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We model “soft” error rates for writing (WSER) and for reading (RSER) for spin-torque memory devices that have a free layer with
easy axis perpendicular to the film plane by solving the Fokker-Planck equation for the probability distribution of the angle that the free
layer magnetization makes with the normal to the plane of the film. We obtain: 1) an exact, closed form, analytical expression for the
zero-temperature switching time as a function of initial angle; 2) an approximate analytical expression for the distribution function of the
direction of the magnetization and the exponential decay of the WSER as a function of the time the current is applied; 3) comparison of
the approximate analytical expressions for the distribution function and WSER to numerical solutions of the Fokker-Planck equation; 4)
an approximate analytical expression for the distribution function and WSER for the case in which the pinned layer is not collinear with
the perpendicular free layer; 5) an approximate analytical expression for the linear increase in RSER with current applied for reading;
6) comparison of the approximate analytical formula for the RSER to the numerical solution of the Fokker-Planck equation; and 7)
confirmation of the accuracy of the Fokker-Planck solutions by comparison with results of direct simulation using the single-macrospin
Landau-Lifshitz-Gilbert equations with a random fluctuating field in the short-time regime for which the latter is practical. We find that
the WSER decays at long times as ���� �� �� 	 where the reduced time is related to the switching time, Gilbert damping and
precession frequency through 
 � , and the reduced current is the ratio of the applied current to the critical current density for
switching 
 �. This exponentially decaying tail in WSER is not easily reduced by tilting the pinned layer magnetization.

Index Terms—Error rate, Fokker-Planck, magnetic memory, spin torque, switching distribution.

I. INTRODUCTION

S PIN-POLARIZED electrical currents can transfer angular
momentum between nanometer scale ferromagnetic elec-

trodes separated by a nonmagnetic layer [1], [2]. The use of this
effect to switch the direction of magnetization of a ferromag-
netic layer as part of a magnetic memory device is of great cur-
rent interest. In order to build a memory device one needs at least
two distinct physical states that can be associated with the two
logic states. In addition, one must have a means of switching
the device between these states and a means of determining
its state. A memory device is useful only if it switches (with
very high probability) when switching is intended and does not
switch (again with very high probability) when switching is not
intended. In the most common type of spin-torque memory de-
vice, the two states are provided by the relative orientations of
the direction of magnetization of two ferromagnetic layers, typi-
cally parallel and anti-parallel. The switching is achieved by the
transfer of angular momentum carried by spin-polarized current,
and the change in resistance between the parallel and anti-par-
allel states is used to determine the state of the memory device.
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In this paper, we primarily consider spin-torque devices in
which the magnetization of the two ferromagnetic layers is ori-
ented perpendicular to the film plane in the quiescent state, i.e.,
in the absence of applied field or current. One layer is consid-
ered to have fixed magnetization, whereas the other layer’s mag-
netization is free to precess and switch. Such devices should
switch at lower currents than devices (with equivalent thermal
stability) for which the magnetization is in the plane of the layers
in the quiescent state [3]. In Section V, we extend our treat-
ment to include situations in which either the pinned or free
layer is not perpendicular. At the present time, most of the ef-
fort aimed at practical spin-torque memory devices uses mag-
netic tunnel junctions because of the high spin polarization that
can be achieved through the symmetry-based spin-filter effect
[4]–[7] and because they offer the possibility of good impedance
matching with a transistor that is used to select a particular de-
vice for reading or writing.

A desirable memory device should switch both quickly and
reliably when switching is intended and it should not switch
when switching is not intended, for example when current is
applied to read the state of the device. Our concern will be
the probability of switching events when switching is not in-
tended [read soft-error rate (RSER)], or nonswitching events
when switching is intended [write soft-error rate (WSER)].

A very large and rapidly growing literature on spin-torque
switching, from the perspectives of both theory [1], [2], [8]–[25]
and experiment [25]–[30], now exists. In the following,
we will focus on the following aspects of the spin-torque
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switching phenomenon: 1) Additional terms in the Landau-Lif-
shitz-Gilbert (LLG) equation that arise from Gilbert damping
acting on the spin-torque; 2) exact integration of the zero
temperature switching equation; 3) numerical solution to the
Fokker-Planck equation giving the finite temperature distribu-
tion of switching elements; 4) approximate analytic solution
to the Fokker-Planck equation valid for currents above the
critical current for switching; 5) approximate analytic solu-
tion to the Fokker-Planck equation for the case of a pinned
layer noncollinear with the perpendicular free layer or for a
nonaxial magnetic field; 6) approximate analytic solution for
the switching rate for currents below the critical current for
switching; 7) demonstration that, for the purpose of deter-
mining switching distributions, the Fokker-Planck equation
is equivalent to macrospin simulations that include a random
thermal field, with the exception that the Fokker-Planck ap-
proach can be applied to determine switching probabilities that
are extremely small or very close to unity, thus allowing the
investigation of WSER and RSER; and 8) observation that, for
cases with axial symmetry, the equations controlling switching
via spin-polarized currents can be mapped onto mathemati-
cally equivalent equations for switching via an applied axial
magnetic field.

A. LLG Equation for Film With Perpendicular Anisotropy

Consider a spin-torque transfer device consisting of pinned
and free magnetic layers separated by a tunnel barrier. The lat-
eral extent of the free layer in the and directions is assumed
to be several times its thickness (in the direction), but we re-
quire that all dimensions be smaller than the exchange length so
that the approximation of a single direction for its magnetization
is valid. The magnetization of the pinned layer is assumed to be
fixed and parallel to the direction. It is assumed that the fixed
and pinned layers are separated by a tunnel barrier that elimi-
nates any exchange coupling between the two layers.

Consider the evolution in time of the magnetization angular
momentum of the free layer (treated here as a macrospin,
meaning that internal magnetic degrees of freedom are ignored)
of a magnetic tunnel junction which is receiving electrons
through a tunnel barrier from a pinned layer that has its mag-
netization pinned in the direction . The rate of change of
can be written (in SI units) as [2], [31], [32], [50]

(1.1)

where the first term on the right-hand side of (1.1) is the torque
on the magnetic moment of the free layer, ( is the volume
of the free layer and is its magnetization), due to the
effective field, ; the second term is an empirical damping
term designed to damp the precession of ; and the third and
fourth terms are spin-torque terms that arise from spin angular
momentum carried by the electrons that tunnel through the bar-
rier carrying angular momentum from the pinned layer to the
free layer or vice versa. Each of these terms will be briefly dis-
cussed in turn.

The magnetic moment and angular momentum are related
through the gyromagnetic ratio by , so the first
term causes the angular momentum to precess in a direction per-
pendicular to both the effective field and the angular momentum.
The effective field arises from magnetic anisotropy, demagne-
tizing effects, and any external field. We shall initially assume
that all three of these contributions are perpendicular to the plane
of the film. This assumption significantly simplifies the analysis.
The additional assumption that is also perpendicular to the
plane of the film is sufficient to provide the problem with axial
symmetry. The requirement for axial symmetry and collinearity
of and the external field with the film normal will be relaxed
in Section V. To avoid ambiguity, we note that the gyromagnetic
ratio , as used in this paper, is in units of angular frequency per
Tesla, i.e., radians Ts .

The second term is perpendicular to both the angular mo-
mentum and its precessional motion. This term drains energy
from the precessing free layer moment and eventually causes the
moment and angular momentum vector to align with . Note
that any term that causes torque (i.e., the third and fourth terms
as well as the first) is expected to contribute to the damping be-
cause the semi-empirical Gilbert damping term is proportional
to , regardless of its origin.

The torque described by the third term can be understood
heuristically as follows: is the number per second of spin-
polarized electrons entering the free layer when moments of the
free and pinned layers are perpendicular. Each of these elec-
trons carries angular momentum . The parameter is given
in terms of the currents for collinear orientation of the moments
of the pinned and free layers by [10], [14], [17]

(1.2)

Here, and are the majority and minority currents re-
spectively that would flow for parallel alignment of the layers,
while and are the majority and minority currents (from
the perspective of the pinned layer), respectively, for anti-par-
allel alignment of the two layers. It is important to note that
and depend on the applied voltage but are independent of the
relative orientation of the free and pinned magnetic layers. The
angle-dependent term accounts for the fact that
only the transverse part of the incoming angular momentum can
be absorbed by the free layer. In a spherical coordinate system in
which the polar angle is measured from the normal to the plane
and is also in this direction, this torque is in a direction to in-
crease or decrease the polar angle. For brevity and convenience
we refer to this term as the Slonczewski spin-torque term.

The torque described by the fourth term is often described as
the “field-like” spin torque and cannot be simply expressed in
terms of the electron particle current [17], [18]. The nomencla-
ture “field-like” is based on the fact that as long as does
not depend on the angle between and this term can be
treated as an additional contribution to the effective field, pri-
marily increasing or decreasing the rate of precession, but also
changing the effective energy function, i.e., the effective energy
as a function of polar angle that determines the switching rate.

The LLG (1.1) can be written in the classical Landau-Lifshitz
form by converting to an equation for using and
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then inserting the terms on the right-hand side of the equation
for and simplifying

(1.3)

Written this way, we can see that the effect of the Gilbert
damping term is to renormalize the rate of
precession by a factor (e.g., by effectively reducing the
gyromagnetic ratio) and to add a term, ,
which yields a contribution to in the direction of the
polar angle that acts to return the magnetization towards .
In addition to these two well-known effects, the damping
also acts on the spin-torque terms so that the Slonczewski
spin-torque term generates a field-like torque and the field-like
torque term generates a torque in the same direction as the
Slonczewski term. These terms are smaller in magnitude by a
factor of compared to spin-torque terms that generated them.
If is sufficiently small they may be neglected.

We obtain the effective field using

(1.4)
where is the magnetic energy per unit volume of the free layer.
If the free layer has no in-plane anisotropy, can be written as

(1.5)

where the first and second terms come from demagnetization
and anisotropy, respectively. is the component of the
demagnetization tensor. The anisotropy may arise from bulk
magnetocrystalline anisotropy or from surface anisotropy

. Here, represents the thickness of the magnetic free
layer. The third term comes from an external applied magnetic
field. In this paper, in order to preserve axial symmetry, we ini-
tially restrict our treatment to the case in which any external field
is perpendicular to the layers. In fact, our primary interest is in
RSER and WSER with no external field present. The external
field is included here partly for completeness, but more impor-
tantly, because it allows us to make a connection with previous
work by Brown [33]–[35] and others [36]–[40]. In Section V,
we treat the more general field configuration in which a compo-
nent is in the plane of the layers.

In the macrospin model, the magnitude of the magnetic mo-
ment of the free layer is assumed to be constant in time. Thus,
the important quantity is its direction, which we will describe in
spherical polar coordinates, i.e.,

. The magnetic energy per unit volume (relative to its
value for ), expressed in spherical polar coordinates, is

(1.6)

where . This energy
expression leads to an effective magnetic field

(1.7)

where and . is
called the switching field because a field of this magnitude ap-
plied along the easy axis (perpendicular to the layers) will cause
the free layer to switch. In the following, we shall suppress the
superscript on . It will be understood that is the effective
anisotropy field resulting from both anisotropy and demagneti-
zation.

II. EQUATIONS OF MOTION

Substitution of (1.7) for in (1.3) yields

(2.1)

Here, we have introduced a reduced current , where
is defined by

(2.2)

and is the critical current for switching via the first spin-torque
term. We have also assumed that the pinned layer magnetiza-
tion is along . The terms in (2.1), proportional to , yield
a torque in the azimuthal direction and contribute to preces-
sion around the axis. On the other hand, the terms proportional
to generate a torque that changes the polar angle
and are responsible for spin-torque switching.

In terms of and , the LLG equation becomes

(2.3)

(2.4)

where . Equation (2.3) for simply describes the
precession of the magnetic moment around the axis. We will
not consider it further except to note that the field-like term (and
to a lesser extent the Sloncewski-torque, since typically )
yields a current or bias dependence to the FMR frequency that
might be observable. Equation (2.4) for describes the varia-
tion of the polar angle as a competition among the Slonczeweski
spin-torque term (proportional to ), external field (proportional
to ), field-like spin-torque term and the damping term (propor-
tional to ). Depending on their signs, the first three either
increase or decrease , whereas the third always decreases it (if

). Note that the field-like term in (2.4) can be viewed
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either as a modification to or a modification to . Physically,
modification of may seem more appealing since this term orig-
inates from the change in damping due to the change in the
rate of precession, similar to that caused by an applied field.
Practically, however, it may be more convenient to include the
field-like term with the Slonczewski term because both are con-
trolled by the electrical current or bias.

We can simplify our equation even more if we measure time
in units of . Thus, if our unit of time is that
required for precessional orbits (in the absence
of applied fields or currents) we have

(2.5)

where

(2.6)

and

(2.7)

Since may not be independent of may not be pre-
cisely proportional to . We shall nevertheless, for simplicity,
refer to as the “reduced current”.

The critical current for switching is an important quantity for
spin-torque devices because the magnitude of the current that
must be supplied determines the size of the transistor needed
to supply the current and ultimately the energy required for
switching. Another important quantity is the thermal stability
factor , defined as the energy barrier for switching divided by
the thermal energy

(2.8)

The thermal stability factor determines the rate at which thermal
fluctuations cause an element to switch. To avoid thermally in-
duced switching (over practically relevant periods), should
be greater than 50. The critical current for switching is pro-
portional to the thermal stability factor

(2.9)

The approximate estimate for the critical current in (2.9) as-
sumes .

A. Deterministic Switching Time

In the limit of , (2.5) becomes

(2.10)

with solution

(2.11)

The deterministic switching time in this approximation is [41]

(2.12)

This expression is based on the notion that the element switches
when equals .

Equation (2.5) can also be solved without making the
approximation. Substituting into (2.5), we have

(2.13)

which can be integrated to give

(2.14)

where is the value of at . When reaches ,
changes sign so that the damping term changes from im-

peding switching by pushing back towards zero to assisting
switching by pushing towards , thus it is reasonable to as-
sume that the element switches when or ,
yielding

(2.15)

III. FOKKER-PLANCK EQUATION

Equation (2.15) gives the time required for an element that
has its moment pointing at an angle at
to switch. It implicitly assumes that the motion is deterministic,
i.e., that neither the initial displacement angle , nor the trajec-
tory in space are affected by thermal fluctuations. In actu-
ality, of course, thermal fluctuations will have important effects
upon the switching. We are primarily interested in the proba-
bility of rare events, namely switching that occurs when not
intended (when current is applied for reading the state of the
system) or switching that does not occur when switching is in-
tended (when current is applied for switching). One approach to
this problem is to solve the Landau-Lifshitz-Slonczewski equa-
tion [see (1.1)] with an additional, random thermal field many
times while recording whether the magnetization has switched.
We will use this approach to validate our results based on the
Fokker-Planck method described in the following.

We derive and solve a Fokker-Planck equation [33], [42], [43]
for the probability distribution of the angle as a function of .
We define to be the probability that the magnetization
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is pointing in direction relative to the film normal at time .
is normalized so that

(3.1)

for all . The Fokker-Planck equation is based on the continuity
equation for this probability density

(3.2)

which simply states that the rate of change of the probability
density at angle is equal to the net rate at which probability
density flows in. The current in probability density consists of a
flow term and a diffusion term

(3.3)

where is the diffusion coefficient and is given by (2.5).
Combining (3.2) and (3.3) yields

(3.4)

The diffusion constant can be determined from the equi-
librium condition in the absence of an applied electrical current
or field, because in this case (3.4) reduces to

(3.5)

which has the solution

(3.6)

On the other hand, the equilibrium distribution should be
Maxwell-Boltzmann, which implies

(3.7)

Thus, , so the Fokker-Planck equation is

(3.8)

It can also be expressed in terms of as

(3.9)
Equation (3.9) is equivalent, aside from the term in ,
to an expression derived by Brown [33] for the similar reversal
of a macrospin by a magnetic field.

A. Approximate Analytical Solutions

We can obtain an approximate analytical solution to (3.8) in
the limit in which is small. In this limit, (3.8) becomes

(3.10)
To solve this equation, we will use the ansatz

. and can be related
through the normalization condition

(3.11)

which implies that . Substitution of this ansatz
into (3.10) yields the following equation for :

(3.12)

where .
The solution to (3.12) subject to the boundary condition

for (where the initial thermal stability
factor is possibly different from that , during the reversal
process, e.g., due to heating, field induced strains, etc.) is

(3.13)

so that the distribution function is approximated as

(3.14)

with given by (3.13).
Note that (3.13) predicts that at large times the

distribution will become independent of and decay as

(3.15)
where the last form assumes .

The nonswitched fraction in this approximation, calculated
by assuming that an element switches at , is

(3.16)
The accuracy of this approximation is tested in the next sec-
tion by comparison to numerical solutions of the Fokker-Planck
equation that do not invoke the small-angle approximation.

IV. NUMERICAL AND APPROXIMATE ANALYTICAL SOLUTIONS

TO AXIALLY SYMMETRIC FOKKER-PLANCK

Equation (3.9) for is solved on the line ,
where . The usual starting distribution is
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Fig. 1. Probability distribution for different reduced times (numerical solution
to equation (3.8) or (3.9) for � � �� and � � ���).

(4.1)

or

(4.2)

where the Heaviside function constrains the initial
distribution to the well near . Evolving (3.9) forward in
time gives the curves shown in Fig. 1, for the case
and . Initially, the probability is confined to the well at

. By reduced time , however, the distribution on
a semi-log plot becomes relatively flat [as predicted by (3.15)],
except for a sharp peak in the final state at the right. The flat
value decreases exponentially as the probability flows into the
final state near . At long times, the distribution function
becomes

(4.3)

where is a normalization factor. This function gives the
parabola labeled on the right side of Fig. 1. It provides
a particular solution to (3.8), for which .
Equation (4.3) is easily understood from (2.5), which implies
that the spin-torque current, insofar as it enters the equation for

, acts like an additional axial magnetic field. Thus the
Fokker-Planck equation for perpendicular spin-torque systems
is equivalent to the 1-D diffusion equation for a particle in a
potential of form

(4.4)

The solution (4.3) is the spin-torque analog of an ex-
pression derived by Brown [33] for the steady state solution to
the Fokker-Planck equation for a Stoner-Wohlfarth element in
an easy axis field.

Fig. 2 compares the numerical solution shown in Fig. 1 with
the approximate solution (3.13), which certainly is not valid in

Fig. 2. Probability distribution within the well centered at � � � for reduced
currents [see (2.7)] (a) � � ��� and for (b) � � �. Dashed lines are approximate
solution of (3.13). For both calculations, thermal stability factor is � � ��.
Reduced time [see (2.6)] is labeled by � .

the well centered at , since it is based on an expansion
around the bottom of the well at . For this reason, we
show in Fig. 2 only the part of the distribution between
and . The surprising prediction [see (3.15)] that the
distribution becomes approximately independent of for large
values of is obvious in both the numerical solutions
and the approximate analytic solutions. The fraction of that
has not switched can be obtained by integrating over this part of
the probability distribution function.

The approximate analytical solution becomes more accurate
as the reduced current is increased, as can be seen by com-
paring Fig. 2(a) with (b). Note that the approximate solution
consistently overestimates the probability distribution in the
well at . This is understandable because the actual
equation of motion for , is
approximated by setting to 1, which significantly under-
estimates the relative amount by which the spin-torque term
exceeds the damping term, especially when . Thus, the
frequency of write errors is less than would be predicted by
the approximate analytical model, especially for low values of

.
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Fig. 3. Distribution functions for thermal stability factor � � �� for reduced
time ranging from 0 to 20. Time is measured in units of FMR period divided by
damping parameter [see (2.6)].

Fig. 4. Nonswitched probability, soft-error rate for writing using a thermal sta-
bility factor of (a) � � �� and (b) � � �� as a function of time for several
values of the reduced current. Current � is measured in units of � , critical cur-
rent for switching and time is measured in units of FMR period divided by ��
times damping parameter. Solid lines are solutions of the Fokker-Planck equa-
tion. Dashed lines represent approximate analytic solution [see (3.16)].

Fig. 5. Nonswitched probability, WSER using a thermal stability factor of� �

�� as a function of time for several values of the reduced current �, measured
in units of � , critical current for switching. Time is measured in units of FMR
period divided by �� times damping parameter. Smooth solid curves are solu-
tions of Fokker-Planck equation. Jagged lines composed of discrete points are
a result of Landau-Lifshitz simulations of a macrospin including a thermal field
[44] as described in the text.

A. Effect of Thermal Stability Factor

Fig. 3 shows the time evolution of the distribution function
for a thermal stability factor , one half the value used
in the comparable calculation shown in Fig. 1. The initial and
final distribution functions are noticeably broader as would be
expected. Somewhat surprisingly, the effect of this large reduc-
tion in on the distribution functions at intermediate times is
relatively modest. There is a relatively small (on this exponential
scale) shift downward in the distribution function. The spacing
of the curves for different times hardly changes. The implica-
tion of this result is that soft error rates for writing associated
with nonswitching events should be relatively insensitive to the
thermal stability factor.

Fig. 4(a) shows the WSER as a function of time for five values
of with fixed at 60 (solid lines). Similar results are pre-
sented for in Fig. 4(b). For comparison, we also show
in both figures the WSER calculated from the analytic approx-
imation (3.16). The analytic approximation overestimates ,
especially for low values of , but accurately represents the
exponential decay which is well described by .
It can be seen that has only a small effect on the WSER.

In Fig. 5, we show a comparison between the numerical solu-
tion of the Fokker-Planck equation and macrospin simulations
including a thermal field [44]. Both calculations were carried out
for and for and . In the simulations, for
each value of current , 10 000 realizations of the system evo-
lution were computed with independent initial conditions and
thermal noise. The probability shown in Fig. 5 is proportional
to the number of these that remain unswitched at a particular
time—thus the discrete downward steps visible in the lower part
of the figure occur each time one or more of the realizations is
observed to switch.

The fact that we found no statistically significant difference
between the two approaches is consistent with their mathe-
matical equivalence and supports our assertion that Brown’s
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Fig. 6. Dashed lines are nonswitched probability as a function of reduced time
for the case that initial angle is ��� ����� � �	 . Solid lines are numerical
solutions to Fokker-Planck equation for an initial thermal distribution. Panels
(a) and (b) show effect of an initial canting angle for thermal stability factors of
60 and 20, respectively.

derivation of the Fokker-Planck equation [33] from the sto-
chastic Langevin equation for the analogous problem in which
the switching is induced by a magnetic field has been success-
fully generalized to include current induced spin torques.

B. Effect of Initial Canting Angle

Since we speculate that the exponentially decaying tail in
the nonswitched probability arises from the fact that the spin
torque vanishes at , we investigated the effect of an ini-
tial canting angle on the switching probability. Fig. 6 shows the
nonswitched probability as a function of the reduced time for
three values of the reduced current calculated with two types
of initial distribution. In one case (dashed lines) the initial dis-
tribution is very tightly concentrated at a particular value of

. In the other case (solid lines) the initial distribu-
tion is a thermal distribution centered at the origin similar to the
calculations shown in Fig. 4. From the figure, it can be seen that
the nonswitched fraction is significantly reduced if the initial
distribution is canted, especially if and are both large;
however, the exponential long-time tail persists with the same
decay constant .

For this example, the initial distribution had a maximum value
of of 0.905 and a minimum value of 0.895. For small
values of , the decrease in the caused by an initial
canting angle is smaller than for larger values, because there
is a smaller spin-torque driving term so that the system spends

Fig. 7. Comparison of four approximations for time evolution of� ���, prob-
ability that the element has not switched after reduced time � . FP and AFP indi-
cate, respectively, the numerical Fokker-Planck solution and approximate ana-
lytical solution, based on (3.16). Curves SST and CST indicate, respectively, the
estimation of switching time from initial probability density using deterministic
expressions for switching time given by (2.12) and (2.15).

more time at smaller angles allowing the diffusion term to estab-
lish a population at . This is illustrated in Fig. 6(b) which
shows that an initial canting angle has a much smaller effect for

compared to the case of [see Fig. 6(a)] because
of the larger diffusion term.

C. Comparison With Sun Switching Time Ansatz

An exponential tail in the nonswitched probability was ob-
tained previously by Sun et al. [47] and by He et al. [48] who
postulated that the nonswitched probability could be related to
the initial thermal distribution through the relation (2.12) which
approximately and deterministically relates the initial angle to
the time to switch. Thus, if one assumes that those (and only
those) systems that have an initial angle greater than will
have switched in time, (where we again
use ), one can estimate the nonswitched fraction
at time by integrating over the initial probability distribution
from to

(4.5)

This approximation is shown in Fig. 7 as the dashed curve la-
beled Sun Switching Time (SST) Approximation. An improve-
ment on this approximation can be made by using the exact ex-
pression for the switching time given in (2.14), which is shown
in Fig. 7 as the dashed curve marked Corrected Switching Time
(CST) Approximation

(4.6)

where is given by (2.15). This latter curve is slightly
greater than the approximate solution to the Fokker-Planck
equation that we derived as (3.16) and show as the solid curve
labeled AFP. The full solutions to the Fokker-Planck equation
are given by the solid lines labeled FP.
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The asymptotic forms (for large values of ) for the SST and
CST approximations for are easily obtained since an ana-
lytic expression for (4.6) can be obtained for

(4.7)

and

(4.8)

These may be compared with the nonswitched fraction obtained
from the approximate analytic solution [from (3.15)]

(4.9)

Comparing the three approximate solutions among themselves
and with the numerical Fokker-Planck solution, we can remark
that the “SST” and the “AFP” results are similar in that both
are based on a linear approximation for . Thus, both approx-
imate as and as 1. They differ in that the SST
approximation neglects diffusion during the switching process.
The “CST” and the full Fokker-Planck solution do not make
the linear approximation, but CST like SST neglects diffusion
during the switching process. Thus, SST and CST become more
accurate approximations to the Fokker-Planck (FP) solution as

becomes larger. It is clear that the WSER is less for CST
than for SST and is less for FP than for AFP because the linear
approximation reduces the increase of polar angle with time in
(2.5). It is also clear that the WSER is less for AFP than SST
and is less for FP than for CST, because diffusion during the
switching process will reduce the probability of finding a system
at the “stagnation point” at where the switching torque
vanishes.

Somewhat counterintuitively, the linear approximations (SST
and AFP) become more accurate as the overdrive
becomes larger. This is due to the fact that for larger , the dif-
ference between and in (2.5) becomes relatively
less significant and because the flow term in the Fokker-Planck
equation (3.4) becomes relatively more important compared to
the diffusion term.

Physically, the expressions (4.5) and (4.6), which are based on
deterministic trajectories from the initial distribution, are equiv-
alent to solving the Fokker-Planck equation without the diffu-
sion term (i.e., assuming zero temperature) starting from an ini-
tial finite temperature distribution determined by . Thus the
distribution function corresponding to the SST approximation
can be obtained from (3.13) and (3.14) with the substitutions

and in (3.13)

(4.10)

This result is easily confirmed because the assumed determin-
istic relation between and the initial given
by (2.11), allows us to relate the distribution function at
to that at any through

(4.11)

so that in this approximation, using [from
(2.12)] we have

(4.12)

which is identical to (4.10). More generally, it can be shown
using (4.12) that in the deterministic or “no-diffusion” approx-
imation (e.g., SST or CST), if the initial distribution is propor-
tional to for small values of , the unswitched fraction will
decay at long times as . It is clear, however,
both from the calculations shown in Fig. 6 and from the ana-
lytical approximations of Section V as follows, that even if the
initial distribution vanishes near , the Fokker-Planck so-
lutions give a nonswitched fraction that decays at long times as

. If the SST approximation were applied for the sit-
uation described by Fig. 6 with an initial canting angle of 0.451
radians, it would yield a step function for which would drop
abruptly from 1 to 0 at .

V. PERTURBING WITH IN-PLANE COMPONENTS OF

PINNED-LAYER MAGNETIZATION OR EXTERNAL FIELD:
STAGNATION POINTS

Fig. 6 shows that the WSER (probability of not switching)
can be decreased by moving the initial distribution away from

. The reason for this is that there is no spin-transfer torque
when the magnetization of the free layer is collinear with that of
the pinned layer—switching must wait for a thermal fluctuation.
We call such a free-layer direction a “stagnation point”. Clearly,
the precession term and the damping term

vanish for along , and when is along
, the spin torque term does as well.

But if the pinned layer magnetization is not along the easy axis
(i.e., ) the stagnation points of the terms are different, and
we might hope that the total torque does not vanish anywhere,
eliminating this problem of slow switching.

However, there is a well-known theorem of topology that
eliminates this hope. The “Hairy Ball Theorem”, proved by
Brouwer in 1912 [49], states that any continuous tangent field
on an even-dimensional sphere (such as the 2-D sphere on
which lies) must vanish at some point on the sphere. Each
of the torque terms that enter (1.3) are tangent fields because
they are perpendicular to . They are also continuous (in fact
infinitely differentiable), which explains why each has a stagna-
tion point—but their sum is also a continuous tangent field and
therefore has a stagnation point. The theorem guarantees only
the existence of the stagnation point, but we will see visually
how it arises and where on the sphere it occurs in Fig. 8.

A. WSER for Tilted Pinned Layer From Linearized
Fokker-Planck Equation

To calculate the WSER for the case of the pinned layer mag-
netization not collinear with the easy direction of the free layer
or an in-plane component of the magnetic field, we will gen-
eralize the linear approximation discussed in Section IV previ-
ously, by breaking the rotational symmetry that allowed us to
describe the switching process using only the polar angle . In
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Fig. 8. Stagnation point for case of low damping �� � �� and � � � � �.

case there is any concern that our linearization process may gen-
erate the stagnation point or put it in the wrong place, we provide
the (nonlinearized) equations that determine the position of the
stagnation point in Appendix A.

We linearize about the normal direction , working only
with the transverse component of the unit vector , which we
denote by

(5.1)
where the error in replacing by 1 is second order. Explic-
itly, can be written in terms of the polar and azimuthal angles
by , to linear order (neglecting terms
of order and higher). Effectively, we are approximating the
region around the “north pole” of the -sphere as a plane.

We allow a tilted pinned magnetization direction, which we
write as

(5.2)

It will not be necessary to linearize in ; the tilt angle can be
as large as desired. We also introduce a dimensionless in-plane
field (whose magnitude is the tilt angle in radians) defined
by

(5.3)

The approximation that is small so that we can neglect terms
proportional to and higher also allows us to approximate

and so that the Landau-
Lifshitz-Gilbert-Slonczewski equation (1.3) becomes

(5.4)

Note that in the absence of field tilt and spin torque, the first
term describes precession about the z-axis with a frequency

and the second describes dissipation
at a rate times this frequency. The change of time variable

to (2.6) removes this rate and leaves us with a dimensionless
equation

(5.5)

The coefficient of the triple product will be recognized as the
dimensionless current defined in (2.7)

(5.6)

The last term is the field-like part of the current (with a small
correction proportional to ). We will denote its coefficient by

(5.7)

The cross products involving and in
(5.5) can be expanded using and dropping terms
higher than linear in (or )

(5.8)

Finally, we omit out-of-plane contributions to because
changes in would not be consistent with our linear
approximation for . These approximations yield the following
Landau-Lifshitz equation for the in-plane linearized magnetiza-
tion

(5.9)

where

(5.10)

and

(5.11)

The sign of is chosen so that it is positive for switching. For a
perpendicular pinned layer and in the absence of
applied axial field , we have . This is sometimes
called the “overdrive” since it is the relative amount of current
in excess of the critical current. All of the azimuthal-symmetry-
breaking effects are contained in the 2-D “tilt” vector

(5.12)

The Fokker-Planck equation for the linearized magnetization
is

(5.13)
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where the divergence is respect to the vector , and the prob-
ability current is

(5.14)

To solve this equation, we generalize our ansatz (Section III)
to a Gaussian distribution with a drifting center and a width
parameter

(5.15)

Computing the necessary derivatives with respect to the 2-D
vector

(5.16)

(5.17)

(5.18)

(5.19)

and substituting into the Landau-Lifshitz equation (5.4) gives
an expression with various powers of . The coeffi-
cients of each power must match, giving for powers 0, 1, and 2
respectively

(5.20)

(5.21)

and

(5.22)

Note that (5.21) is exactly the deterministic part of the linearized
LLG equation (5.9).

As in Section III, we can relate to the temperature by in-
sisting that in equilibrium ( , due to damping) the Boltz-
mann distribution is a time-independent solution

(5.23)

As in (3.13), it is convenient to make a distinction between the
initial thermal distribution, with thermal stability factor, , and
the thermal stability factor during switching . Then solving
(5.22) with the initial condition gives an in-
creasing width

(5.24)

Normalization of the probability (5.15) requires that

(5.25)

which is easily seen to be consistent with (5.20) and with (3.11)
when allowance is made for the factor of needed to account
for integration over the azimuthal angle as well as the polar
angle in the present context.

To understand the motion of the drifting center, (5.21),
note that if there is no tilt simply precesses about
the origin in a circle of some radius (Fig. 8) with frequency

. The velocity at the top of the orbit is
with magnitude .

We can use Fig. 8 to visualize why there is a stagnation
point—for simplicity, let us ignore damping, which is smaller
by a factor of . If we add a tilt , pointing to the right, (5.21)
indicates that this adds to the velocity, exactly canceling the
precession velocity if . Thus this is the stagnation
point at which the magnetization will remain stationary,
and . If the tilt arises from a pinned-layer
tilt, , so ; the stagnation point
tilt is much less than the pinned-layer tilt. It is not hard to see
that if starts somewhere else, it will precess around this
stagnation point (dashed circle). If we now take damping into
account, we can find the stagnation point by setting the torque
(5.9) equal to zero and solving for : the stagnation point is
slightly modified to

(5.26)

The displacement of the drifting center from the stagnation
point, obeys [from (5.21)] the simple equation

(5.27)

which describes a vector that rotates at the rate and expands
at the rate

(5.28)

where

(5.29)

is a unit vector rotating about the z axis,
is the initial displacement from the stagnation

point, and the initial phase angle is

(5.30)

Thus the drifting center spirals outward from the stagnation
point

(5.31)

To describe the case of a canted pinned layer and an initially
perpendicular free layer, we would take initial position of the
drifting center to be at the origin, so . However,
these equations can also describe the linear approximation to
the case of an initially canted free layer, in which case is the
canting angle. Our final exact result for the probability density
(within this linear approximation for ) is given by (5.15),
together with (5.24), (5.25), and (5.31).
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To estimate the nonswitching probability , we choose
an angle (measured from the stagnation point, which is
typically almost the same as measuring it from the origin) be-
yond which we will assume switching becomes inevitable (in
Section IV, we took this to be ). After most systems have
switched (i.e., in the long time tail of ) we can neglect 1
in comparison with the exponential growth factor , so the
width becomes

(5.32)

Because this is much larger than the switching angle , the
probability density is nearly constant over the switching circle,
and we may approximate the integral by the value at times
the area of the circle. From (5.31), the
in (5.15) is , giving a general result for the nonswitching
probability at long times

(5.33)

B. Canted Pinned Layer

In the case of a pinned magnetization tilt , the initial dis-
placement from the stagnation point is given by

(5.34)

If we assume (as previously) that , the long time WSER
becomes

(5.35)

Note that this differs from our earlier analytic result for the
axially symmetrical case (tilt ) only by the last exponen-
tial factor . We can relate this to a sim-
pler estimate obtained by considering only the effect of shifting
the stagnation point away from the origin. By this estimate we
simply gain a factor of the initial thermal probability of being
at the stagnation point, the Boltzmann factor, . In
the limit of high overdrive , when diffusion is negligible, this is
exactly correct. The additional term in (5.33) increases
the nonswitching probability by taking into account diffusion
back to the stagnation point of systems that do not start there.
In general, as discussed previously in Section IV, we expect a
linearized theory to work best for high overdrive. Fortunately,
to get a reasonably low nonswitching probability it is normally
necessary to use a fairly high overdrive.

C. Canted Initial Magnetization

As an additional test of the linearized theory, we can com-
pare to numerical solutions of the Fokker-Planck equation for
the case of a definite initial angle. Then the drifting center is
initially at and the spread of the initial angle
(proportional to ) is zero. In this case, , because
we are not considering a canted free layer. Thus (5.33) gives the

long time tail of the nonswitching probability, with and

(5.36)

However, in this case we can get more than just the long time
tail. Using equations (5.15), (5.24), and (5.25) with ,
we have

(5.37)

with

(5.38)

where we now include the “ 1” since we no longer assume is
large. We can evaluate using (5.31) with
as

(5.39)

Thus the distribution function in our linear approximation is

(5.40)
We estimate the nonswitched fraction as before by integrating
over the upper-half of the sphere. The integral over the az-
imuthal angle gives a modified Bessel function

(5.41)

which allows us to write the distribution as a function of time
and polar angle as

(5.42)

The nonswitched fraction is given by

(5.43)

This approximation is plotted as the dashed lines in Fig. 9 and
may be compared to the solid lines which are solutions to the
Fokker-Planck equation without linearization. At long times,

, which restricts the integral at the right
in (5.43) to the region around where the integrand is unity,
and (5.43) reduces to our previous expression (5.36) (with the
switching angle set to ) for the long time tail. This ap-
proximation is shown as the dotted line in Fig. 9.

The key practical question is whether the stagnation point can
in fact be shifted out (or mostly out) of the initial thermal prob-
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Fig. 9. Nonswitched fraction for reduced current, � � �� ���� and � (� �

�� ���� �). Solid lines are numerical Fokker-Planck solutions; dashed lines are
obtained from linear theory (5.43). Dotted lines are long time approximation to
linear theory (5.36).

ability distribution. Simplifying to the case and dropping
terms of relative size or F, the tilt-dependent exponential factor
in (5.35), is

(5.44)

Even if the tilt angle is large and estimating ,
, even if is as high as 60, the gain factor is still

negligible, . We conclude that it is very difficult
to shift the stagnation point by tilting the pinned magnetiza-
tion. It appears from (5.44) that this is because of the factor ,
which may seem surprising because the stagnation point shift

arises from the balance between the tilted pinned magne-
tization spin torque and the precession term, neither of which
involves the damping . However, this is because we have in-
corporated the factor of into the dimensionless current ; each
factor in (5.44) is actually just proportional to the physical
current. It is the smallness of the physical current that makes the
gain small. Imposing an in-plane magnetic field may be more
promising—in the context of (5.12), it is enhanced by a factor

. A static bias field does not help, of course, since it will shift
the initial distribution to the stagnation point and we lose the en-
hancement factor involving [the last exponential in (5.33)].
However, if we turn on the field when we turn on the current,
(5.35) is valid with , and there is an improvement factor
in of

(5.45)

which can be substantial—if we set the tilt angle of the total
field to 0.45, with and the factor becomes

.

VI. SOFT ERROR RATES FOR READ DISTURB

Fig. 10 shows the distribution function calculated for
and for as a function of time. It is assumed that a

current is applied for reading in order to determine whether the
device is in a low (typically parallel moments of free and pinned
layers) or a high (anti-parallel moments) resistance state. The
applied current has a nonzero probability of causing or assisting
a switching event. Spin-torque memory devices must be capable

Fig. 10. Probability distribution as a function of time for� � �	 and � � 	��.

of switching from anti-parallel to parallel and from parallel to
anti-parallel when information is being stored. Typically, the
spin-torque efficiency is somewhat higher for anti-parallel to
parallel switching than for parallel to anti-parallel [10], [45],
[46], thus anti-parallel to parallel switching is usually easier.
For reading one has the freedom to choose the current direction
and thus one can use the current direction that stabilizes the
anti-parallel configuration, i.e., electrons flow from free layer to
pinned layer, thereby minimizing the probability of accidental
switching into the parallel state.

Fig. 11(a) and (b) shows the calculated read soft error rate
(RSER) for and values of the reduced current
between and . The solid lines represent the
numerical solutions to the Fokker-Planck equation. The dashed
lines represent an approximate solution to the Fokker-Planck
equation obtained by Brown for the case of a Stoner-Wohlfarth
particle in an external magnetic field. We can apply his result to
our case because of the correspondence between the spin-torque
current and the applied magnetic field established in (2.5).

The switching probability is observed to increase very rapidly
initially, and then, after , the rate of increase slows and
the switching probability is observed to increase linearly at a
rate that increases with . This can be understood in terms of a
rapid equilibration within the well at for fol-
lowed by Brown-Kramers hopping over the energy barrier. The
initial equilibration occurs because the effective energy func-
tion within the well changes when the current is applied. The
Brown-Kramers approximation [33]–[35] to the switching prob-
ability is linear in

(5.46)

The generalization of Brown’s original derivation to include
spin-torque is given in Appendix B. It can be seen from Figs. 9
and 10 that (5.46) provides an upper limit for the switching prob-
ability and that it significantly overestimates the switching prob-
ability for reduced times less than 10. Such times may be of
interest for spin-torque devices, for example if and

, this would correspond to 6 ns.
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Fig. 11. Calculated RSER for (a) � � �� and (b) � � ��. Solid lines are
solutions to Fokker-Planck equation. Dashed lines were calculated using (5.46).

VII. CONCLUSION

In summary, we investigated spin-torque switching for de-
vices in which the magnetization of the pinned and free layer
is perpendicular to the plane of the layers, treating the free layer
as a macrospin. Our investigation emphasized the time-depen-
dent probability for not switching when the applied current ex-
ceeds the critical current for switching and the probability for
switching when the applied current is significantly below the
critical current for switching. The former case determines the
WSER and the latter case determines the RSER. The Fokker-
Planck equation was solved for the switching distribution in
the presence of random thermal fluctuations. Results were pre-
sented in terms of reduced currents and reduced time so that ef-
fectively all relevant cases are represented in the figures. We also
provide approximate analytical formulas that can be used to esti-
mate the RSER and WSERs. For axially symmetric macrospins
we find that the spin-polarized current enters the Fokker-Planck
equation in essentially the same way as an axial magnetic field,
allowing previous results derived for magnetic field induced
switching to be used to describe current induced switching. For
a perpendicular pinned layer and a free layer with net perpen-
dicular anisotropy we find that the WSER decays at long times
as , where is defined in term of the critical current

for switching, as , and . We
relate this long time decay to the lack of spin-torque when the
pinned and free layer magnetizations are collinear (stagnation
point). We also investigated the effects of a canted pinned layer
and found that it shifted the position of the stagnation point away
from the perpendicular direction, but the amount of this shift is
smaller by a factor of approximately (Gilbert damping rate)
than the tilt of the pinned layer. Thus the canted pinned layer
only increases the long time tail decay rate by a small amount
[see (5.44)].

To investigate the RSER, we solved the Fokker-Planck equa-
tion for values of the current that were less than the critical
current for switching. We also generalized the Brown-Kramers
low-field expression for field switching to include the case of
current induced switching. We found that it overestimates the
RSER for very short read times.

APPENDIX A
POSITION OF STAGNATION POINT

In this appendix, we prove that there is a stagnation point
even if we do not linearize the LL equation. A stagnation point
exists if, for some magnetization direction , the torque in (1.3)
vanishes; using the notation of (2.1), this gives

(A.1)
(note that in (2.1) this was replaced by ; here we assume
an arbitrary pinned-layer direction.) For simplicity, we have
omitted the external field, the field like term, and higher order
terms in . They can be included at the cost of a slightly more
complicated notation. This equation involves three vectors,

, , and . The first two of these
vectors are orthogonal to each other and all three are orthogonal
to . Thus the 2-D space orthogonal to will be spanned by
the two orthogonal vectors, and . This
allows us to express the third vector in terms of the first two as

(A.2)

Since

(A.3)

we have

and (A.4)

Thus a stagnation point will exist if, for some ,

(A.5)
which implies .

Expressing in terms of polar coordinates, we have

(A.6)
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Without loss of generality we can assume that the in-plane com-
ponent of is in the direction, so that

(A.7)

Then, we have

(A.8)
which leads to

(A.9)

These two equations determine and , the direction of ,
for which the torque vanishes.

If the pinned layer magnetization is completely in-plane
( , ), the (A.9) for and become
particularly simple

(A.10)

with solution

(A.11)

For a general angle , we can take advantage of the fact that
is normally 1, which allows us to approximate (A.9) by

(A.12)

which leads to

(A.13)

This is consistent with the solution obtained in Section V. Nu-
merical solutions of (A.9) were well represented by the lin-
earized estimate (A.13) for reasonable values of and .

APPENDIX B
DERIVATION OF GENERALIZED BROWN-KRAMERS

HIGH-ENERGY BARRIER FORMULA IN PRESENCE OF SPIN

TORQUE

In this appendix, we present an approximate solution to the
Fokker-Planck equation for the case in which the current is less
than the critical current for switching. The approximation is
valid in a limit in which the distribution function has come to
quasi-equilibrium within each of two minima in the effective
energy, but the total density in the two wells is not in equilib-
rium. The development follows closely Brown’s treatment [33]
of the analogous problem for field induced switching.

Fig. 12. Effective energy function for values of �� � between 0 and 1.

The Fokker-Planck equation is given by (3.8)

(B.1)

where

(B.2)
For very long times the system comes to equilibrium;

, and . Using the latter result we
have .
Integrating from to yields

(B.3)

or

(B.4)
According to this result, the equilibrium distribution is appro-
priate to an effective energy function that has been modified
from to

by the spin polarized current and the applied field.
Fig. 12 has minima at and and a maximum at

if .
We now consider the case for which there is a maximum in

the effective energy function and the current pulse
has been applied long enough for local equilibrium to be estab-
lished in the vicinity of the bottom of the two wells, but there
has not been sufficient time for the distribution to be equilibrated
between the wells. If we assume that the effective energy func-
tion in the vicinity of each minimum is given by (B.4), we can
relate the total probability of being in either well to the value of



BUTLER et al.: SWITCHING DISTRIBUTIONS FOR PERPENDICULAR SPIN-TORQUE DEVICES 4699

the distribution functions at the minima. For the well at ,
we have

(B.5)
and for the well at

(B.6)

Here, should be large enough and small enough that al-
most all of the distribution on the respective sides of the max-
imum are contained within the ranges and

, respectively. We also require that be less than the
angle for which the effective energy is a maximum and be
greater .

We can approximate the integrals in (B.5) and (B.6) by ex-
panding the effective energy about the respective minima to
order , approximating by and extending the range of
integration to infinity, yielding

(B.7)

Because equilibrium has not yet been established between the
wells, there must be a current that flows between them. If we
assume that there is no appreciable accumulation of the particles
in the region between and , we can calculate the current
flowing between the wells. We concentrate on the interval

. By assumption, for this region. This
implies that is constant in this region

(B.8)

This may be written as

(B.9)
Multiplication of both sides by allows us to inte-
grate the left-hand side between and

(B.10)

or

(B.11)

Using the assumed variations of within the two wells, we have

(B.12)

The argument of the exponential has a maximum at
. Expanding the argument about this maximum and ap-

proximating by its value at the maximum, we have

(B.13)
Using (B.7), we have

(B.14)

For the case where is still very small, the switched fraction
will be given by

(B.15)
This may be written as

(B.16)
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