
Computing Network Reliability Coefficients∗

Isabel Beichl and Elizabeth Moseman
National Institute of Standards and Technology

Gaithersburg, MD

Francis Sullivan
Center for Computing Sciences

Bowie, MD

May 4, 2011

Abstract

When a network is modeled by a graph and edges of the graph remain
reliable with a given probability p, the probability of the graph remaining
connected is called the reliability of the network. One form of the reliability
polynomial has as coefficients the number of connected spanning subgraphs
of each size in the graph. Since the problem of exact computation is #P-hard,
we turn to approximation methods. We have developed two methods for
computing these coefficients: one based on sequential importance sampling
(SIS) and the other based on Monte Carlo Markov chain (MCMC). MCMC
uses a random walk through the sample space while SIS draws a sample
directly. There is not much theory available on the SIS method; however, this
method is fast. In contrast, MCMC has a great deal of theory associated with
it and is thus a more widely used and trusted method.

In order to properly use MCMC, two quantities are needed, the mixing
time, the parameter which governs how long the algorithm must be run to
get independent samples, and the fugacity, the parameter which governs the
acceptance rates of proposed steps in the random walk. Despite the theory
available on MCMC, both of these quantities are very difficult to calculate.
As such, it is common practice to guess values for these parameters. This
work focuses on the effectiveness of SIS in estimating these MCMC parame-
ters in a given instance of the problem. Thus, we use SIS to speed up MCMC.

The study of network reliability begins with a simple sounding question. A
network (such as the power grid) is modeled with a graph, and each edge has a
stated probability of remaining connected. We wish to know the probability of

∗Official contribution of the National Institute of Standards and Technology; not subject to copy-
right in the United States.

1

every vertex being connected. Unfortunately, as with many other simple sounding
problems, we have yet to find a simple solution. This problem has been shown to
be #P-hard[13], roughly meaning that almost everyone has lost hope of finding a
simple solution. However, some things are known about reliability.

The formulation of the problem examined here begins with a graph G =
(V,E) and a probability, p, that an edge e ∈ E is reliable. We adopt the conven-
tion that |V | = n and |E| = m. Then the reliability of the graph is a polynomial
in p known as the reliability polynomial. This polynomial may be expressed as

R(G; p) =
m−n+1∑

k=0

fk pm−k(1− p)k

where the numbers fk for 0 ≤ k ≤ m − n + 1 are the number of connected
spanning subgraphs H ⊆ G with m− k edges. Since we are only concerned with
spanning subgraphs, we will frequently identify a subgraph H with its edge set
and take the vertex set to be V . The size of H or |H| represents the number of
edges in H , since we know the number of vertices to be n.

For a comprehensive study of the subject of network reliability, see Colbourn[6],
or the more recent survey of Chari and Colbourn[5]. This work gives only a brief
overview of what is known. Several approximation methods for computing the
value of R(G; p) at a given value of p are known, the best known algorithm being
due to Karger (see [9], [10]), which bypasses the computation of the coefficients
fk. Here, we focus on this computation, which is of independent interest. The
work of Ball and Provan[1],[2] gives polynomial time bounds on these coeffi-
cients. For exact computation, Ball and Provan also give a polynomial algorithm
to compute fc, where the graph is c − 1-connected. This is improved by Ra-
manathan and Colbourn [14] to calculate fc+k for any fixed k, but although poly-
nomial this algorithm is still expensive. For the coefficients with higher indices,
fk with k closer to m− n + 1, the value fm−n+1 has long been known using the
Kirchhoff formula for the number of spanning trees, but very little is known about
other nearby coefficients. Myrvold [12] gives a polynomial time algorithm for
computation of fm−n in the case of planar graphs, but it has limited applicability
in more general graphs. With this in mind, we turn to approximation methods.

As with other counting problems, one approach to approximating fk is via
Monte Carlo methods. A direct sampling approach was proposed by Colbourn et
al [7]. In this method, a sample is created by selecting a random spanning tree
and then adding a random subset of edges. A second Monte Carlo approach is
to to create a Monte Carlo Markov Chain (MCMC), and this approach has been
considered[4]. In this method, a random walk on the sample space is constructed
and samples are taken after a fixed number of steps. The number of steps between
samples, known as the mixing time, must be sufficient to achieve a distribution
that is close enough to the steady state distribution. For this problem, utilizing
the known general approaches to bounding the mixing time on has so far defeated

2

all theoretical attempts. Another approach to this type of problem is importance
sampling[11], but Stockmeyer’s results on the variance of this method[16] have
drawn attention away from it. However, two of the present authors developed an
algorithm for this problem using this method with reasonable results[3].

In this paper, the focus is on combining the results from the importance sam-
pling algorithm with the more tried and true MCMC method to get results that
are accepted at a much faster rate than might otherwise be the case. In Section 1
we outline the MCMC algorithm used to get our final results. Section 2 gives the
method for calculating the mixing time of the MCMC. Since many of the theoret-
ical aspects of the MCMC are still open, in Section 3 we give our algorithm for
calculation of the necessary parameters. We finish in Section 4 with the results of
some numerical simulations using the algorithms described in the previous sec-
tions.

1 Monte Carlo Markov Chain
The idea of a Monte Carlo Markov Chain is to take a random walk on the objects
of interest, perturbing the current object just a little in order to get the next object.
In this way, after sufficiently many steps, the current object is going to have a
known distribution. This allows us to sample one of the objects of interest from a
known distribution. There are established methods to translate an algorithm which
samples the objects to one which counts the objects[8].

Our goal is to compute fk ≡ fk(G), the number of connected, spanning sub-
graphs of size m− k of the given graph G = (V,E) when |E| = m. As such, the
objects of interest will be connected, spanning subgraphs of G. We denote the set
of all such subgraphs by S(G) and Sk(G) = {X ∈ S(G) : |X| = m − k}. Our
tool is a MCMC so that the stationary distribution takes the form

πµ(X) =
µm−|X|

Z(µ)

for every X ∈ S(G). The value µ is a positive real parameter, the fugacity, which
will be specified later and Z(µ) is the partition function defined by

Z(µ) ≡ ZG(µ) =
∑

X∈S(G)

µm−|X| =
m−n+1∑

k=0

fkµk.

Once we have this MCMC, the coefficient fk can be computed from the proportion
of sample subgraphs which have size m − k, so the focus will be on computing
Z(µ) for an arbitrary value of µ.1 Since R(G; p) = Z(1−p

p)pm, computation of
Z(µ) is in a sense more natural than computation of fk, but the two are linked.

1This follows the treatment of monomer-dimer systems in [8]. We therefore skip steps that are
completely analogous to that treatment and focus on the differences.

3

The Markov Chain MS(G, µ) will have transitions from any subgraph X ac-
cording to the following rule:

Algorithm 1 Advancing in the MCMC walk MS(G µ)

Step 1: with probability 1
2 , let X ′ = X; otherwise,

Step 2: select an edge e ∈ E u.a.r. and set

X ′ =

 X − {e} if e ∈ X and this is connected;
X + {e} if e /∈ X;
X otherwise;

Step 3: go to X ′ with probability min{1, µ|X|−|X′|}.

The idea of the transition rule is mostly in Step 2. Here, we select an edge
uniformly at random. It may or may not be in our current subgraph. If it isn’t,
we add the edge, and if it is, we try to remove it. This removal could cause a
problem, disconnecting the subgraph, but we won’t remove it in this case. Step
3 adds a Metropolis rule to adjust the transition probabilities. With µ = 1, we
always move to X ′ in Step 3, but other values of µ decrease the probability of
moving to larger (when µ < 1) or smaller (when µ > 1) subgraphs. It is left to the
reader to check that MS(G, µ) is ergodic with stationary distribution πµ. In order
to calculate Z(µ̂), we select a sequence 0 = µ0 < µ1 < µ2 < · · · < µk ≤ µ̂.
This sequence may be chosen arbitrarily, since the actual values of µi will not
affect the resulting estimate. We then express Z(µ̂) as the product

Z(µ̂) =
Z(µ̂)
Z(µk)

× Z(µk)
Z(µk−1)

× Z(µk−1)
Z(µk−2)

× · · · × Z(µ1)
Z(µ0)

× Z(µ0)

where Z(µ0) = Z(0) = 1.
To estimate the ratio zk ≡ Z(µk−1)/Z(µk), we express zk as the expected

value of the random variable Ek = Ek(X) =
(

µk−1
µk

)m−|X|
, where X is a

subgraph chosen from the distribution πµk
. To verify that Ek has the correct

4

expected value, we calculate

E(Ek) =
∑

X∈S(G)

(
µk−1

µk

)m−|X|

πµk
(X)

=
∑

X∈S(G)

(
µk−1

µk

)m−|X|
µ

m−|X|
k

Z(µk)

=
∑

X∈S(G)

µ
m−|X|
k−1

Z(µk)

=
1

Z(µk)

m−n+1∑
i=0

fiµ
i
k−1

=
Z(µk−1)
Z(µk)

We summarize the algorithm for calculating Z(µ̂) in Algorithm 2.

Algorithm 2 Calculating Z(µ̂)

Step 1: Select a sequence 0 = µ0 < µ1 < µ2 < · · · < µk ≤ µ̂.

Step 2: For each value µ = µ1, µ2, . . . , µk, µ̂, compute as estimate Zi of the
ratio zi by performing Si independent simulations of the Markov Chain
MS(G), each of length mi, to obtain an independent sample of size Si

from close to the distribution πµi . The estimate Zi is the sample mean of

the quantity Ei(X) =
(

µi−1
µi

)m−|X|
.

Step 3: Output the estimate Z =
∏k+1

i=1 Z−1
i .

The number of steps mi to reach the distribution πµi
will be discussed in

Section 2, so the focus of the remainder of the section is on Si, the sample size.
We assert the following proposition is immediate from the considerations in the
appendix to [8]:

Proposition 1.1. Given a bound Var[Ei]/(E[Ei])2 < B on the relative variance
of Ei, if the simulation length mi is sufficient to ensure that the variation distance
of MS(G, µi) from its stationary distribution is at most ε/5Bk, then a sample
size of S = d130Bε−2ke is sufficient to ensure the output variable Z satisfies

Pr ((1− ε)Z(µ̂) ≤ Z ≤ (1 + ε)Z(µ̂)) ≥ 3
4
.

5

Some remarks on the bound B are appropriate at this point. Since Ei only
takes on values between 0 and 1, one choice to bound the relative variance is
Var[Ei]/(E[Ei])2 ≤ Z(µi)/Z(µi−1) = z−1

i . The inequality here is very gener-
ous, so for our algorithm we use an estimate of z−1

i obtained from the SIS method
as outlined in Section 3. For theoretical purposes, however, it is nice to have a gen-
eral bound on this value. We assume that the coefficients fk form a log-concave
sequence2 and that we choose the µi to fit the criteria fi−1/fi ≤ µi < fi/fi+1,
so that Z(µi) ≤ (m− n + 1)fiµ

i
i. This gives the bound

z−1
i ≤ (m− n + 1)

(
µi

µi−1

)i

.

In the numerical simulations, we selected µi ≈ fi/fi−1. A bridge is an edge
whose removal will disconnect the graph. Define 〈gi+1〉 as the mean number of
edges in a subgraph of size m − i which are not bridges. In Section 2, we show
(i + 1)fi+1 = fi〈gi+1〉, so our choice of µi gives

µi+1

µi
≈ 〈gi〉
〈gi+1〉

(
1 +

1
i

)
.

Lemma 1.2. If m > 2n and 〈gk〉/〈gk+1〉 > T then k > m(1− T/2(T − 1)).

Proof. Suppose 〈gk〉/〈gk+1〉 > T . Then

m− k > 〈gk〉 > T 〈gk+1〉 > T (m− n + 1− k − 1)

The first inequality says that k edges have been removed by step k and the last
inequality says that to get to a spanning tree, m−n+1 edges must be removed (of
which k + 1 have already been removed). Re-arranging and using the assumption
n < m/2 gives

(1− T)(m− k) > −Tn

and so
m− k < (T/(T − 1))n < (T/(T − 1))(m/2)

hence
m[1− (1/2)(T/(T − 1))] < k.

This gives us that the value µk/µk+1 will be bounded for early k. For theo-
retical purposes, this bound can be used, but as we shall see in Section 4, even the
smaller bound used in the simulations blows up for later k.

2The sequence f0, f1, . . . , fm−n+1 is conjectured to be log-concave, and there is strong evidence
to support this.

6

2 Aggregated Monte Carlo Markov Chain
One technique for simplifying the mixing time analysis of a Markov chain is to
combine the states. This process is called aggregation. Although the MCMC with
combined states may not have the same mixing time, the mixing time of the new
MCMC is a lower bound on the mixing time of the original. With reasonably cho-
sen states, the transition probabilities of the aggregated MCMC may be computed.

WithMS(G, µ), it is natural to aggregate into exactly m−n+2 states, each of
which consists of all connected subgraphs of a specified size. Additionally, since
we only worry about the size of the sample subgraphs in calculating the random
variables Ek, this is the chain we really care about. This allows us to say that after
waiting for the mixing time in the aggregated MCMC, the distribution of samples
subgraph sizes is close enough to the stationary distribution, so this mixing time
is sufficient.

We denote the set of subgraphs of size m− i by Si(G). Then we wish to com-
pute the transition probabilities, assuming that we are in the steady state. (This
assumption is necessary so that the transition probabilities are constant.) By ob-
serving the MCMC algorithm, we know that P (Si(G), Sj(G)) = 0 if |i− j| > 1.

Algorithm 3
Input: A graph G, a value µ and a total variation ε > 0. Output: The mixing time
m of the aggregated MCMC MS(G, µ).

Step 1: Estimate the values fi for 0 ≤ i ≤ m− n + 1. Call these estimates Fi.

Step 2: Use the estimates Fi to set up the aggregated transition matrix Mµ of
MS(G, µ).

Step 3: Calculate the eigenvalues λ of Mµ. Define λµ = max{|λ| : |λ| < 1}.

Step 4: Output
m = d(1− λµ)−1(lnm + ln ε−1)e

7

For the probabilities P (Si(G), Sj(G)) with |i− j| = 1, we have

P (Si(G), Si−1(G)) =
1
fi

∑
X∈Si(G)

∑
e/∈X

1
2m

min{1, 1/µ}

=
i

2m
min{1, 1/µ}

P (Si(G), Si+1(G)) =
1
fi

∑
X∈Si(G)

∑
e∈Xnot bridge

1
2m

min{1, µ}

=
1
fi

1
2m

min{1, µ}
∑

X∈Si(G)

|{e ∈ X | e not bridge}|

=
1

2m
min{1, µ}〈gi+1〉

where 〈gi+1〉 is the mean number of edges in a subgraph X ∈ Si(G) that are not
bridges. The mean number of non-bridge edges in a graph of a given size seems
difficult to count, but we may analyze it combinatorially. Beginning with the set
Si+1(G) × E, consider the subset {(X, e) | e /∈ X}. The size of this subset is
exactly (i + 1)fi+1 because every subgraph of size m− (i + 1) has (i + 1) edges
that are not in the set. We map (X, e) 7→ X ∪ {e} and we may also measure
the size of our domain by counting the multiplicity of a graph Y ∈ Si(G) in the
resulting image. Since (Y −e, e) is in the set for every e that is not a bridge, Y will
have the same multiplicity as the number of edges in Y that are not bridges and
the average multiplicity will be the expected number of edges that are not bridges.
This gives the size of the subset as exactly (i + 1)fi+1 = fi〈gi+1〉 so

P (Si(G), Si+1(G)) =
1

2m
min{1, µ}(i + 1)

fi+1

fi
.

The aggregated transition matrix is then given by

Mµ =


1−A0 −B0 A1 0 · · · 0

B0 1−A1 −B1 A2 · · · 0
0 B1 1−A2 −B2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1−A` −B`

 (1)

where ` = m − n + 1, Ai = i/(2m) min{1, 1/µ}, and Bi = i fi

2m fi−1
min{1, µ}

for 1 ≤ i ≤ `. Additionally, A0 = B` = 0. We compute the spectral gap, 1−λM ,
where λM is the second eigenvalue of the transition matrix. Then the mixing time
is at most

(1− λM)−1(ln(π(X))−1 + ln ε−1)

where π(X) is the equilibrium probability of the initial state [15]. We will need
to initialize MS(G, µi) in order to assure that each subgraph of a given size is

8

equally likely, but after that this mixing time is sufficient between samples to as-
sure independence. One way to initialize is to repeatedly sample fromMS(G, µi−1)
until obtaining a sample subgraph of size m− k + 1 (an event which occurs with
probability at least 1/m, so we do not expect to have to take many samples before
this occurs) and use this as our initial subgraph. For MS(G, µ1), we may initial-
ize at G, since that is the only subgraph of size m. We then begin in the state
Si−1(G) and π(Si−1(G)) = fi−1µ

i−1
i /Z(µi) ≥ 1/(m − n + 1). Algorithm 3

summarizes this method of calculating mi, the mixing time of MS(G) used in
Step 2 of Algorithm 2.

Careful examination of Algorithms 2 and 3 reveals a conundrum: to calculate
Z(µi), we need the mixing times mi. However, to calculate mi, we need the
values fi which are the coefficients of Z(µi). Which do we do first?

3 Sequential Importance Sampling and How it Helps
To answer the question of the previous section, we will estimate fi first, using a
different method. The method used here is SIS, and is explored in the context of
this problem in [3]. The SIS algorithm is given in Algorithm 4.

Algorithm 4

Step 1: Set a0 = f0 = 1.

Step 2: Build a sequence of subgraphs G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gm−n+1

so that |Gi| = m− i. To form Gi, let ai be the number of edges in Gi−1

which are not bridges. Select e uniformly at random from this set and let
Gi = Gi−1 − {e}.

Step 3: For 0 < k ≤ m− n + 1, output the estimates

fk ≈
∏

0<i≤k

ai

k!

The advantage of this algorithm as opposed to a MCMC algorithm is that it is
very fast. Each time we run through this algorithm, we get a rough estimate of fk

for every k, which is much more information than one sample from the MCMC
will give us, and this enables us to quickly approximate the matrix Mµ.

If the coefficients fk are log-concave, the distribution πµ will output a uni-
modal distribution of subgraph sizes. The peak of this distribution will be with
subgraphs of size m − i where fi+1/fi < µ < fi+2/fi+1. With the SIS algo-
rithm, the ratios of the coefficients will be reasonably well approximated, so we
can quickly tell where any distribution peaks. In addition, if µ = 1−p

p , then we

9

know that the terms fkµk with k > i + 1 are decreasing, so getting good ap-
proximations of the later coefficients is decreasingly important in computing the
reliability.

We may also use SIS to approximate the bound B to be used in calculation
of the sample size. Defining ẑ(µ) =

∑
k Fkµk, we have that Z(µ) ≈ ẑ(µ).

Although we do not have that Z(µi+1)/Z(µi) ≤ ẑ(µi+1)ẑ(µi), using this as a
bound for the relative variance of the random variable Zi is reasonable because
there was already some leeway introduced in calculating that Var[Ei]/E[Ei]2 ≤
Z(µi+1)/Z(µi).3 We summarize the complete process used to calculate fk in
Algorithm 5. This is the algorithm used for the numerical simulations.

Algorithm 5 A complete algorithm for computing an estimate of fk, the number
of connected spanning subgraphs of size m− k in a given graph G.

Step 1: Use Algorithm 4 to obtain m samples F
(1)
k , F

(2)
k , . . . , F

(m)
k of fk for 0 ≤

k ≤ m− n + 1. Let Fk = m−1
∑m

j=1 F
(j)
k be our first approximation of

fk.

Step 2: Define µk = Fk−1/Fk. Use Fi to approximate fi in Mµk
(See Equa-

tion 1) and λk as the second eigenvalue of the resulting matrix.

Step 3: Define ζ(µ) =
∑`

k=0 Fkµk. For each k between 1 and m−n + 1 (inclu-
sive), define

mk =
⌈
(1− λk)−1(m + ln(5m2e/ε))

⌉
, and

sk =
⌈
130ε−2m

ζ(µi)
ζ(µi−1)

⌉
.

Perform sk independent simulations of MS(G, µk), each of length mk,
to obtain a sample Sk of size sk. Then set Zk as the sample mean of Ek =
(µk−1/µk)m−|X| over X ∈ Sk and Ik = |{X ∈ Sk : |X| = m− k}|/sk.

Step 4: Output the estimates

fk ≈
1
µk

k

Ik∏k
i=1 Zi

for each 1 ≤ k ≤ m− n + 1.

3In fact, the exact value of the relative variance is Var[Ek]

(E[Ek])2
=

Z(µ2
k−1/µk)

Z(µk−1)
Z(µk)

Z(µk−1)
− 1.

10

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

coefficient number

%
 E

rr
or

SIS
MCMC

Figure 1: The percentage error of the coefficients for G1 when estimated using
SIS and MCMC methods.

4 Numerical Simulation
The numerical simulations here serve as a proof of concept. In particular, we are
hoping to validate the claims we make about the SIS calculations for the MCMC
parameters. To do this, we need to analyze the fugacities, sample sizes and mixing
times selected. The SIS and MCMC algorithms were programmed in C++ and
initially tried on small graphs. All trials were performed with ε = 1.

We first ran the simulation with G1, a graph of 7 vertices and 15 edges. This
graph is small enough that we were also able to compute exact coefficients fk for
every k. All three methods of computing coefficients, exact, SIS, and MCMC,
were nearly indistinguishable when the vertical axis was logarithmic (necessary
with the large value changes in the fk), so Figure 1 plots the percentage error
in the SIS and MCMC estimates for each k. The values computed are shown in
Table 1.

The value of the coefficients and the error in the coefficients serves as an in-
dication that the algorithm works on the graph G1. However, we wish to more
closely evaluate other indicators of the effectiveness of the algorithm. The first
indicator will be the distribution of sample subgraph sizes for each fugacity µi.
Our selection of µi = Fi−1/Fi is intended to produce a high proportion of sam-
ple subgraphs with m− i or m− i + 1 edges, and other subgraph sizes will occur
less frequently. The distribution of subgraph sizes is shown in Figure 2. From
the figure, we see that our selection does give the desired distribution of subgraph
sizes for every µi.

The second parameter calculated is the mixing time. Figure 2 also serves to
validate the mixing time selection since we see no artifacts that we would ex-
pect to see if the samples were not independent. In addition, for this graph, we
were able to compute exact coefficient values, and from those we could compute
expected distributions for each value of µi. By considering each proportion of

11

Table 1: The resulting coefficients, using SIS, MCMC, and an exact algorithm,
along with the percentage error using each approximation method.

Index Actual SIS % Error MCMC % Error
0 1 1 0.00 1 0.00
1 15 15 0.00 15 0.10
2 105 105 0.00 102 2.73
3 454 454 0.09 450 0.96
4 1350 1350 0.03 1325 1.86
5 2900 2906 0.21 2890 0.34
6 4578 4590 0.26 4493 1.85
7 5245 5200 0.86 5250 0.09
8 4092 4056 0.88 4060 0.80
9 1728 1726 0.13 1702 1.48

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m − i (i = subgraph size)

fr
eq

ue
nc

y

µ
1

µ
2

µ
3

µ
4

µ
5

µ
6

µ
7

µ
8

µ
9

Figure 2: For the graph G1, observed subgraph size frequencies for µi where i
varies between 1 and 9. Each µi was given 130 ∗ m ∗ ẑ(µi)/ẑ(µi−1) samples
where ẑ(µ) =

∑
Fiµ

m−i and µi = Fi−1/Fi and the Fi are taken from SIS.

12

0 0.5 1 1.5 2 2.5
50

100

150

200

250

300

fugacity (µ)

M
ix

in
g

T
im

e

Figure 3: Mixing time against fugacity for G1.

1 2 3 4 5 6 7 8 9
0

5

10

15

Trial Number (i corresponds to use of fugacity µ
i
)

R
el

at
iv

e
V

ar
ia

nc
e

Relative variance bound
Observed relative variance

Figure 4: The relative variance of the random variable Ei, both the observed value
and the bound calculated from SIS. The bound for the relative variance of E9 was
96.

sample subgraph sizes as a sequence of Bernoulli trials, we calculate variance and
standard deviation as well. In this case (this run on the graph G1) we had 71%
of the observed proportions within one standard deviation of the expected propor-
tion. The mixing time depends on both the fugacity (µ) and the underlying graph
(G1). The values computed are shown in Figure 3. These were also compared to
the mixing time if the aggregated transition matrix were computed exactly, but in
all case there was less than 1% error, so we chose not to display both on the graph.

The third parameter calculated is the sample size. This is sufficient when the
observed relative variance of Ei is less than the calculated bound. A comparison
of these values is shown in Figure 4.

In general, we are very happy with the results on the graph G1 and wished to
continue our trials with larger graphs about which we had less information. The

13

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m − i (i = subgraph size)

fr
eq

ue
nc

y

Figure 5: The observed subgraph size distribution on a 5 by 5 toroidal lattice
when subgraphs are selected using MCMC with fugacity µi. Peaks correspond to
increasing values of i from left to right. 24 different fugacities are represented.

distributions of sample sizes from running on a 5 × 5 toroidal lattice (n = 25
and m = 50) and relative variance are shown in Figure 5 and 6, respectively.
In Figure 5, we again see the progression of the peaks of the distribution as i
increases, so that the distribution πµi

peaks around subgraphs of size m − i, and
there are no artifacts that would indicate the samples are not independent. In
Figure 6, we see that the relative variance bounds were again much higher than
the observed relative variance, so our sample sizes were sufficient. Based on the
estimated sample sizes, we determined not to run the MCMC with the fugacities
µ25 and µ26 due to time constraints, but the behavior in the remaining fugacities
and the calculation of the coefficients proceeded as before.

Further trial graphs were selected, with similar results, but these results are
omitted in the interests of space.

5 Conclusion
We have outlined a MCMC method for calculating the coefficients of the reliabil-
ity polynomial. While there is a great deal of room for improvement on the theory
for this algorithm, we make use of an existing method of calculating these coeffi-
cients in order to solve empirically the problems that do not yet have theoretical
solutions. In doing so, we have greatly reduced the running time of the algo-
rithm to something that is manageable for small graphs, achieving improvements
in estimation of fugacities, mixing times, and sample sizes.

With the fugacity, we give an algorithm for selecting fugacities so that no more
than n − m fugacities will completely explore the sample space. The choice of
the fugacities is shown to fill the requirements with no guessing involved.

With the mixing time, we empirically determine the mixing time for each

14

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Trial number (i corresponds to use of fugacity µ
i
)

re
la

tiv
e

va
ria

nc
e

Figure 6: The observed relative variance and calculated bound for the same
MCMC runs.

graph and fugacity, insuring that the minimum possible mixing time is used. The
mixing times selected are demonstrated to be sufficient for the instances studied.

With the sample size, we select a sample size based on a variance bound, but
there is still room for improvement.

Altogether, we feel that this method of accelerating MCMC methods could be
very applicable to other problems. Further research will be focused on developing
SIS methods for other graph theory problems and incorporating the results into
new or existing MCMC algorithms.

References
[1] Michael O. Ball and J. Scott Provan. Bounds on the reliability polynomial

for shellable independence systems. SIAM J. Algebraic Discrete Methods,
3(2):166–181, 1982.

[2] Michael O. Ball and J. Scott Provan. Calculating bounds on reachability and
connectedness in stochastic networks. Networks, 13(2):253–278, 1983.

[3] Isabel Beichl, Brian Cloteaux, and Francis Sullivan. An approximation al-
gorithm for the coefficients of the reliability polynomial. Congr. Numer.,
197:143–151, 2009. Proceedings of the Fortieth Southeastern International
Conference on Combinatorics, Graph Theory and Computing.

[4] Adam L. Buchsbaum and Milena Mihail. Monte Carlo and Markov chain
techniques for network reliability and sampling. In Computational support
for discrete mathematics (Piscataway, NJ, 1992), volume 15 of DIMACS Ser.

15

Discrete Math. Theoret. Comput. Sci., pages 199–222. Amer. Math. Soc.,
Providence, RI, 1994.

[5] Manoj Chari and Charles J. Colbourn. Reliability polynomials: a survey. J.
Combin. Inform. System Sci., 22(3-4):177–193, 1997.

[6] Charles J. Colbourn. The combinatorics of network reliability. International
Series of Monographs on Computer Science. The Clarendon Press Oxford
University Press, New York, 1987.

[7] Charles J. Colbourn, Bradley M. Debroni, and Wendy J. Myrvold. Estimat-
ing the coefficients of the reliability polynomial. Congr. Numer., 62:217–
223, 1988. Seventeenth Manitoba Conference on Numerical Mathematics
and Computing (Winnipeg, MB, 1987).

[8] Mark Jerrum and Alistair Sinclair. Chapter 12: The markov chain monte
carlo method: an approach to approximate counting and integration. In
Dorit Hochbaum, editor, Approximation Algorithms for NP-Hard Problems.
Course Technology, 1 edition, July 1996.

[9] David R. Karger. A randomized fully polynomial time approximation
scheme for the all-terminal network reliability problem. SIAM J. Comput.,
29(2):492–514 (electronic), 1999.

[10] David R. Karger and Ray P. Tai. Implementing a fully polynomial time
approximation scheme for all terminal network reliability. In Proceedings
of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (New
Orleans, LA, 1997), pages 334–343, New York, 1997. ACM.

[11] Donald E. Knuth. Estimating the efficiency of backtrack programs. Math.
Comp., 29:122–136, 1975. Collection of articles dedicated to Derrick Henry
Lehmer on the occasion of his seventieth birthday.

[12] Wendy Myrvold. Counting k-component forests of a graph. Networks. An
International Journal, 22(7):647–652, 1992.

[13] J. Scott Provan and Michael O. Ball. The complexity of counting cuts and
of computing the probability that a graph is connected. SIAM J. Comput.,
12(4):777–788, 1983.

[14] Aparna Ramanathan and Charles J Colbourn. Counting almost mini-
mum cutsets with reliability applications. Mathematical Programming,
39(3):253–261, 1987.

[15] Alistair Sinclair. Improved bounds for mixing rates of Markov chains and
multicommodity flow. Combin. Probab. Comput., 1(4):351–370, 1992.

16

[16] Larry Stockmeyer. On approximation algorithms for #P. SIAM J. Comput.,
14(4):849–861, 1985.

17

	Monte Carlo Markov Chain
	Aggregated Monte Carlo Markov Chain
	Sequential Importance Sampling and How it Helps
	Numerical Simulation
	Conclusion

