aw, while Fig.
11(b) shows that the wall-collision fraction grows with aw at
fixed ρ and H. In both cases, fw grows with the increasing
prominence of the walls (caused by decreasing H, or increas-
ing aw). Also, at fixed wall conditions (e.g., aw and λ), fw ini-
tially decreases with increasing density (�0.2). However, this
quantity changes only moderately with further increases in
density (�0.2). This behavior is analogous to that observed in
the featureless-wall systems.

Because of the qualitative similarities between the prop-
erties of the physically rough-wall system and the featureless
rough-wall systems studied above, we now examine the dif-
fusivity ratio Dy/Dref. However, unlike the other surfaces en-
countered in this work, the choice of Dref is not obvious for the
physically rough walls. For the thermal and rotational walls,
we chose the smooth (flat) wall self-diffusion coefficient at
the same ρ and H, which corresponds to the self-diffusion of a
fluid at the same thermodynamic state without surface rough-
ness. Likewise, for physically rough-wall system, the refer-
ence state should be the self-diffusion of a system at the same
thermodynamic state, but without surface roughness. For this,
we choose Dref = Dx. In Figure 12(a), we plot the ratio Dy/Dx

versus density for various values of H and aw. At fixed H, the
ratio initially increases with ρ and then levels off beyond ρσ

� 0.2. For a specified value of ρ, the ratio Dy/Dx decreases
with decreasing H at fixed surface roughness (Fig. 12(a)) and
with increasing roughness at fixed H (Fig. 12(b)). Compari-
son with Figs. 5(a) and 8 shows that physical roughness alters
Dy relative to Dx in a manner similar to how featureless rough
walls alter the self-diffusion relative to smooth walls. Figure
12(c) shows that, for given surface features, Dy/Dx is a linear
function of H−1. That is, Dy follows Eq. (6) with Drough = Dy

and Dref = Dx. Figure 12(d) shows the fit parameter C versus
aw for the different surface feature wavelengths λ studied (see
the supplemental material33). Clearly, C is much more sensi-
tive to aw than λ. We find that a linear fit to C as a function of
aw, although crude, describes that data reasonably well.

From the above analysis, we can now formulate a means
to predict the self-diffusion in the rough y direction from the
self diffusion in the smooth x direction. Specifically, from
Eq. (6), D

pred
y = Dx[1 − C (H/σ )−1]. Figure 13 shows the

quality of the prediction based on this formalism for the state
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points in Fig. 10. In Figs. 13(a) and 13(c) we use C from
the fits at a given λ (i.e., data points in Fig. 12(d)), while in
Figs. 13(b) and 13(d) we use the approximation C = 2.12aw/σ
(linear fit in Fig. 12(d)). We find that using the C for a given
wall configuration yields good predictions, with the majority
of the data within 10% of the actual data. On the other hand,
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versus Dy for the hard-sphere fluid confined between physically rough walls
with λ/σ = 3.0 and ((a) and (b)) aw/σ = 1 and various H and ((c) and (d))
H/σ = 7.5 and various aw. Symbols in (a) and (b), and (c) and (d) corre-
spond to those in Figs. 10(a) and 10(c), respectively. In (a) and (c) we use
values of C obtained from the fits in Fig. 12(c), while in (b) and (d) we use C
= 2.12aw/σ (see Fig. 12(d)). The dotted green and dashed red lines corre-
spond to 10% and 25% error bounds, respectively.

using the approximate C yields predictions within 25% of the
actual value. The information necessary to estimate Dy in this
case is greatly reduced, but one would still need knowledge
of Dx to truly make predictions of Dy.

V. CONCLUSIONS

We have systematically studied how surface rough-
ness affects the self-diffusion of confined hard-sphere fluids.
Specifically, for ρσ 3 > 0.2, we have shown that the ratio of
the self-diffusion coefficient in a rough wall system to the
self-diffusion coefficient in smooth-wall reference system is a
linear function of reciprocal wall separation [see Eq. (6)], with
the precise slope depending on the specific nature of the sur-
face roughness. If this slope and the reference self-diffusivity
are known, accurate predictions of the self-diffusion in rough
wall systems can be obtained.

In real world applications, however, the specific nature
of surface roughness is often unknown. This study leads to
two possible ways of making useful self-diffusivity estimates
without this knowledge. First, our analysis shows that a only a
limited number of measurements are needed to determine C.
Second, if only qualitative information is sought, our analysis
shows that C is typically of O(1), and that the basic physics
of self-diffusion in a rough system relative to that in a smooth
system is captured by the H−1 correction in Eq. (6). That is,
the specific nature of the surface roughness does not appear to
impact radically or significantly the resulting dynamics. This
is particularly important since modeling the specific details
of real surfaces is a daunting task. However, it is not our in-
tention to suggest that any type of surface roughness can be
modeled in any way one chooses, for example, modeling ge-
ometric roughness with featureless rough walls. Rather, the
specific details of the surface roughness do not appear to be
overly important.

To make predictions for self-diffusion of confined fluids
between rough surfaces using Eq. (6), one also requires a pre-
diction of the reference state self-diffusion. As discussed in
Sec. I, one may use a scaling method to map the bulk sys-
tem to the confined system. For the case of smooth featureless
walls, for example, this has been shown to be very effective.8

However, for the case of the physically rough system, one
must be able to predict Dx. We plan to address this in a fu-
ture publication.

Another question is whether the results presented in this
paper apply to more complex pore scenarios, such as diffusion
through porous materials. Such systems have complex geom-
etry and connectivity, as well as rough surfaces. We believe
that the simplified geometry studied here, slit pores, is appli-
cable, however, when one considers that many of the proper-
ties in such complex systems can be considered as an aver-
age over a collection of simple slit pore (or cylindrical pore)
systems.23–27

The lack of particle-particle or particle-wall attractions is
an obvious shortcoming of this study. Clearly, wall attractions
will greatly alter the number of particles near the wall, and
therefore the fraction of wall collisions. As we point out, the
ratio of self diffusivity in a rough-wall system to that in a cor-
responding smooth-wall system appears to be closely linked
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with the fraction of wall collisions. Therefore, attractions can
have a strong effect on the behavior of the self diffusivity ra-
tio. However, we speculate that the introduction of moderately
strong wall attractions to the rough systems studied here will
result in an increased retardation of self-diffusion and not a
fundamental change to the physics. We also plan to explore
this issue in detail in a future paper.
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