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Abstract 

A new technique for combinational logic optimization is described. The technique is 
a two-step process. In the first step, the non-linearity of a circuit – as measured by the 
number of non-linear gates it contains – is reduced. The second step reduces the number 
of gates in the linear components of the already reduced circuit. The technique can be 
applied to arbitrary combinational logic problems, and often yields improvements even 
after optimization by standard methods has been performed. In this paper we show 
the results of our technique when applied to the S-box of the Advanced Encryption 
Standard (AES [13]). 

We also show that in the second step, one is faced with an NP-hard problem, the 
Shortest Linear Program (SLP) problem, which is to minimize the number of linear 
operations necessary to compute a set of linear forms. In addition to showing that SLP 
is NP-hard, we show that a special case of the corresponding decision problem is Max 
SNP-Complete, implying limits to its approximability. 

Previous algorithms for minimizing the number of gates in linear components pro
duced cancellation-free straight-line programs, i.e., programs in which there is no can
cellation of variables in GF(2). We show that such algorithms have approximation 
ratios of at least 3/2 and therefore cannot be expected to yield optimal solutions to 
non-trivial inputs. The straight-line programs produced by our techniques are not al
ways cancellation-free. We have experimentally verified that, for randomly chosen linear 
transformations, they are significantly smaller than the circuits produced by previous 
algorithms. 

Keywords: Circuit complexity; multiplicative complexity; linear component minimiza
tion; Shortest Linear Program; cancellation; AES; S-box. 

Introduction 

Constructing optimal combinational circuits is an intractable problem under almost any 
meaningful metric (gate count, depth, energy consumption, etc.). In practice, no known 
techniques can reliably find optimal circuits for functions with as few as eight Boolean inputs 
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and one Boolean output (there are 2256 such functions). As an example of this, consider 
multiplicative complexity, the number of GF(2) multiplications necessary and sufficient to 
compute a function. The multiplicative complexity of the Boolean function E8, which is 4 
true if and only if exactly four of its eight input bits are true, is unknown [5]. 

In practice, we build circuit implementations of functions using a variety of heuristics. 
Many of these heuristics have exponential time complexity and thus can only be applied 
to small components of a circuit being built. This works reasonably well for functions 
that naturally decompose into repeated use of small components. Such functions include 
arithmetic functions (which we often build using full adders), matrix multiplication (which 
decomposes into multiplication of small submatrices), and more complex functions such as 
cryptographic functions (which are commonly based on multiple iterations of an algorithm 
containing linear steps and one or more non-linear steps). 

This work presents a new technique for logic synthesis and circuit optimization. The 
technique can be applied to arbitrary functions, and yields improvements even on pro
grams/circuits that have already been optimized by standard methods. We apply our 
technique to the S-box of AES1, which, in addition to being used in AES, has been used 
in several proposals for a new hash function standard2 . The result is, as far as we know, 
the smallest circuit yet constructed for this function. The circuit contains 32 AND gates 
and 83 XOR/XNOR gates for a total of 115 gates. We have also applied these techniques 
to the logic embedded in the non-linear components of several candidates to the SHA-3 
competition. The improvements in software performance were significant. 

Our circuits are over the basis {⊕, ∧, 1}. This basis is logically complete: any Boolean 
circuit can be transformed into this form using only local replacements. The circuit op
erations can be viewed either as performing Boolean logic or arithmetic modulo 2 (when 
viewing it the latter way, we will write outputs to be computed as polynomials with mul
tiplication replacing ∧ and addition replacing ⊕). The number of ∧ gates is called the 
multiplicative complexity of the circuit. Connected components of the circuit containing 
∧ gates are called non-linear. Components free of ∧ gates are called linear. Circuits and 
programs for computing Boolean functions can be defined using straight-line programs, 
where each statement defines the operation of a gate or a line in a program. The examples 
in Fig. 1, define two different circuits, and their corresponding straight-line programs, for 
computing the majority function of three inputs, a, b, and c. 

1.1 Combinational Circuit Optimization 

The techniques described here would generally be applied to subcircuits of a larger circuit, 
such as an S-box in a cryptographic application, which have relatively few inputs and 
outputs connecting them to the remainder of the circuit. The key observation that led us to 
our techniques is that circuits with low multiplicative complexity will naturally have large 
sections which are purely linear (i.e. contain only ⊕ gates). Thus 

it is plausible that a two-step process, which first reduces multiplicative complex
ity and then optimizes linear components, leads to small circuits. 

1Our circuit for the AES S-box has already been used as the basis of a software bitsliced implementation 
of AES in counter mode [18]. 

2See http://csrc.nist.gov/groups/ST/hash/sha-3/index.html 
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t1 = a∧b; t2 = a⊕b; t3 = t2∧c; t4 = t1⊕t3; 
u1 = a⊕b; u2 = b⊕c; u3 = u1∧u2; u4 = u3⊕b; 

Figure 1: Two circuits and corresponding straight-line programs for MAJ(a, b, c). 

We have, of course, no way of proving this hypothesis. But the experiments reported here 
support it. Additionally, we have successfully applied the heuristics described in this paper 
to a number of circuit optimization problems of interest to cryptology. These include finite-
field arithmetic and binary multiplication. New records are periodically posted at 
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html. 

1.1.1 First step 

The first step of our technique consists of identifying non-linear components of the subcircuit 
to be optimized and reducing the number of ∧ gates. This reduction is not easy to do. For 
example, it is not obvious how to algorithmically transform one of the two equivalent circuits 
defined in Fig. 1 into the other. 

Classic results by Shannon [26] and Lupanov [19] show that almost all predicates on 
2n 

n bits have Boolean circuit complexity about . Analogous to the Shannon-Lupanov n 
bound, it was shown in [8] that almost all Boolean predicates on n bits have multiplicative 
complexity about 2

n 
2 . Strictly speaking, these theorems say nothing about the class of 

functions with polynomial circuit complexity. However, it is reasonable to expect that, 
in practice, the multiplicative complexity of functions is significantly smaller than their 
Boolean complexity. 

Finding circuits with minimum multiplicative complexity is, in all likelihood, a highly 
intractable problem. However, recent work on multiplicative complexity contains an arse
nal of reduction techniques that in practice yield circuits with small, and often optimal, 
multiplicative complexity [5]. That work focuses exclusively on symmetric functions (those 
whose value depends only on the Hamming weight of the input). 

In this paper we use ad-hoc heuristics to construct a circuit with low multiplicative 
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complexity for inversion in GF (24). (In general, GF (2n) is the field with 2n elements.) The 
technique is described in Section 2.1. 

1.1.2 Second step 

The second step of our technique consists of finding maximal linear components of the circuit 
and then minimizing the number of XOR gates needed to compute the target functions 
computed in these linear components. A new heuristic for this computationally intractable 
problem is described in Section 3.1. 

1.2 The Shortest Linear Program Problem 

We argue below that minimizing the number of XOR gates in the second step is equivalent 
to the Shortest Linear Program problem over GF(2). 

Let F be an arbitrary field and let 

α1,1x1 + α1,2x2 + . . . + α1,nxn
 

α2,1x1 + α2,2x2 + . . . + α2,nxn
 

. . .
 

αm,1x1 + αm,2x2 + . . . + αm,nxn
 

be a set of linear forms where the αi,j ’s are constants from F and the xi’s are variables over 
F. 

Suppose a subcircuit for a linear component in a circuit has xis as inputs and yj s as 
outputs.3 The yj are linear functions of the xis in the field GF (2), so the subcircuit is an 
algorithm for computing the linear forms (the functions the yj s represent) given the xi’s as 
input, in the special case where F = GF (2). 

We consider this question in the model of computation known as linear straight-line 
programs. A linear straight-line program is a variation on a straight-line program which 
does not allow multiplication of variables. That is, every line of the program is of the form 
u := λv + µw; where λ, µ are in F and v, w are variables. Some of the lines are output 
lines; these are the lines where the linear forms in the set are produced. For brevity, we will 
use the terms linear programs or simply programs to refer to linear straight-line programs. 
The length of the program is the number of lines it contains, and is equal to the number of 
XOR gates in a subcircuit computing these forms. A program is optimal if it is of minimum 
length. 

The linear straight-line program model (see [9] for a discussion of linear complexity) has 
the advantage of being very structured, but is nevertheless optimal to within a constant 
factor as compared to arbitrary straight-line programs when the computation is over an 
infinite field. Over finite fields the optimality of linear straight-line programs is unknown4 , 
but we restrict our attention to this form and consider minimizing the length of the program. 

The standard algorithm for computing the linear forms Ax, where A is an m × n matrix 
containing entries from a set of size r, requires m(n − 1) operations. Savage [25], however, 

3We consider circuits without negations only. There is no loss of generality in doing so because negations 
can be treated as standard XOR gates via (¬X = (X⊕1)). 

4It is not known if multiplication of variables can ever be used to reduce program length when the program 
outputs only linear functions. 
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showed that O(mn/ log m) operations are sufficient in many cases, including computations r 
over GF (2) if m ≥ 4. Williams [28] improved this to O(n2/ log2 n) on a RAM with word 
length Θ(n) for n by n matrices over finite semirings. In contrast, Winograd [29] has shown 
that most sets of linear forms have a non-linear complexity in the straight-line program 
model; in fact, for a “random” m × n matrix A the probability is high that its complexity is 
Ω(mn) (for infinite fields). However, there are non-trivial matrices which can be computed 
considerably faster than this. 

Over GF (2), finding the shortest linear straight-line program is equivalent to our original 
goal of finding a circuit with only XOR gates and minimizing the number used. Linear forms 
have many applications, especially to problems in scientific computation, and there has been 
considerable success in finding efficient algorithms for computing them in special cases. The 
best known example is the Fast Fourier Transform, an O(n log n) algorithm, discovered by 
Cooley and Tukey in 1965 [12]. 

In section 3.1.1 we show that finding the shortest linear straight-line program is NP-hard. 
This can be seen in relation to H̊astad’s result [16] showing that tensor rank is NP-hard 
and thus finding the minimum bilinear program for computing bilinear forms is NP-hard. 

In section 3.1.2 the NP-hardness result is used to prove a special case of the problem Max 
SNP-Complete [23] (and also APX-Complete). This means there are no E-approximation 
algorithms for the problem unless P=NP [1]. 

A linear straight-line program over GF(2) is said to be a cancellation-free straight-line 
program if, for every line of the program u := v + w, none of variables in the expression 
for v are also present in the expression for w, i.e., there is no cancellation of variables in 
the computation. A small example showing that the optimal linear program is not always 
cancellation-free over GF (2) is: 

x1 + x2; x1 + x2 + x3; x1 + x2 + x3 + x4; x2 + x3 + x4. 

It is not hard to see, by exhaustive search, that the optimum cancellation-free straight-line 
program has length 5. A solution of length 4 which allows cancellations is 

v1 = x1 + x2; v2 = v1 + x3; v3 = v2 + x4; v4 = v3 + x1. 

In subsection 3.1.3 we show that the approximation ratio for cancellation-free techniques is 
at least 3/2. This discovery led us to create the heuristic in section 3.1, allowing cancella
tions, for minimizing linear straight-line programs and the corresponding circuits. 

First Step 

We will illustrate the first step of the circuit minimization using AES’s S-box as an example. 
The non-linear operation in AES’s S-box is to compute an inverse in the field GF (28). A 
recursive method for building a circuit for inverses in GF (2mn), given a circuit for inverses 
in GF (2m), is due to Itoh and Tsujii [17]. The circuits produced by this method are 
said to have a tower fields architecture. Since there are multiple possible representations 
for Galois fields, several authors have concentrated on finding representations that yield 
efficient circuits under the tower fields architecture. We use the same general technique 
for the reduction from inversion in GF (28) to GF (24) inversion, but we use a completely 
different technique for computing the inversion in GF (24). We then place the optimized 
circuit for GF (24) inversion in its appropriate place in AES’s S-box and, in the second step, 
apply a novel optimization technique to the linear parts of the resulting circuit. 
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2.1 GF (24) Inversion – A Non-Linear Component. 

The tower fields architecture for inversion in GF (28) has (non-trivial) easily identifiable non
linear components corresponding to inversion in subfields. The first step in our method is to 
focus on one of these components and derive a circuit that uses few ∧ gates. The component 
for inversion in GF (22) is too small for us to benefit significantly from optimizing it. Instead 
we focus on inversion in GF (24). There are many representations of GF (24). We construct 

• GF (22) by adjoining a root W of x2 + x + 1 over GF (2); 

• GF (24) by adjoining a root Z of x2 + x + W 2 over GF (22). 

Following Canright [10], we represent GF (22) using the basis (W, W 2) and GF (24) using 
the basis (Z2, Z8). Thus, an element δ ∈ GF (24) is written as δ1Z

2 + δ2Z
8, where δ1, δ2 ∈ 

GF (22). Similarly, an element γ in GF (22) is written as γ1W +γ2W 2, where γ1, γ2 ∈ GF (2). 
Since Z satisfies x2 + x + W 2 = 0 and W satisfies x2 + x + 1 = 0, one can calculate that 
Z4 , Z16= Z2 + W , Z8 = Z2 + 1 (1 = Z8 + Z2), Z10 = Z4 + Z2 = Z8 + W , W 3 = W 2 + W , 
W 4 = W , and W 5 = W 2 . These equations can be used to reduce expressions to check 
equalities. 

Using this representation, an element of GF (24) can be written as Δ = (x1W + 
x2W 2)Z2 + (x3W + x4W 2)Z8, where x1, x2, x3, x4 ∈ GF (2). The inverse of this element, 
Δ' = (y1W + y2W 2)Z2 + (y3W + y4W 2)Z8, can then be calculated using the following 
polynomials over GF (2): 

• y1 = x2x3x4 + x1x3 + x2x3 + x3 + x4 

• y2 = x1x3x4 + x1x3 + x2x3 + x2x4 + x4 

• y3 = x1x2x4 + x1x3 + x1x4 + x1 + x2 

• y4 = x1x2x3 + x1x3 + x1x4 + x2x4 + x2 

The fact that Δ' is the inverse of Δ can be verified by multiplying the two elements together 
2and reducing using the equations mentioned above (along with x = x and x + x = 0). The 

symbolic result is (QW + QW 2)Z2 + (QW + QW 2)Z8, where Q = x1x2x3x4 + x1x2x3 + 
x1x2x4 + x1x3x4 + x2x3x4 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + x1 + x2 + x3 + x4. 
The fact that the value of Q is 1 unless all four variables have the value 0, when it is 0, 
can be seen by observing that it is the symmetric function Σ4 + Σ4 + Σ4 + Σ4 If exactly 4 3 2 1. 
four variables are set, then the first term gives the value 1 (and the others 0); if three are 
set, then the second, third and fourth terms give the value 1; if exactly two are set, then 
only the third gives the value 1; and if only one is set, then only the last gives the value 1. 
Hence, the result is 1, except for the zero input.5 

Thus the task at hand is to construct a circuit with four inputs and four outputs that 
calculates the above system of equations using as few ∧ gates as possible. Currently, our 
heuristic search programs can handle functions with one output and up to eight inputs. 
(Since they are heuristics, one is not certain that an output is optimal, so they cannot 
be used, for example, to determine a tight lower bound for the multiplicative complexity 
of E4

8.) This means that we can directly construct optimal circuits for each of the four 
5A circuit for finite field inversion must have some output for the non-invertible zero element. In the 

following constructions we follow the AES convention that the output on input zero is zero. 
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t1 = x1 + x2 t2 = x1 × x3 t3 = x4 + t2 

t4 = t1 × t3 y4 = x2 + t4 (∗) t5 = x3 + x4 

t6 = x2 + t2 t7 = t6 × t5 y2 = x4 + t7 (∗) 
t8 = x3 + y2 t9 = t3 + y2 t10 = x4 × t9 

y1 = t10 + t8 (∗) t11 = t3 + t10 t12 = y4 × t11 

y3 = t12 + t1 (∗) 

Figure 2: Inversion in GF (24). 

equations individually, but not for the system itself. For the full system we took the following 
approach: 

1. pick an equation and construct an efficient circuit for it; 

2. store intermediate functions computed in the previous steps for possible use in con
structing a circuit for the next equation to be tackled; 

3. iterate until all equations have been computed. 

The first step is non-trivial even for predicates on few inputs. The heuristic we used is 
inspired by methods from automatic theorem proving [7]: consider an arbitrary predicate 
f on n inputs. We refer to the last column of the truth table for f as the signal of f . The 
columns in the truth table corresponding to each of the inputs to f are known signals. A 
search for a circuit for f starts with this set S of known signals. If u, v are known signals 
for functions g, h respectively, then the bit-wise XOR (AND) of u and v is the signal for 
the predicate g⊕h (g∧h). We can grow the set S by adding the XOR of randomly chosen 
signals. We call this step an XOR round. The analogous step where the AND of signals 
is added to S is called an AND round. Each round is parameterized by the number of 
new signals added and the maximum number of AND gates allowed. In either an XOR 
round or an AND round, two signals are not combined if doing so creates a signal with 
more AND gates than is allowed. The heuristic alternates between XOR and AND rounds 
until the target signal is found or the set S becomes too large. In the latter case, since 
this is a randomized procedure, we start again. Various enhancements and optimizations 
have been implemented. Their description is outside the scope of this paper. We can 
report, however, that we succeeded in determining the multiplicative complexity of all 216 

predicates on four bits. It turns out that 3 multiplications are enough to compute any 
predicate on four variables.6 This is of interest to designers of cryptographic functions since 
many constructions have been proposed which use 4x4 S-boxes. We have not yet been able 
to do the same for all predicates on 5 bits. 

We performed the three steps above for each of the twenty-four orderings of {y1, y2, y3, y4}. 
The ordering (y4, y2, y1, y3) gave the best results. The resulting circuit, expressed as a 
straight-line program over GF(2), is shown in Figure 2 (outputs are indicated by an (*) ). 

This circuit contains 5 ∧ gates and 11 ⊕ gates. It is a significant improvement over 
previous constructions, e.g. Paar’s construction [21] has a gate count of 10 ∧ gates and 15 

Lest the reader think this trivial, he/she may attempt to compute the function f(x1, x2, x3, x4) = 
x1x2x3x4 + x1x2x3 + x1x2x4 + x2x3x4 + x1x2 + x1x3 + x1x4 + x2x3 + x3x4 using only three multiplications. 
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⊕ gates for the same function. It is harder to compare to Canright’s construction [10]. In 
his original, he had 9 ∧ gates (and NAND gates) and 14 ⊕ gates (and XNOR gates), but 
he optimized, allowing NOR gates. After this, he had 8 NAND gates, 2 NOR gates, and 9 
XOR/XNOR gates. 

Under the given representation for GF (24), the multiplicative complexity of inversion 
is 5. This can be argued as follows: the upper bound is given by the construction. The 
four outputs that have to be computed all have degree 3. One ∧ is needed to compute a 
polynomial of degree 2. Then, an additional ∧ is necessary to produce each of the four 
linearly independent polynomials, since each is of degree 3. 

2.2 A View of the Structure of AES’s S-Box. 

In the previous section, using the tower fields architecture, we identified and optimized (with 
respect to multiplicative complexity) a major non-linear component in an implementation 
of the AES S-box. That completes the first step of our technique for circuit optimization, 
but in other circuits, one may be able to identify more non-linear components with few 
enough inputs that they can also be optimized before continuing. At this point, we replaced 
the GF (24) inversion subcircuit, in Canright’s [10] (already optimized) circuit, with the 
subcircuit in Figure 2. As expected, the resulting circuit contained large linear connected 
components. In fact, from a cryptanalyst’s point of view, the topology of the resulting 
circuit is potentially of interest: the S-box of AES consists of an initial linear expansion U 
from 8 to 22 bits, followed by a non-linear contraction F from 22 to 18 bits, and ending with 
a linear contraction B from 18 to 8 bits. The U and B matrices are given below. AES’s 
S-box is S(x) = B ·F (U ·x)+[11000110]T , where · is matrix multiplication and x is the 8-bit 
S-box input. We do not know if there are any cryptanalytic implications to the structure of 
these matrices. The first row and last columns of U should raise an eyebrow, as should the 
12th and the last three columns of B. Note that the initial linear expansion and the linear 
contraction were defined to contain as much of the circuit as possible while still being linear, 
increasing the portion of the circuit which could be further optimized by concentrating 
on the linear components. Thus, the portion of the circuit defined by U , for example, 
overlaps with the GF (28) inversion. Also included in these linear components is the linear 
transformation to change bases, before computing the inverse in GF (28), plus the linear 
transformation to change back to the original basis, followed by the affine transformation 
which is the final operation in the S-box. 

8
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⎡
 ⎤
 

U =
 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
 

0 0 0 0 0 0 0 1 
0 1 1 0 0 0 0 1 
1 1 1 0 0 0 0 1 
1 1 1 0 0 1 1 1 
0 1 1 1 0 0 0 1 
0 1 1 0 0 0 1 1 
1 0 0 1 1 0 1 1 
0 1 0 0 1 1 1 1 
1 0 0 0 0 1 0 0 
1 0 0 1 0 0 0 0 
1 1 1 1 1 0 1 0 
0 1 0 0 1 1 1 0 
1 0 0 1 0 1 1 0 
1 0 0 0 0 0 1 0 
0 0 0 1 0 1 0 0 
1 0 0 1 1 0 1 0 
0 0 1 0 1 1 1 0 
1 0 1 1 0 1 0 0 
1 0 1 0 1 1 1 0 
0 1 1 1 1 1 1 0 
1 1 0 1 1 1 1 0 
1 0 1 0 1 1 0 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 

⎡

0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 
1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 
1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 
0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 
1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 
0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 
1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 

⎤
 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
 

B =
 

Second Step 

The second step is to optimize the linear components in the circuit. One method of find
ing the nonlinear components to be optimized in the first step was to find maximal linear 
components of the circuit, remove them, and look at the remaining nonlinear components. 
Whether this was done or not, after the optimized nonlinear components are inserted into 
their appropriate places in the circuit, the beginning of the second step should be to find 
maximal linear components in this new circuit (since after optimization, some of the non
linear portions may contain ⊕ gates which can be included in the “old” linear parts, as in 
the case of the U and B matrices from AES’s S-box). 

These maximal components define linear components of the circuit which should be 
minimized in Step 2. In the case of the AES S-box, the top-linear component corresponds 
to the matrix U , and the bottom-linear component corresponds to the matrix B. No other 
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significant linear components were found. After finding these, the next step was to minimize 
the circuits for computing U and B. 

3.1 Minimizing Linear Components 

First, we show that the problem of linear circuit minimization, or equivalently, Shortest 
Linear Program (SLP), is NP-hard. 

3.1.1 NP-Hardness 

The problem SHORTEST LINEAR PROGRAM (SLP) is as follows: Given a set of linear 
forms E over a field F , find a shortest linear program to compute E. 

In order to prove NP-hardness, we consider the corresponding decision problem, SLPd: 
Given a set of linear forms E over a field F and a positive integer k, determine if there 
exists a straight-line linear program with at most k lines which computes E. 

We will prove SLPd NP–hard, even if the constants in the set of linear forms to be 
computed are only zeros and ones. Furthermore, if the field F is finite, then SLPd is easily 
seen to be in NP, so SLPd is NP–complete over finite fields.7 

The interest of this section is not just in the final result that SLP is NP–hard, but also 
in the method used to prove it. In particular, most of this section is devoted to the proof of 
Lemma 1, which gives the exact complexity for sets of linear forms of a certain simple type. 
This proof is algorithmic in form, and its algorithmic nature can be exploited to prove a 
further result in subsection 3.1.2. 

In order to show NP-hardness, we reduce from VERTEX COVER. A vertex cover of a 
graph G = (V, E) is a subset V ' of V such that every edge of E is incident with at least 
one vertex of V ' . VERTEX COVER is defined as follows: Given a graph G = (V, E) and 
an integer k, determine if there exists a vertex cover of size at most k. 

The following polynomial-time reduction f transforms an arbitrary graph, G = (V, E), 
and a bound, k, to a set of linear forms with another bound, k̄. The input variables are 
X = V ∪ {z}, where z is a distinguished variable not occurring in V . The linear forms 

¯ are E = { z + a + b | (a, b) ∈ E }, and the program length we ask about is k ¯ = k + |Ē|. 
This is an instance of SLPd, and it is clear that f(G, k) = E, X, k̄) can be produced in ( ¯ 

polynomial time. We call a set of linear expressions in this restricted form, z + xi + xj , a 
set of z-expressions. 

Before we proceed, we illustrate with an example: 
The graph, G, in Figure 3 has a vertex cover of size k = 3: {a, c, e}. The corresponding 

¯instance of SLPd, f(G, 3) is E = {z + a + b, z + b + c, z + c + d, z + d + e, z + e + f, z + a + 
f, z + c + g, z + e + g}, X = {z, a, b, c, d, e, f, g}, and k ¯ = 3 + 8. A linear program for this 
of size 11 is 

v1 := z + a; v2 := z + c; v3 := z + e; v4 := v1 + b; 
v5 := v2 + b; v6 := v2 + d; v7 := v3 + d; v8 := v3 + f ; 
v9 := v1 + f ; v10 := v2 + g; v11 := v3 + g; 

7We avoid the discussion of models for dealing with infinite fields, such as in [27] or [3], by proving 
NP-hardness when the constants in the forms are only zeros and ones and showing that a shortest linear 
straight-line program for the forms considered can be created with only zeros and ones as constants. 
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Figure 3: Graph with 8 edges and cover size 3. 

where the computation of v1, v2, and v3 corresponds to the vertex cover in the graph G, 
¯and the remaining operations produce the eight forms in E. The variables v4, . . . , v11 are 

called output variables. 
¯A cover for a set E of z-expressions is a subset W of X −{z} such that every expression 

¯in ¯ Note that if ( ¯ k) = f(G, k), a cover for EE contains at least one variable in W . E, X, ̄  

trivially defines a vertex cover for the graph G and vice versa. 

Lemma 1 Let (E, X¯ ) be a set of z-expressions without repetitions; that is, E ¯ is a set 
of expressions of the form z + xi + xj , where xi, xj are distinct variables in X, z is a 
distinguished variable in X, and no two of these z-expressions contain exactly the same 

¯variables. There is a cover of E of size at most k if and only if there is a linear straight-line 
¯ program P for E of length k ¯ = k + |Ē|. In addition, given a linear straight-line program P 

for Ē, a cover for E ¯ of size at most |P | − | Ē| can be computed in polynomial time. 

Proof. We will refer to the elements of X − {z} as “the variables” and z as “the symbol”, 
although as an element of a linear program, z is also an input variable. 

¯ ¯Given a cover W of size k for E, a (cancellation-free) linear straight-line program for E 
can be created consisting of z+wi for each wi ∈ W , followed by linear expressions computing 
each output, created by adding a second variable to the appropriate z + wi. This program 
has length k + |Ē|. 

¯It remains to be shown that, given a linear straight-line program P for E, we can 
¯efficiently find a cover, W , for E of size no more than |P | − | Ē|. This cover is computed by 

associating elements of X − {z} with some non-output lines of the program—W will then 
be the union of all those variables so associated. Since we will assign at most one element 
of X − {z} to each non-output line, the cover is of size at most |P | − | Ē|. (Note that the 
W computed may not be minimum if the program is not optimal). 

Let F (i) be the linear function computed at line i; the result there is assigned to vi. 
It will be convenient to use the notation F (i) to refer both to the function and to the e 
minimal formal expression j βi,j xj where the xj ’s are distinct and the βi,j ’s are non-zero 
field elements. The association of variables with lines of the program will be denoted by a 
mapping m : IN → X∪{λ}. Initially, we set m(i) = λ for all lines i. At any point in time, 
the current partial cover W is the set of all variables that are assigned to some m(i). 

W = {x ∈ X | x = m(j) for some 1 ≤ j ≤ |P |}.
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W ← λ 
for i = 1 to |P | do 

m(i) ← λ 
if F (i) is not an output then 

if ∃ a variable x in F (i), but not in W then 
choose x 
m(i) ← x 

else { F (i) is an output}
if F (i) contains more than one variable not in W then 

Fix-up(i, i) 

Figure 4: Computing the cover W 

The algorithm works as follows. Starting at the first line of the linear straight-line 
program P , the algorithm associates with each non-output line i a variable in X −{z} which 
occurs in the formal expression computed at line i and which is currently unassociated (if 
there is no such variable, the line is assigned the null symbol, λ). When an output is 
reached, the algorithm checks if the set W of all variables currently assigned covers that 
output, i.e. if there is some variable in W which occurs in the formal expression computed 
at that output line. If this is not the case, then a fix-up procedure is invoked. This fix-up 
procedure changes some of the associations until all the output expressions up to that point 
are covered. After the algorithm has terminated, all the output expressions will be covered, 
so W is the desired cover, and |P | ≥ |W | + |Ē|. If the straight-line program P is restricted 
to being cancellation-free, the fix-up procedure will never be necessary; it is only called if 
an output line was produced as a linear combination of two lines, where at one of those 
lines a cancelled variable was added to the cover, W . 

The remainder of the proof first establishes the precise conditions under which the fix-up 
procedure is called, and then describes the action taken. We first define the two properties 
that the algorithm seeks to establish for each line l of the program. 
Property 1 If line l is not an output, either all variables in F (l) are in W , or some variable
 
in both W and F (l) is associated uniquely with line l.
 
Property 2 There is at most one variable in F (l) which is not in W .
 

In terms of these two properties, the algorithm in Figure 4 can be described as follows. 
Given that Properties 1 and 2 hold for lines 1 to i − 1, establish Property 1 for line i and 
check if Property 2 holds for line i. If not, the fix-up procedure will be called. 

Claim 1 If Properties 1 and 2 hold for lines 1 through l − 1, after line l is processed, if 
F (l) is not an output, then Properties 1 and 2 hold for line l. 

Proof. This holds by induction. We define v0 = z and v−i = xi for each variable xi and note 
that Property 2 holds for these initial lines of the program. Line 1 of P contains at most 
two variables and cannot be an output. Thus, one of these variables is assigned to m(1) and 
W , so Properties 1 and 2 hold for line 1. Suppose line i has the form vi := λ · vi" + µ · vi"" . 
By assumption, Property 2 holds for F (i

" ) and F (i
"" ), so there are at most two variables in 

F (i) but not in W before line i is processed. If there is at most one such variable, we are 
done. If there are exactly two such variables, then m(i) is assigned some variable not in 
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Fix-up(i, l)
 
{ i is the current line being fixed; l is original line being fixed }

{ line i, vi := λvi " + µvi "" , produces the expression z + a + b,
 

a is not present in line i ' and b is not present in i '' }
{ line i ' is not an output and m(i ') = c}
set m(i ') ← b 
W ← (W ∪{b}) \ {c}
for j ← 1 to l do 

if F (j) is not an output then 
if m(j) = λ and c ∈ F (j) then
 

m(j) ← c
 
W ← W ∪{c}

break { exit for loop }


for j ← 1 to l do 
if F (j) is an output then 

if |F (j) \ W | > 1 then Fix-up(j, l) 

Figure 5: The Fix-up procedure 

W . Thus, Property 1 holds. Since that variable is also added to W , F (i) has at most one 
variable that does not occur in W and Property 2 also holds. D 

Suppose the Fix-up procedure is called for line i: 

vi := λ · vi " + µ · vi "" , 

which produces the output expression z +a+b. If both a and b are present in the expression 
for line i ' or both are in the expression for line i '', then at least one of a or b is in W . Since 
neither is there, we may assume, without loss of generality, that a is not present in line i ' 

and b is not present in i '' . All other variables present in line i ' must also be present in line 
i '' . In addition, at least one of those two lines is not an output, since otherwise one contains 
z + a and the other contains z + b and no linear combination is an output. Assume that line 
i ' is not an output. Since it contains b, which is not in W , m(i ')  Suppose m(i ') = c.= λ. 

The fix-up procedure, as defined in Figure 5, backs up to line i ', changes the mapping m 
to put b into W instead of c, and then scans to ensure, first, that Property 1 still holds, and 
then that Property 2 still holds. Since this change in the mapping may upset lines where 
these properties held previously, this adjustment of the mapping may occur more than once. 

Since b /∈ W , there is no problem in setting m(i ') to b. The only way this can cause 
Property 1 to fail is that a line j might have m(j) = λ, even though the expression there 
involved a c which is no longer in W . The first “for” loop in “Fix-up” corrects this. 

The removal of c from W may also cause Property 2 to fail. Note that this can only 
happen for an output line; Claim 1 still holds. Some of the failures at outputs may be 
rectified by the adjustment fixing Property 1. “Fix-up” is called recursively to fix the 
others. 

We turn to the proof of termination. 
Let k1, k2, . . . be the sequence of line numbers for output lines which require a call to 

the fix-up procedure, and let W1, W2, . . . be the corresponding values of W , the covers just 
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before the fix-up procedure is called for the corresponding lines. Let k0 = i and define W0 

to be the value of the cover when the fix-up procedure is first called. Note that no two 
adjacent members of k0, k1, k2, . . . are equal. 

Let j be an index for which kj < kj+1 (if no such index exists, the sequence is clearly 
finite and this terminates). We claim that |Wj | < |Wj+1|. The size of the cover never 
decreases as the only operations done to change it are swaps and additions, so the claim 
follows if we show that a variable is added to the cover by the fix-up procedure when going 
from line kj to kj+1. 

Consider how the fix-up procedure operates between the calls at lines kj and kj+1. 
Suppose that line kj is 

vkj := λ · vk " + µ · vk "" j j 

We know that kj 
' < k '' < kj < kj+1. Suppose the formal expressions computed at these j 

lines are 
F (k " ) F (k "" )j = (b − c − V )/λ; j = z + a + c + V ; 
F (kj ) F (kj+1)= z + a + b; = . . . , 

where V is a sum of some variables (not including z, a, b, c). (We will assume that k ' played 
the role of i ' in “Fix-up”, but the same argument holds if k '' was, with a and b switching 
roles.) For line kj to have caused a call to “Fix-up”, neither a nor b could have been in the 
cover Wj . Thus the algorithm first visited line kj 

' and changed the mapping m(kj 
' ) from 

c to b, then executed the first “for” loop, correcting lines not satisfying Property 1, and 
finally moved down the program, checking each line for Property 2, until reaching line kj+1. 
But this means that Property 2 held at line kj 

'' and this could only have happened if a 
or c was in the cover (if line kj 

'' is not an output, it might have been added there). Since 
neither of them were in the cover immediately after the swap of b for c at line kj 

' , one of 
them must have been added by the fix-up procedure at one of the lines in between. Thus 
|Wj | < |Wj+1|. 

Hence for each j where kj < kj+1, the size of the cover increases. Moreover, since k is 
always positive, there can be at most n2 lines visited between these increases in the cover 
size (where n is the length of the program). And since |W | < |X| ≤ n, it follows that 
the whole algorithm requires at most O(n3) time. (The fact that the execution time is 
polynomial is irrelevant for the purposes of showing NP-hardness, but will be important 
later.) This completes the proof of Lemma 1. D 

The following theorem follows immediately, since we have given a polynomial time re
duction from VERTEX COVER, which is NP-complete. 

Theorem 1 For any field F, SHORTEST LINEAR PROGRAM is NP-hard. 

For finite fields, it is easy to see that SLPd ∈ NP. Thus we have 

Theorem 2 For any finite field F, the decision version of SHORTEST LINEAR PRO
GRAM is NP-Complete. 

Note that in the proof of Lemma 1, if the straight-line program P had been restricted to 
be cancellation-free, the proof would have been easier, because the fix-up procedure would 
never be necessary; it is only called if an output line was produced as a linear combination 
of two lines, where at one of those lines a cancelled variable was added to the cover, W . 
This immediately gives us the following: 
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Theorem 3 For any finite field F, SHORTEST LINEAR PROGRAM is NP-Complete 
even if the programs produced are restricted to being cancellation-free. 

3.1.2 Limits to Approximation 

The major result of the previous subsection is that it is NP–hard to find an optimal linear 
program for computing a set of linear forms. Thus, it is natural to turn our attention to 
approximation algorithms for this problem. Here we concentrate entirely on polynomial-
time approximation algorithms with provable performance guarantees. 

We show that SHORTEST LINEAR PROGRAM has no E–approximation scheme un
less P=NP. Recall that these are families of algorithms, one for each E > 0, which are 
polynomial time and achieve an approximation ratio of 1 + E. We use a concept called Max 
SNP–completeness, which was introduced by Papadimitriou and Yannakakis [23]. Arora 
et.al. [1] have shown that no Max SNP–complete problem has an E–approximation scheme 
unless P=NP. We show that BOUNDED Z-EXPN (defined below), is Max SNP–complete, 
showing that there is no E–approximation scheme for SHORTEST LINEAR PROGRAM 
unless P=NP, since it is a generalization of BOUNDED Z-EXPN. 

Max SNP is a complexity class of optimization problems. It is contained within NP in 
the sense that the decision versions of the problems are all in NP. Papadimitriou and Yan
nakakis [23] proved that many problems are Max SNP–complete, including the following: 
BOUNDED VERTEX COVER: Given a graph with maximum vertex degree bounded by a 
constant b, find the smallest vertex cover. 

To talk about completeness for this class, we need a notion of reduction. The reductions 
Papadimitriou and Yannakakis defined, called L-reductions, preserve the existence of E-
approximation schemes. The following definitions and propositions are taken directly from 
the original paper. 

Let Π and Π' be two optimization (maximization or minimization) problems, and let 
f be a polynomial-time transformation from problem Π to problem Π' . We say that f is 
an L-reduction if there are constants α, β > 0 such that for each instance I of Π, the 
following two properties are satisfied: 

(a)	 The optima of I and f(I), written OPT(I) and OPT(f(I)) respectively, satisfy the 
relation OPT(f(I)) ≤ αOPT(I). 

(b) For any solution of f(I) with cost c ', we can find in polynomial time a solution of I 
'with cost c such that |c − OPT(I)| ≤ β|c − OPT(f(I))|. 

The constant β will usually be 1. The following two propositions, stated in [23], follow 
easily from the definition. 

Proposition 1 L-reductions compose. 

Proposition 2 If Π L-reduces to Π' and if there is a polynomial-time approximation algo
rithm for Π' with worst-case error E, then there is a polynomial-time approximation algo
rithm for Π with worse-case error αβE. 

BOUNDED Z-EXPN is the following problem: Given a set of z-expressions (as defined 
in Theorem 1) in which each non-z variable appears at most b times (b is a fixed constant), 
generate an optimal linear program for computing the expressions (over some fixed field F ). 
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Theorem 4 BOUNDED Z-EXPN is Max SNP–complete. 

Proof. First, we will show that BOUNDED Z-EXPN is in Max SNP. To show membership 
in Max SNP, we will exhibit an L-reduction of BOUNDED Z-EXPN to Bounded Vertex 
Cover, a problem in Max SNP. 

For every non-z variable xi, we associate a vertex x̄i. The L-reduction f maps z-
expressions to edges as follows: f(“z + xi + xj”) = “edge (i, j)”. Since variable occur
rences are bounded by b in BOUNDED Z-EXPN, the vertex degrees will by bounded by b 
in the graph. 

We proved in the previous section that a set of z-expressions can be optimally computed 
by first computing z +xi for those xi which are in the minimum vertex cover, and then using 
these intermediate results to compute the z-expressions. Thus OPT(f(I)) + |E| = OPT(I) 
where |E| is both the number of z-expressions and the number of edges in the graph. 

We claim that this reduction is an L-reduction. Property (a) is satisfied because the 
equation above implies that OPT(f(I)) ≤ OPT(I). Property (b) is satisfied because, from 
a vertex cover, we can build a linear program which computes the z-expressions in the 

'manner described above. This gives c = OPT(I) + [c − OPT(f(I))]. 
To show that the problem is Max SNP–hard we reverse the reduction so that it goes 

from Bounded Vertex Cover to Bounded Z-EXPN. The function f now maps “edge (i, j)” 
into “z + xi + xj ”. 

Proof of Property (a): By Lemma 1 we have that OPT(I) + |E| = OPT(f(I)). Since 
the maximum degree in the graph is bounded by b and every edge must be adjacent to at 
least one vertex of the cover, there can be at most b · OPT(I) edges, of the cover. Thus 
OPT(f(I)) ≤ (b + 1)OPT(I). 

Proof of Property (b): The proof of Lemma 1 gave a polynomial-time procedure for 
converting any linear program computing a set of z-expressions into a vertex cover for the 

'corresponding graph. By inspecting this procedure, one sees that c = OPT(I) + [c − 
OPT(f(I))]. D 

The fact that BOUNDED Z-EXPN is complete for the class Max SNP implies that 
there is no E-approximation scheme for it unless P=NP. In fact, Clementi and Trevisan [11] 
have shown that BOUNDED VERTEX COVER is not approximable within 16/15 − E for 
sufficiently large maximum degree. By Proposition 2, this means that there is no 1+(1/15− 
E)/αβ = 1 + (1/15 − E)/(1 + b)-approximation algorithm for SLP unless P=NP. The fact 
that BOUNDED Z-EXPN is in the class Max SNP means that there is an approximation 
algorithm for it with a constant approximation ratio. In fact, it is obvious that Z-EXPN, 
even without the boundedness constraint, has an approximation algorithm with a constant 
approximation. The straight-forward linear straight-line program for computing the |E|
forms only requires 2|E| lines, and every straight-line program for E must contain at least 
|E| lines (assuming no repetitions within the set E). Thus, the straight-forward algorithm 
comes within a factor of 2 of optimal. Moreover, since there is an approximation algorithm 
for vertex cover which comes within a factor of two of optimal, we can do even better for Z
EXPN. Since the optimal linear program contains |W |+ |E| steps, where W is the minimum 
vertex cover, by Lemma 1, there is an algorithm which takes 2|W | + |E| steps. Since 
|W | < |E|, the ratio (2|W |+|E|)/(|W |+|E|) is at most 3/2, so there is a (3/2)-approximation 
algorithm for Z-EXPN. There are, however, no known approximation algorithms which 
obtain a constant ratio for the general SHORTEST LINEAR PROGRAM problem. 
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3.1.3 Cancellation can yield smaller circuits 

Thus, unless P=NP, this problem does not even have efficient E-approximation schemes, 
so our goal in this research is restricted to improving on known heuristics. As far as we 
know, the most successful heuristics are variations on a greedy algorithm due to Paar [22]. 
We report significant improvements over the latter methods. Paar’s algorithm gives non-
cancelling results. It keeps a list of variables computed, which is initially only the inputs. 
Then it repeatedly determines which two variables, XORed together, occur in most outputs. 
One such pair is selected and XORed together. This result is added as a new variable 
which appears in all outputs where both variables previous appeared. This can be repeated 
until everything has been computed. One possible variant of this was presented in the 
same article [22]: When there is more than one most frequently occurring pair, instead of 
selecting one, try all possibilities, using recursion. The original algorithm is very fast; the 
variant is not. 

A different technique is due to Bernstein [2]. Bernstein’s algorithm has the advantages 
of using less storage and functioning better on two-operand platforms, i.e., where a := a ⊕ b 
is an allowed operation, but a := b ⊕ c is not. However, experiments mentioned in [2] 
indicate that Bernstein’s algorithm usually produces results with more gates than Paar’s. 

Previous work on circuit minimization for AES S-boxes (e.g. [21, 24, 10]) only consider 
cancellation-free straight-line programs for producing a set of linear forms over GF(2). 
Canright [10] even does an exhaustive search to find an optimal cancellation-free straight-
line program. This does not, however, necessarily imply that Canright has found the optimal 
linear straight-line program. Some authors appear to make the incorrect assumption that 
there always exists a cancellation-free optimal linear program over GF(2). 

As mentioned in the introduction, restricting the search for optimal straight-line pro
grams for computing linear forms over GF(2) to cancellation-free programs can lead to 
sub-optimal solutions. In our counter-example, the optimal cancellation-free program has 
length 5 times that of the true shortest program. It is natural to ask how close to optimal 4 
cancellation-free programs can get as the number of variables increases. In this subsection 
we show that the best cancellation-free straight-line programs are not guaranteed to even 
have length within a factor 3/2 that of the shortest straight-line linear program. 

The following construction uses two integer parameters k and n, which can be made 
large to make the 3/2 inapproximability result hold asymptotically. The parameter k is the 
number of variables in a block, and n is the number of distinct blocks. Blocks have disjoint 
sets of variables: Block i, where 0 ≤ i ≤ n − 1, is the linear form bi = xik+1 + xik+2 + ... + 
x(i+1)k. The construction produces a linear straight-line program which is not cancellation-
free. All intermediate linear forms (the linear forms produced at each line of the program) 
computed by this straight-line linear program will belong to the set of required outputs. 
The first part of the linear straight-line program will produce sums of consecutive pairs of 
blocks si = bi + bi+1, for 0 ≤ i ≤ n − 2, mixing the variables in the two blocks in such 
a way that also producing a single block alone would require extra additions compared to 
the program here. Then, pairs of these consecutive sums are computed, pi = si + si+1, for 
0 ≤ i ≤ n − 3. Each pi is computed with only one further addition, but the two si’s added 
share a common block which is cancelled, so pi = bi + bi+2. We express this linear program, 
denoted P , using for loops in Figure 6, but for any fixed k and n it is a straight-line program 
of length k(n − 1) + (k − 1)(n − 1) + n − 2 = 2kn − 2k − 1. 

We claim that an optimal cancellation-free program (for computing all the linear forms 
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for i = 1 to k(n − 1) do 
ui := xi + xi+k 

for i = 0 to n − 2 do 
si := uik+1 + uik+2 

for j = 1 to k − 2 do 
si := si + uik+j+2 

for i = 0 to n − 3 do 
pi := si + si+1 

Figure 6: Straight-line program with cancellations 

which are the result of some line in this program) does at least enough additional operations 
to compute each of the blocks, and this would require at least n(k − 1) additional lines. Let 
F denote the set consisting of the first (2k − 1)(n − 1) lines of P , and let L denote the set of 
the last n − 2 lines. All of the 2kn − 2k − 1 lines output by the above straight-line program 
are linear forms which must be output. The lines in L are the only ones with cancellations. 
None of the results from the lines in F can be used to compute the lines in P , because, for 
any two lines f ∈ F and l ∈ L, f contains at least one variable which is not present in the 
form calculated by l. It is conceivable that some of the non-output results computed in the 
process of producing the outputs in L could be used in computing those in F , but, since 
they are all outputs, at least one extra operation is needed to produce each output from F . 
Thus, we can consider computing the outputs in L independently from those in F . 

Blocks b2 through bn−3 each appear in two of the outputs from L, but there is no other 
overlap between the outputs in L. Thus, the only reuse of forms computed which is possible 
is within the blocks. An optimal way to compute the forms in L is to first compute each of 
the n blocks, using k − 1 additions for each. After this, each form in L can be created by 
adding two blocks together, using one addition for each, as in P . The computation of the 
blocks gives n(k−1) extra additions, for a total of 3kn−2k−n−1 additions. Asymptotically, 
the ratio 3kn−2k−n−1 is 3/2 for large n and k.2kn−2k−1 

Theorem 5 Any algorithm for computing short straight-line linear programs, which only 
produces cancellation-free straight-line programs, has an approximation ratio of at least 3/2. 

Thus, even optimal cancellation-free circuits can be far from optimal in the unre
stricted model. The heuristic we present below is not restricted to producing cancellation-
free circuits. Furthermore, there appears to be little reason for restricting the search to 
cancellation-free circuits, as we have shown that finding an optimal cancellation-free circuit 
is also NP-hard in subsection 3.1.1. 

A New Heuristic. 

Let S be a set of linear functions. For any linear predicate f , we define the distance δ(S, f) 
as the minimum number of additions of elements from S necessary to obtain f . 

The problem is to find a short linear program that computes f(x) = Mx where M is 
an m × n matrix over GF(2). The heuristic is as follows. We keep a “base” S of “known” 
functions. Initially S is just the set of variables x1, . . . , xn. We maintain the vector Dist[] of 
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distances from S to the linear functions given by the rows of M . That is, Dist[i] = δ(S, fi) 
where fi is the ith row of M multiplied by the input vector x. Initially, Dist[i] is just one 
less than the Hamming weight of row i. We then perform the following loop 

•	 pick a new base element by adding two existing base elements; 

•	 update Dist[]; 

until Dist[i] = 0 for all i. 
The current criterion for picking the new base element is 

•	 pick one that minimizes the sum of new distances; 

•	 resolve ties by maximizing the Euclidean norm of the vector of new distances. 

This tie resolution criterion, which we term “Norm”, may seem counter-intuitive. The 
basic idea is that we prefer a distance vector like 0,0,3,1 to one like 1,1,1,1. In the latter 
case, we would need 4 more gates to finish. In the former, 3 might do it. 

The bulk of the time of the heuristic is spent on picking the new base element. Our 
experiments show that the following “pre-emptive” choice usually improves running time 
without increasing the size of the output circuit: 

•	 if any two bases S[i], S[j] are such that S[i]⊕S[j] is a row in M , then pick this sum 
as the new base element. 

The tie resolution criterion is a critical part of the heuristic. It does well on most matrices 
we have tried, but we have found specific matrices for which other decision rules do better. 
Intuitively, no one simple rule should work for all matrices. The effectiveness of the heuristic 
most likely depends on the topology of the digraph represented by the input matrix. We 
have not pursued this line of inquiry. We have, however tested our heuristic with various 
tie resolution methods against Paar’s algorithm [22]. On random matrices, our heuristic 
gives significant improvements under Norm as well as under three other tie-breaking rules 
(see Section 5), 

The distance vector in our heuristics is computed by exhaustive search. The reason the 
heuristic is practical for moderate-size matrices is that the distance can only decrease. In 
fact, it can only decrease by 1. So when a new base is being considered, if a distance is d, 
then only combinations of exactly d − 1 old base elements and the new base element need 
to be considered. 

A Small Example Using the Heuristic. 

Suppose we need a circuit that computes the system of equations defined in Fig. 7, which is 
equivalent to finding a circuit for multiplication by the 6 × 5 matrix, M , given in the figure. 

The target signals to be computed are simply the rows of M . The initial base is 
{x0, x1, x2, x3, x4}, which corresponds to       

S = { 1 0 0  0 0 , 0 1 0   0 0 , 0 0  1 0 0 ,

0 0 0 1 0 , 0 0 0 0 1 } 
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⎡
 ⎤

1 1 1 0 0 
0 1 0 1 1 
1 0 1 1 1 
0 1 1 1 0 
1 1 0 1 0 

y0 = x0 + x1 + x2 

y1 = x1 + x3 + x4 

y2 = x0 + x2 + x3 + x4 M = 
y3 = x1 + x2 + x3 

y4 = x0 + x1 + x3 

⎢⎢⎢⎢⎢⎢⎣
 

⎥⎥⎥⎥⎥⎥⎦
 

y5 = x1 + x2 + x3 + x4 0 1 1 1 1 

Figure 7: Example sequence of equations and corresponding matrix. 

Step 1 : t5 = x1 + x3. (found signal = [0 1 0 1 0]). New D : [2 1 3 1 1 2].
 
Step 2 : t6 = x2 + t5 (found target signal y3 = [0 1 1 1 0]). New D : [2 1 3 0 1 1].
 
Step 3 : t7 = x4 + t6 (found target signal y5 = [0 1 1 1 1]). New D : [2 1 2 0 1 0].
 
Step 4 : t8 = x0 + x1 (found signal = [1 1 0 0 0]). New D : [1 1 1 0 1 0].
 
Step 5 : t9 = x0 + t5 (found target signal y4 = [1 1 0 1 0]). New D : [1 1 1 0 0 0].
 
Step 6 : t10 = x2 + t7 (found target signal y1 = [0 1 0 1 1]). New D : [1 0 1 0 0 0 ].
 
Step 7 : t11 = x2 + t8 (found target signal y0 = [1 1 1 0 0]) . New D : [0 0 1 0 0 0].
 
Step 8 : t12 = t7 + t8 (found target signal y2 = [1 0 1 1 1]). New D : [0 0 0 0 0 0]. (DONE!)
 

Figure 8: Example running heuristic for minimizing linear components. 

The initial distance vector is 

D = 2 2 3 2 2 3 . 

The heuristic must find two base vectors whose sum, when added to the base, minimizes 
the sum of the new distances. It turns out the right choice is to calculate x1 + x3. So the 
new base S is expanded to contain the signal 

0 1 0 1 0 = 0 1 0 0 0 + 0 0 0 1 0 

The new distance vector is 

D = 2 1 3 1 1 2 . 

The full run of the program is shown in Figure 8. The tie breaking criteria is used in 
Step 3. If one had chosen x0 + x1 instead of x4 + t6, the new distance vector would be √ √ 
[ 1 1 2 0 1 1 ], which has norm 8, while the one found has norm 10. Note that there 
is cancellation in steps 6 and 8. 

Thus, after the xi, which may be nonlinear functions of other variables, are computed, 
the yi are computed by following the algorithm produced and, in this case, letting y0 = t11, 
y1 = t10, y2 = t12, y3 = t6, y4 = t9, y5 = t7. 

A Circuit for the S-Box of AES 

Our techniques yield a circuit for the AES S-box composed of 115 gates in three parts: 
a “top” linear transformation, U ; a middle non-linear part; and a “bottom” linear trans
formation, B. The linear transformations are defined by the matrices U and B of section 
2.2. 
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5 

y14 = x3 + x5 y13 = x0 + x6 y9 = x0 + x3 

y8 = x0 + x5 t0 = x1 + x2 y1 = t0 + x7 

y4 = y1 + x3 y12 = y13 + y14 y2 = y1 + x0 

y5 = y1 + x6 y3 = y5 + y8 t1 = x4 + y12 

y15 = t1 + x5 y20 = t1 + x1 y6 = y15 + x7 

y10 = y15 + t0 y11 = y20 + y9 y7 = x7 + y11 

y17 = y10 + y11 y19 = y10 + y8 y16 = t0 + y11 

y21 = y13 + y16 y18 = x0 + y16 

Figure 9: Top linear transformation: Inputs are x0, x1, ..., x7. Outputs to the next level are 
x7, y1, y2, ..., y21. 

For the matrix U , the smallest circuits we found had 23 ⊕ gates. Among the many such 
circuits, the shortest ones have depth 7. It is worthwhile to note that if 24 ⊕ gates are 
allowed, circuits with depth 4 exist for U . Figure 9 shows a circuit of size 23 and depth 7. 
The circuit maps inputs x0 . . . x7 to outputs x7, y1 . . . y21. 

Figure 10 shows the non-linear middle part of the S-box circuit. It is a function from 
22 to 18 bits. The circuit contains 32 ∧ gates and 30 ⊕ gates. It maps inputs x7, y1 . . . y21 

to outputs z0 . . . z17. 
For matrix B, the randomized version of our heuristic yields many circuits with 30 ⊕ 

gates. The heuristic is fast enough that we are able to pick a circuit which is both small and 
short. Figure 11 shows a circuit of depth 6. The circuit maps inputs z0 . . . z17 to outputs 
s0 . . . s7. 

As mentioned earlier, our circuit was based on Canright’s [10]. Our non-linear middle 
part corresponds fairly closely to his, except that his subcircuit for inversion in GF 24 was 
replaced by ours. He does not consider all of the top linear transformation as one unit, 
but he uses 29 XOR/XNOR gates to compute the entire transformation. Similarly, he uses 
31 XOR/XNOR gates to compute what corresponds to our bottom linear transformation. 
After optimizations, his circuit has a total of 80 XOR/XNOR gates, 34 NANDs, and 6 
NORs. We did not attempt to use NOR gates to further reduce the size of our circuit. 

Experiments with Different Tie–Breaking Methods 

In order to compare the effects of using different tie-breakers, we tested our heuristics on 
matrices generated as follows 

•	 We first chose a size (for example, 10 × 20 matrices, which represent 10 linear forms 
on 20 distinct variables); 

•	 We then picked a bias ρ between 0 and 1; 

•	 For each entry of the matrix, we set the bit to 1 with probability ρ and to 0 with 
probability 1 − ρ. Thus ρ is the expected fraction of variables that appears in each 
linear form. 

•	 Matrices with rows which are all zeros were discarded, as were matrices containing 
duplicate rows. 
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t2 = y12 × y15 t3 = y3 × y6 t4 = t3 + t2 

t5 = y4 × x7 t6 = t5 + t2 t7 = y13 × y16 

t8 = y5 × y1 t9 = t8 + t7 t10 = y2 × y7 

t11 = t10 + t7 t12 = y9 × y11 t13 = y14 × y17 

t14 = t13 + t12 t15 = y8 × y10 t16 = t15 + t12 

t17 = t4 + t14 t18 = t6 + t16 t19 = t9 + t14 

t20 = t11 + t16 t21 = t17 + y20 t22 = t18 + y19 

t23 = t19 + y21 t24 = t20 + y18 

t25 = t21 + t22 t26 = t21 × t23 t27 = t24 + t26 

t28 = t25 × t27 t29 = t28 + t22 t30 = t23 + t24 

t31 = t22 + t26 t32 = t31 × t30 t33 = t32 + t24 

t34 = t23 + t33 t35 = t27 + t33 t36 = t24 × t35 

t37 = t36 + t34 t38 = t27 + t36 t39 = t29 × t38 

t40 = t25 + t39 

t41 = t40 + t37 t42 = t29 + t33 t43 = t29 + t40 

t44 = t33 + t37 t45 = t42 + t41 z0 = t44 × y15 

z1 = t37 × y6 z2 = t33 × x7 z3 = t43 × y16 

z4 = t40 × y1 z5 = t29 × y7 z6 = t42 × y11 

z7 = t45 × y17 z8 = t41 × y10 z9 = t44 × y12 

z10 = t37 × y3 z11 = t33 × y4 z12 = t43 × y13 

z13 = t40 × y5 z14 = t29 × y2 z15 = t42 × y9 

z16 = t45 × y14 z17 = t41 × y8 

Figure 10: The middle non-linear section: Inputs are x7, y1, y2, ..., y21. Outputs to the next 
level are z0, z1, ..., z17. Note that the computation of t25 through t40 is the inversion in 
GF (24). 

t46 = z15 + z16 t47 = z10 + z11 t48 = z5 + z13 

t49 = z9 + z10 t50 = z2 + z12 t51 = z2 + z5 

t52 = z7 + z8 t53 = z0 + z3 t54 = z6 + z7 

t55 = z16 + z17 t56 = z12 + t48 t57 = t50 + t53 

t58 = z4 + t46 t59 = z3 + t54 t60 = t46 + t57 

t61 = z14 + t57 t62 = t52 + t58 t63 = t49 + t58 

t64 = z4 + t59 t65 = t61 + t62 t66 = z1 + t63 

s0 = t59 + t63 s6 = t56 XNOR t62 s7 = t48 XNOR t60 

t67 = t64 + t65 s3 = t53 + t66 s4 = t51 + t66 

s5 = t47 + t65 s1 = t64 XNOR s3 s2 = t55 XNOR t67 

Figure 11: Bottom linear transformation: Inputs are z0, z1, ..., z17. Outputs are s0, s1, ..., s7. 
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The testing was performed with a C++ program, compiled with g++ -O3, on a quadcore 
x86 64, running Ubuntu 9.10, with Intel Xenon 5150 processors running at 2.66 GHz, with 
8 GB memory. There were no other users on the machine. The programs and matrices 
used can be found at www.imada.sdu.dk/∼joan/xor/, though minor changes are necessary 
to run the programs with different files as input or to change the matrix size and bias for 
the matrix generator. We compared the different heuristics on sets of one hundred random 
matrices with different sizes and densities. The experiments showed that the heuristics were 
slower when the bias was larger. This was expected, since the initial “distances” (number 
of operations on the base vectors to obtain the target vectors) were then larger on average 
when there were more ones in the matrices. 

The tie-breakers we compared were the following: 

•	 Norm: maximizing the Euclidean norm 

•	 Norm-largest: maximizing the square of the Euclidean norm minus the largest 
distance 

•	 Norm-diff: maximizing the square of the Euclidean norm minus the difference of the 
largest two distances 

•	 Random: In processing the possible new base vectors, if the current possible new base 
vector has the same sum of distances as the previous best (current choice), then flip 
an unbiased coin. If heads, then keep the current choice. If tails, then apply the Norm 
criterion. This heuristic may end up choosing a pair with non-maximum Euclidean 
norm. On the other hand, it allows substitution of one optimum (by sum-of-distances 
and Euclidean norm) pair by another found later in the search. 

In all cases, except the “Random” one, when there were still ties after applying the 
“tie-breaker”, the first pair with both the minimum sum of distances and the optimal value 
for the tie-breaker was chosen. This was the base pair with lexicographically minimum 
indices (i, j). The exception to this is when there is a target with distance 1, meaning that 
using one extra gate will produce a target. Since it can never be wrong to use such a gate, 
a check is made for this case, by scanning the distances and choosing the first with distance 
1 when such exists. This check is efficient, and when there is a target of distance one, it 
saves lengthy computations of new distances for each possible pair of bases. 

Randomized tie-breaking allows running the heuristic several times and picking the best 
result. In our tests we ran the heuristic with “Random” tie-breaking three times. 

We also compared these heuristics to Paar’s heuristic [22] on the same matrices. Paar’s 
heuristic repeatedly finds the most frequently occurring base pair and adds that as the next 
base pair. It is significantly faster than our heuristic, but it produces only cancellation-free 
circuits. Its performance, relative to the heuristics proposed here, decreases as the bias 
increases, using more than 30% extra gates when the bias is 3/4 (when the number of rows 
is at least 15) and 40% extra when the bias is 9/10. 

Among the biases tried, the number of gates in the circuits found by our heuristics is 
similar with biases 1/2 and 3/4. It is not a strictly increasing function of the bias, since 
when nearly all of the variables are used in nearly all of the forms, the outputs from many of 
the gates can be reused for many targets. Thus, circuits with fewer gates were found when 
the bias was 9/10 than when it was 1/2 or 3/4. This was also true for Paar’s heuristic, but 
less dramatically so. 
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All the tie resolution criteria performed fairly similarly, producing circuits of nearly the 
same size, with Random apparently doing slightly better (more often producing smaller 
circuits), presumably because it tries three different circuits and uses the best. Random 
also runs for about three times as long as the others. The results of these tests are presented 
in tables in the Appendix. In the tables, the column headings specify the matrix size and 
the bias. For each heuristic, and all matrix sizes and biases, 100 randomly chosen matrices 
were tested. 

For each tie-breaker rule and Paar’s heuristic, for each matrix size and bias, the average 
number of gates in the circuits found and the number of matrices where that heuristic did 
not obtain the minimum value of all of the heuristics was computed, along with the running 
time in seconds. The Paar heuristic was beaten by at least one of the other heuristics on all 
700 matrices except for 17 of the 100 with bias 1/4 (and there was only one matrix on which 
Paar’s heuristic beat any of the other heuristics). In fact, for the tests with bias larger than 
1/4, Paar’s heuristic did worse than any of the other heuristic on every one of the matrices; 
usually the values obtained for the newer heuristics were similar, with Random possibly 
being marginally better, but with the value for Paar’s heuristic being significantly larger. 

Paar’s heuristic (and, for matrices between size 4 and 10, a variant which does at most 
one gate better on average in the data presented) was tested [22] on square matrices of 
sizes 4 × 4 through 16 × 16 and the average number of XOR gates is presented, along with 
the relative improvement over the straightforward implementation. These square matrices 
came from applying Mastrovito’s [20] matrix description of multiplication in GF (2n) to 
constant multiplication. Paar tries all possible constants in GF (2n) for n between 4 and 
16, giving these square matrices. Since our heuristics are so much slower and the matrices 
in the cryptographic applications we are interested in do not necessarily have this form, 
we have not tested on all of these restricted matrices of those sizes, but rather on random 
matrices with different biases. For 15 × 15 matrices, Paar gets an average of 52.9 gates. 
This is similar to our results for Paar’s algorithm with 15 × 15 matrices with biases 1/2 
and 3/4, where the Paar heuristic gets averages of 51.7 and 53.3 gates, respectively. For 
bias 1/2, our deterministic heuristics get average gate counts between 44.21 and 44.28, 
while Random gets 43.81. For bias 3/4, our deterministic heuristics all get average count 
40.82, while Random gets 40.38. Thus, our relative improvement over the Paar heuristic is 
between 17% and 32% for these types of matrices. Paar’s result of 52.9 gates for 15 × 15 
matrices is a relative improvement of 45.5% over the straightforward approach. 

The last row in each table in the Appendix shows the sums of the values which are the 
minimum of those calculated by the different heuristics for each matrix. This shows that 
for each of the tie-breakers, there are cases where it gets a worse result than at least one of 
the others. 

Conclusions and Work in Progress 

We developed and tested new techniques for decreasing circuit size. The techniques were 
applied to the extensively studied AES S-box. We obtained the smallest circuit yet con
structed for this function. The circuit contains 32 AND gates and 83 XOR/XNOR gates 
for a total of 115 gates. As by-products of the experiment, we obtained very small circuits 
for inversion in GF (24) and GF (28). 

The result that SHORTEST LINEAR PROGRAM is NP-hard indicates that using 
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heuristic techniques is more realistic than expecting to find the smallest subcircuits for 
linear parts of a Boolean circuit. The result that a special case of SHORTEST LINEAR 
PROGRAM is Max SNP-Complete indicates that there is a limit to how well these heuristic 
techniques can be guaranteed to do. 

Since cancellation-free techniques can produce linear straight-line programs which are a 
factor 3/2 larger than the optimal, the heuristic developed here (in Step 2) is not restricted 
to cancellation-free operations. 

The experiments with linear circuit optimization indicate that our techniques are likely 
to be superior to previous techniques which produced only cancellation-free circuits. We 
expect this to be particularly useful for cryptographic applications, both for hardware and 
software implementations, where many XOR operations are used, along with some AND 
operations to introduce nonlinearity. 

It would be interesting to determine how close to optimal the circuits found by these 
techniques usually are and how much better they are than the optimal cancellation-free 
circuits. Finding even better techniques which are not restricted to finding cancellation-free 
circuits would also be very interesting. 

Work on finding exact solutions using SAT-solvers has developed a technique which will 
quickly find a circuit with 23 gates, the same size we report here for our techniques, for 
the top linear transformation[14, 15]. They also prove that this cannot be achieved with 22 
gates, so the number of gates used here for the top linear transformation is optimal. 

Recent work has shown that the lower bound of 3/2 for the approximation ratio of 
cancellation-free straight-line programs can be improved to 2. 

In practice, one would like to construct small low-depth circuits. This paper has dis
cussed size only. However, it is plausible that a short circuit can be obtained by first 
minimizing size and then shortening the circuit along critical paths. Preliminary results 
using this technique are highly encouraging. 
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Appendix: Experimental results on samples of 100 random 
matrices 

Heuristic 

Norm 
Norm-largest 

Norm-diff 
Random 

Paar 
Minimum 

Heuristic 

Norm 
Norm-largest 

Norm-diff 
Random 

Paar 
Minimum 

15 × 15 matrices, Bias=1 
4

Average Not min Seconds 
29.65 16 12 
29.63 14 12 
29.65 15 11 
29.59 10 29 
31.07 83 0.01 
29.48 0 -

15 × 15 matrices, Bias=3 
4

Average Not min Seconds 
40.82 47 291 
40.82 46 290 
40.82 46 292 
40.39 23 838 
53.27 100 0.03 
40.11 0 -

15 × 15 matrices, Bias=1 
2 

Average Not min Seconds 
44.21 48 125 
44.23 49 121 
44.28 51 119 
43.81 23 322 
51.70 100 0.02 
43.50 0 -

15 × 15 matrices, Bias= 9 
10 

Average Not min Seconds 
30.28 31 388 
30.28 31 428 
30.29 32 388 
30.01 14 1145 
43.11 100 0.02 
29.86 0 -
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20 × 20 matrices, Bias=3 
4 

Heuristic Average Not min Seconds 
Norm 67.47 62 86,465 

Norm-largest 67.43 60 82,597 
Norm-diff 67.40 58 82,780 
Random 66.87 30 234,815 

Paar 90.86 100 0.11 
Minimum 66.43 0 -

20 × 10 matrices, Bias=3 
4 10 × 20 matrices, Bias=3 

4 
Heuristic Average Not min Seconds Average Not min Seconds 

Norm 31.44 25 1.35 42.04 44 30,626 
Norm-largest 31.43 24 1.38 42.08 44 30,490 

Norm-diff 31.44 25 1.34 42.12 44 30,740 
Random 31.23 11 4.08 41.76 22 84,540 

Paar 43.32 100 0.02 50.02 100 0.02 
Minimum 31.12 - 41.50 0 -
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