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Photon number resolving transition-edge sensors (TES) are the cutting-edge enabling technology for high quantum 
efficiency photon number counting. The TES developed at NIST reliably show system detection efficiencies of more 
than 95%, and even approach 99% for individual detectors [1]. Recently, efforts to directly tying existing optical power 
measurements to measurements at the single-photon level are being considered by some metrology institutions around 
the world with the goal of better uncertainties. An initial step in this direction would be to explore how far existing 
detectors can be extended beyond their usual operating regimes. One promising candidate under consideration for 
connecting these two regions is the TES, as it functions as a microcalorimeter and is therefore able, in principle, to 
measure optical powers from the single-photon-regime to picowatt levels. 

 
Fig. 1. a) TES temporal response after absorbing 106 photons. b) Fitted saturation time (temporal width) vs. input mean photon 
number; inset: phonon bath temperature as a function of input mean photon number. c) Uncertainties vs. input mean photon number; 
black crosses: total measured uncertainty; blue solid line: input state uncertainty; red solid line: inferred readout and detector 
uncertainty; green solid line: relative readout and detector uncertainty (sd/N)  

 

We have tested a TES designed for single-photon counting in the regime far beyond the single-photon saturation 
point of the detector, e.g. > 7·106 photons or 0.9 pJ in a single pulse of coherent laser light. The laser pulse repetition 
rate is 1 kHz. The detection efficiency of this detector is 94 %, optimized for a wavelength of 1550 nm. After ~10 
photons, the TES passes from the superconducting-normal transition region where single-photons are resolved to the 
normal resistance regime. At this point, all the current is diverted through the shunt resistor in our SQUID readout 
electronics and a constant voltage output is observed for a time tw until the TES re-enters the transition region due 
thermal coupling of the electron system to the phonon system. tw strongly depends on the amount of deposited energy, 
i.e. number of photons absorbed by the device. A typical TES trace after absorbing  ~5·106 photons is shown in fig. 1a. 
We fit the temporal response to a double-exponential whose decay is delayed by tw (red solid line) [2]. When fitting all 
traces as function of input mean photon number (N), we find that tw linearly depends on N, as can be seen in fig. 1b. We 
calculate that the electron system is heated to about 30 K after absorbing 7·106 photons. Due to the hot electron system 
and the long thermal decay of the phonon system, the phonon system experiences a cumulative increase in temperature. 
This is equivalent to raising the thermal bath temperature for the electron system. The phonon temperature rises steadily 
as a function of N until it reaches the electron superconducting transition temperature of ~180 mK at ~7·106 photons. 
The inset in fig. 1b shows the inferred phonon temperature as a function of N. The dependence of the phonon 
temperature with respect to the laser pulse energy is: 0.009 ln[2 ] 0.12phT E Vg= × + , where E is the energy absorbed by 

the TES, g is the electron specific heat capacity and V is the TES volume. Figure 1c shows the uncertainty of tw as a 
function of N. The uncertainty is given in units of photon number. The black crosses correspond to the standard 
deviation of tw (stw) obtained when fitting 20,000 individual traces to our model. Since, we use a coherent state input, 
the input state shot noise scales as N (solid blue line). After quadrature subtracting the input state shot noise from stw, 
we obtain the readout plus detector uncertainty sd (solid red line). sd is below the input state shot noise up to N ~ 1000. 
Throughout the entire input state range, the relative uncertainty (sd/N) is below 10 % for the single-shot measurements 
(solid green curve).   

We conclude that this technique can be very powerful when optical powers from the single-photon regime to the 
picowatt regime are used. The measured width depends linearly on N and the relative single-shot uncertainty remains 
below 10 % and can certainly be reduced by averaging traces. 
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