
1

A depth-16 circuit for the AES S-box

Joan Boyar∗ René Peralta†

joan@imada.sdu.dk peralta@nist.gov

Abstract

New techniques for reducing the depth of circuits for cryptographic applications are
described and applied to the AES S-box. These techniques also keep the number of
gates quite small. The result, when applied to the AES S-box, is a circuit with depth
16 and only 128 gates. For the inverse, it is also depth 16 and has only 127 gates.
There is a shared middle part, common to both the S-box and its inverse, consisting of
63 gates.

Keywords: AES; S-box; finite field inversion; circuit complexity; circuit depth.

Introduction

Constructing optimal combinational circuits is an intractable problem under almost any
meaningful metric (gate count, depth, energy consumption, etc.). In practice, no known
techniques can reliably find optimal circuits for functions with as few as eight Boolean
inputs and one Boolean output (there are 2256 such functions). Thus, heuristic or specialized
techniques are necessary in practice.

Recently, Nogami et.al. [10] presented a technique for reducing circuit depth in the for­
ward direction of the AES S-box. Their technique was primarily to choose mixed bases for
the tower-of-fields architecture in such a way that the matrices doing the linear transforma­
tions at the top and bottom had at most 4 ones in every row. In this way they were able
to compute these transformations in depth 2 each, for a total of depth 4. Their technique
cannot be simultaneously applied to the AES circuit in the reverse direction, as the inverse
matrices do not have at most 4 ones in every row. We present more general techniques
that are less dependent on the actual representation of the fields. These techniques allow
us to produce circuits which are both smaller and shorter in both directions. Although the
size of our construction is larger than the one reported in [1], which had only 115 gates,
it is comparable to previous efforts to make a compact circuit (see [3, 8]). The latter two
constructions have depths between 25 and 27. Nogami et. al. improved this, for the forward
direction of the S-Box, to depth 22 at the cost of increasing size to 148. Our new circuits
have depth 16 in both directions, size 128 in the forward direction, and size 127 in the
reverse direction. The part that is shared between the forward and reverse directions is of
size 63.

∗ Department of Mathematics and Computer Science, University of Southern Denmark. Partially sup­
ported by the Danish Natural Science Research Council (SNF). Some of this work was done while visiting
the University of California, Irvine.

†Information Technology Laboratory, National Institute of Standards and Technology.

1

mailto:peralta@nist.gov
mailto:joan@imada.sdu.dk

2 Combinational circuit optimization

Many different logically complete bases are possible for circuits. Since the operations in
the basis (XOR, AND) are equivalent to addition and multiplication modulo 2 (i.e., in
GF (2)), much work on circuits for cryptographic functions uses this basis. For logical
completeness, the negation operation (or the constant 1) is needed as well. In GF (2),
negation corresponds to x + 1. For technical reasons, and for an accurate gate-count, we
use XNOR gates (X N OR(x, y) = x + y + 1 in GF (2)) instead of negation. Components
free of AND gates are called linear; our emphasis is on these components, though nonlinear
components are also optimized.

Under the basis (XOR,XNOR,AND), classic results by Shannon [12] and Lupanov [7]
show that almost all predicates on n bits have circuit complexity about 2n

. The multi-n
plicative complexity of a function is the number of AND gates necessary and sufficient to
compute the function. Analogous to the Shannon-Lupanov bound, it was shown in [2] that
almost all Boolean predicates on n bits have multiplicative complexity about 2

n
2 . Strictly

speaking, these theorems say nothing about the class of functions with polynomial circuit
complexity. However, it is reasonable to expect that, in practice, the multiplicative com­
plexity of functions is significantly smaller than their Boolean complexity. This is one of
the principles that guide our design strategy.

Circuits with few AND gates will naturally have large sections which are purely lin­
ear. Boyar and Peralta [1] have used this insight to construct circuits much smaller than
previously known for a variety of applications (see http://cs-www.cs.yale.edu/homes/
peralta/CircuitStuff/CMT.html). The heuristic is a two-step process which first reduces
multiplicative complexity and then optimizes linear components.

The work presented in this paper is based on the idea that a short circuit may be
obtained by starting from a small (i.e. optimized for size) circuit and performing three
types of depth-decreasing optimizations:

•	 apply a greedy heuristic to re-synthesize linear components into lower-depth construc­
tions;

•	 use techniques from automatic theorem proving to re-synthesize non-linear compo­
nents into lower-depth constructions;

•	 do simple depth-shortening local replacement along critical paths.

As these steps are automatic heuristics that do not consider size, we also coded a final step
that reduces size via depth-preserving local replacement. These techniques are explained
below. They will often increase the size of the circuit, but we start with a small circuit and
the techniques are designed to minimize the increase.

3 The tower field construction

There are many representations of GF (28). We construct

2•	 GF (22) by adjoining a root W of x + x + 1 over GF (2);

2•	 GF (24) by adjoining a root Z of x + x + W 2 over GF (22).

2

http://cs-www.cs.yale.edu/homes

2• GF (28) by adjoining a root Y of x + x + W Z over GF (24).

As does Canright in [3], we represent GF (22) using the basis (W, W 2), GF (24) using
the basis (Z2, Z 8), and GF (28) using the basis (Y , Y 16).

Let A = a0Y + a1Y 16 be an arbitrary element in GF (28). Following [6], the inverse of
A can be computed as follows:

A−1 (AA16)−1A16 =

((a0Y + a1Y 16)(a1Y + a0Y 16))−1(a1Y + a0Y 16)=
2

1
2)Y 17 + Y 32))−1(a1Y + a0Y 16)=	 ((a0 + a + a0a1(Y 2

((a0 + a1)
2Y 17 + a0a1(Y + Y 16)2)−1(a1Y + a0Y 16)=

= ((a0 + a1)
2W Z + a0a1)

−1(a1Y + a0Y 16).

Thus computation of the inverse in GF (28) can be done using operations in GF (24) as
follows:

T1 = (a0 + a1)

T2 = (W Z)T1
2

T3 = a0a1

T4 = T2 + T3

T −1T5 = 4

T6 = T5a1

T7 = T5a0

= T6Y + T7Y 16The result is A−1	 .
The GF (24) operations involved are addition, multiplication, square and scale by WZ,

and inverse. Of these, only multiplication and inverse turn out to be non-linear. We derive
a standard GF (24) multiplication circuit by reduction to GF (22) operations. The standard
inversion circuit, however, has more gates and depth than necessary. Hence we derive a
better circuit here.

Let Δ = (x1W + x2W 2)Z2 + (x3W + x4W 2)Z8 be an arbitrary element in GF (24). It
is not hard to verify that its inverse is Δ−1 = (y1W + y2W 2)Z2 + (y3W + y4W 2)Z8 where
the yi’s satisfy the following polynomials over GF (2):

• y1 = x2x3x4 + x1x3 + x2x3 + x3 + x4

• y2 = x1x3x4 + x1x3 + x2x3 + x2x4 + x4

• y3 = x1x2x4 + x1x3 + x1x4 + x1 + x2

• y4 = x1x2x3 + x1x3 + x1x4 + x2x4 + x2

The heuristic Boyar and Peralta used in [1] to compute the yi’s was inspired by methods
from automatic theorem proving. Consider an arbitrary predicate f on n inputs. We refer
to the last column of the truth table for f as the signal of f . The columns in the truth table
corresponding to each of the inputs to f are known signals. A search for a circuit for f starts

3

4

with this set S of known signals. If u, v are known signals for functions g, h respectively,
then the bit-wise XOR (AND) of u and v is the signal for the predicate g⊕h (g∧h). We
can grow the set S by adding the XOR of randomly chosen signals. We call this step an
XOR round. The analogous step where the AND of signals is added to S is called an AND
round. Each round is parameterized by the number of new signals added and the maximum
number of AND gates allowed. In either an XOR round or an AND round, two signals
are not combined if doing so creates a circuit with more AND gates than is allowed. The
heuristic alternates between XOR and AND rounds until the target signal is found or the
set S becomes too large. In the latter case, since this is a randomized procedure, we start
again.

Boyar and Peralta [1] used this heuristic to find a circuit with only 5 AND gates and
11 XOR gates, but depth 9. In terms of size, this was a significant improvement over
previous constructions. None of these constructions, however, was concerned with depth.
To minimize depth, we used a different parametrization of these techniques and found a
circuit with depth 4 and size 17. The straight-line program for the circuit is in Figure 1
(arithmetic is over GF (2)).

t1 = x2 + x3 t2 = x2 × x0 t3 = x1 + t2

t4 = x0 + x1 t5 = x3 + t2 t6 = t5 × t4

t7 = t3 × t1 t8 = x0 × x3 t9 = t4 × t8

t10 = t4 + t9 t11 = x1 × x2 t12 = t1 × t11

t13 = t1 + t12 y0 = t2 + t13 y1 = x3 + t7

y2 = t2 + t10 y3 = x1 + t6

Figure 1: Inversion in GF (24). Input is (x0, x1, x2, x3) and output is (y0, y1, y2, y3).

A greedy heuristic for linear components

The largest linear components in our circuit are the top linear and bottom linear compo­
nents. These components contain more than the linear operations defined explicity in the
definition of the AES S-box and the matrices to do the basis changes. This is because they
include some of the finite field inversion operations. The top linear component is defined by
the matrix U , a 22 × 8 matrix (Figure 2). One can compute all 22 of the required outputs
with only 23 XOR gates, and 23 are necessary [1, 5, 4]. But these results do not attempt
to minimize depth (the depth is 7). Since there are only 8 columns in this matrix, each of
the 22 outputs could clearly be calculated independently using depth at most 3, simply by
using a balanced binary tree with the inputs as leaves. The challenge is to achieve the low
depth without increasing the number of XOR gates drastically. The algorithm below does
this. (Note that although the linear transformation at the top of Nogami et.al.’s circuit
only has depth 2, they have XOR gates at depth 3, so their top linear component also has
depth at least 3.)

The bottom linear component is defined by the matrix B, an 8 × 18 matrix (Figure 3).
The row with the largest Hamming weight (number of ones = number of variables added
together) has 12 ones, so depth at most 4 is possible for this component.

The smallest circuits for these two matrices, U and B, use the concept of cancellation

4

U =

⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1
0 1 1 1 0 0 0 1
1 0 0 1 0 1 1 0
1 1 1 0 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 1 1 1
1 0 0 1 1 0 1 0
1 1 0 1 1 1 1 0
1 0 0 1 1 0 1 1
1 1 1 1 1 0 1 0
0 1 0 0 1 1 1 0
0 1 0 0 1 1 1 1
1 0 1 1 0 1 0 0
0 1 1 1 1 1 1 0
0 0 1 0 1 1 1 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1 1 0

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 2: The top linear transformation U .

0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0
0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0
1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0
1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0

⎞⎛

B =

0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0
1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0
1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1

Figure 3: The bottom linear transformation B.

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5

of variables. Note that in [1], the variable y11 is computed as y20 ⊕ y9. Since y20 =
x0 ⊕ x1 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 and y9 = x0 ⊕ x3, the result is y11 = x1 ⊕ x4 ⊕ x5 ⊕ x6; the x0

and x3 are cancelled.
When attempting to find small, low-depth circuits for a linear component, one expects

that cancellation of variables will be of limited help, since it would often require that
something with a large Hamming weight has already been computed, before adding one to
the depth at the gate where the cancellation occurs. Thus, it seems reasonable to start with
a technique which does not allow cancellation, and then try to add cancellation afterwards
where it helps.

We modify Paar’s technique [11], a greedy approach which produces cancellation-free
programs. Paar’s technique keeps a list of variables computed, which is initially only the
inputs. Then it repeatedly determines which two variables, XORed together, occur in most
outputs. One such pair is selected and XORed together. This result is added as a new
variable which appears in all outputs where both variables previously appeared. This is
repeated until everything has been computed. Paar’s technique is implemented by starting
with the initial matrix and adding columns corresponding to the new variables which are
added. When a new column is added, this corresponds to adding two variables, u and v.
In all rows in the matrix which currently have a one in both of the columns corresponding
to u and v, those two ones are changed to zeros, and a one is placed in the corresponding
row of the new column. All other values in the new column are set to zero.

The Low Depth Greedy algorithm maintains the greedy approach of Paar’s technique,
but only allows this greediness as long as it does not increase the circuit’s depth unnecessar­
ily. Assume that k is the depth we are aiming for, i.e. k = plog2(w)l, where w is the largest
Hamming weight of any row. The Low Depth Greedy algorithm has k phases, starting with
0. At the beginning of a new phase, we check if any row has Hamming weight two. Since
there must be an additional gate to produce that output, we produce it at the beginning of
the phase so that it affects all counting in the current phase. During phase i ≥ 0, no row in
the current matrix has Hamming weight more than 2k−i and only inputs or gates already
produced at depth i or less are considered as possible inputs to gates in phase i. Thus, the
depth of gates in phase i is at most i + 1. When choosing two possible inputs for gates,
one chooses a pair which occurs most frequently in the current rows, with the restriction,
of course, that both inputs are at level i or less. Pseudo-code for this algorithm is given in
Figure 4.

This algorithm produces a minimum depth (optimal depth) circuit.

Theorem 1 When given an m × n 0-1 matrix, M , with maximum Hamming weight at
most 2k in any row, Algorithm Low Depth Greedy, produces a correct, depth-k circuit for
computing the linear component defined by the matrix. The running time is O(mt3), where
t is the final number of columns and is at most mn + n − m.

Proof. If one considers the inputs as being produced at depth zero, in phase i of the
algorithm, only variables which have been produced at depth at most i are considered as
possible inputs to XOR gates, so the XOR gates produced have depth at most i + 1. This
is maintained inductively by only considering columns between 1 and ip, and ip is reset
at the end of each phase to the last column produced in that phase. Since the algorithm
maintains that at the beginning of phase i, no more than 2k−i of the current variables
have to be XORed to produce any output, the algorithm terminates in phase k − 1, giving
maximum depth k. Note that it will always be possible to proceed from phase i to phase

6

Low Depth Greedy(M , m, n, k):
{ M is an m × n 0-1 matrix with Hamming weight at most 2k in any row}

s := n + 1 { index of the next column }
i := 0
ip := n { columns up to n had depth at most i }
while there is some row in M with Hamming weight > 2k−i−1 do
{ Phase i }

if some row £ in M with weight 2
had weight 2 at the beginning of the phase
then let j1 and j2 be the columns in row £ with ones
else find two columns 1 ≤ j1, j2 ≤ ip

which maximize |{£ | M [£, j1] = M [£, j2] = 1}|
add an XOR gate with inputs from the variables for columns j1, j2

the output variable produced will correspond to column s
for £ = 1 to m do

if M [£, j1] = M [£, j2] = 1
then M [£, j1] := 0; M [£, j2] := 0; M [£, s] := 1
else M [£, s] := 0

s := s + 1

ip := s − 1 { keep track of which gates had depth at most i }

i := i + 1

Figure 4: Algorithm for creating a minimum depth circuit for linear components

i + 1, since combining the at most 2k−i ones any row by pairs will reduce the number of
ones to at most half as many, at most 2k−i−1 .

For each XOR gate added, the algorithm checks every pair of columns between 1 and
ip < s, where s is the new column being added. For each of these pairs of columns, one
checks for each row if both entries corresponding to these columns are one and then does
some updating. The number of rows is n, so the total running time is O(nt3). Since there
are at most n ones in every row, each row will be computed using at most n − 1 XORs, and
all m rows will be computed with at most m(n − 1) XORs. There are n columns initially,
so in all t ≤ mn + n − m. D

Another possibility for an algorithm to produce optimal depth circuits for linear compo­
nents would have been to finish with all pairs of inputs before continuing to pairs involving
gates at depth one, and then to finish with all pairs at depth one (or involving the possibly
one remaining input which has not been paired), etc. However, the method chosen here
allows more flexibility in choosing gates, thus allowing more possibilities to create gates
which can be used more than once.

After an initial attempt at minimizing depth and size in the entire circuit, we may
be able to further decrease the number of gates in the top linear component since not all
the XOR gates at level three (an output of the top linear component) would necessarily
increase the total depth if they were at level four or more (for the AES S-box, k and k + 1
more generally). Or, on the other hand, one might be able to reduce the depth even more

7

by calculating some outputs of the top linear component at lower depth than the depth
indicated by the matrix row with largest Hamming weight, if these “outputs” are on the
critical path.

It is easy to determine which outputs of the top linear component could be allowed to be
at a larger depth or should be at a lower depth if possible, using a program which calculates
the depth and height of every gate. If all of the outputs of the top linear component which
have depth and height values adding up to exactly the total depth of the circuit are such
that they could have been calculated at lower depth than their current depth, then one can
probably reduce the depth of the circuit. On the other hand, when these values add up to
less than the total depth of the circuit, there is some slack at that gate. For XOR gates at
depth 3 (in an AES S-box circuit) which have slack, one can check if they are the sum of
any two of the other outputs of the top-linear part. If they are, these other outputs were
computed at depth 3, so adding them together only gives depth 4, which is acceptable when
the output was originally created at a gate with slack. Note that cancellation of variables
should be allowed here.

The Low Depth Greedy algorithm can be modified to take advantage of slackness. In
this case, an extra array Factor is initialized for each input to the linear transformation.
Rows with no slack are given the value 1, and rows that could be at j levels further down
than the minimum are given the value 2j in Factor. Then, when checking if one should
proceed to the next phase, rather than check if all rows have Hamming weight at most 2k−i

for phase i, one checks if its Hamming weight divided by its value in Factor is at most 2k−i .
This allows the possibility of choosing inputs required for these outputs at a larger depth.
These techniques were not actually necessary to produce the circuits found.

5 Reducing depth in linear components

There are straight-forward techniques for reducing depth in linear components via local
replacement. Consider any gate in such a component. The output produced there is the
XOR of several values (either inputs or outputs from other gates). These values can be
XORed in any order to get this result. Thus, for example, suppose g = g1 ⊕ g2, g1 is at
depth d1 and g1 = g3 ⊕ g4, g2 is at depth d2, and g3 is at depth d3. If d2 and d3 are at depth
at most d1 − 2, then calculating h1 = g2 ⊕ g3 and h2 = h1 ⊕ g4 results in h1 computing
the same result as g, but at depth one lower. If the result computed at g1 was not used
anywhere else in the circuit, then this does not increase the total number of gates. However,
if g1 is used elsewhere, it would still need to be computed, and the number of gates would
increase by one.

6 The circuits

The depth-16 circuits are shown in Figures 5, 6, 7, 8, and 9. Note that the addition and
multiplication operations are modulo 2, so they are XOR and AND operations. The #
operation is an XNOR (adding modulo 2 and then complementing the result). We used Al­
gorithm Low Depth Greedy for the four linear transformations (here, we do not include the
binary matrices corresponding to the transformations in the reverse direction of the AES
S-box). The circuits are divided into three components: top linear transformations (Fig­
ures 5 and 6), shared non-linear component (Figure 7), and bottom linear transformations

8

(Figures 8 and 9).

T1 = U0 + U3
T2 = U0 + U5
T3 = U0 + U6
T4 = U3 + U5
T5 = U4 + U6
T6 = T1 + T5
T7 = U1 + U2

Figure 5: Top linear transform in forward direction.

T23 = U0 + U3
T22 = U1 # U3
T2 = U0 # U1
T1 = U3 + U4
T24 = U4 # U7
R5 = U6 + U7
T8 = U1 # T23

T19 = T22 + R5
T9 = U7 # T1
T10 = T2 + T24
T13 = T2 + R5
T3 = T1 + R5
T25 = U2 # T1
R13 = U1 + U6

T17 = U2 # T19
T20 = T24 + R13
T4 = U4 + T8
R17 = U2 # U5
R18 = U5 # U6
R19 = U2 # U4
Y5 = U0 + R17

T6 = T22 + R17
T16 = R13 + R19
T27 = T1 + R18
T15 = T10 + T27
T14 = T10 + R18
T26 = T3 + T16

Figure 6: Top linear transform in reverse direction.

M1 = T13 x T6
M2 = T23 x T8
M3 = T14 + M1
M4 = T19 x D
M5 = M4 + M1
M6 = T3 x T16
M7 = T22 x T9
M8 = T26 + M6
M9 = T20 x T17
M10 = M9 + M6
M11 = T1 x T15
M12 = T4 x T27
M13 = M12 + M11
M14 = T2 x T10
M15 = M14 + M11
M16 = M3 + M2

T8 = U7 + T6 T15 = T5 + T11 T22 = T7 + T21
T9 = U7 + T7 T16 = T5 + T12 T23 = T2 + T22
T10 = T6 + T7 T17 = T9 + T16 T24 = T2 + T10
T11 = U1 + U5 T18 = U3 + U7 T25 = T20 + T17
T12 = U2 + U5 T19 = T7 + T18 T26 = T3 + T16
T13 = T3 + T4 T20 = T1 + T19 T27 = T1 + T12
T14 = T6 + T11 T21 = U6 + U7

M17 = M5 + T24
M18 = M8 + M7
M19 = M10 + M15
M20 = M16 + M13
M21 = M17 + M15
M22 = M18 + M13
M23 = M19 + T25
M24 = M22 + M23
M25 = M22 x M20
M26 = M21 + M25
M27 = M20 + M21
M28 = M23 + M25
M29 = M28 x M27
M30 = M26 x M24
M31 = M20 x M23
M32 = M27 x M31

M33 = M27 + M25
M34 = M21 x M22
M35 = M24 x M34
M36 = M24 + M25
M37 = M21 + M29
M38 = M32 + M33
M39 = M23 + M30
M40 = M35 + M36
M41 = M38 + M40
M42 = M37 + M39
M43 = M37 + M38
M44 = M39 + M40
M45 = M42 + M41
M46 = M44 x T6
M47 = M40 x T8
M48 = M39 x D

M49 = M43 x T16
M50 = M38 x T9
M51 = M37 x T17
M52 = M42 x T15
M53 = M45 x T27
M54 = M41 x T10
M55 = M44 x T13
M56 = M40 x T23
M57 = M39 x T19
M58 = M43 x T3
M59 = M38 x T22
M60 = M37 x T20
M61 = M42 x T1
M62 = M45 x T4
M63 = M41 x T2

Figure 7: Shared part of AES S-box circuit (D = U7 in the forward direction and D = Y 5
in the reverse direction).

The circuits were generated automatically using randomization for tie-resolution. Differ­
ent runs of our code yield depth 16 consistently. However, size can vary by a few gates. As

9

L0	 = M61 + M62 L10 = M53 + L4 L20 = L0 + L1 S0	 = L6 + L24
L1	 = M50 + M56 L11 = M60 + L2 L21 = L1 + L7 S1	 = L16 # L26
L2	 = M46 + M48 L12 = M48 + M51 L22 = L3 + L12 S2	 = L19 # L28
L3	 = M47 + M55 L13 = M50 + L0 L23 = L18 + L2 S3	 = L6 + L21
L4	 = M54 + M58 L14 = M52 + M61 L24 = L15 + L9 S4	 = L20 + L22
L5	 = M49 + M61 L15 = M55 + L1 L25 = L6 + L10 S5	 = L25 + L29
L6	 = M62 + L5 L16 = M56 + L0 L26 = L7 + L9 S6	 = L13 # L27
L7	 = M46 + L3 L17 = M57 + L1 L27 = L8 + L10 S7	 = L6 # L23
L8	 = M51 + M59 L18 = M58 + L8 L28 = L11 + L14
L9	 = M52 + M53 L19 = M63 + L4 L29 = L11 + L17

Figure 8: Bottom linear transform in forward direction. Outputs are S0 . . . S 7.

P0 = M52 + M61 P10 = M57 + P4 P20 = P4 + P6 W1 = P26 + P29
P1 = M58 + M59 P11 = P0 + P3 P22 = P2 + P7 W2 = P17 + P28
P2 = M54 + M62 P12 = M46 + M48 P23 = P7 + P8 W3 = P12 + P22
P3 = M47 + M50 P13 = M49 + M51 P24 = P5 + P7 W4 = P23 + P27
P4 = M48 + M56 P14 = M49 + M62 P25 = P6 + P10 W5 = P19 + P24
P5 = M46 + M51 P15 = M54 + M59 P26 = P9 + P11 W6 = P14 + P23
P6 = M49 + M60 P16 = M57 + M61 P27 = P10 + P18 W7 = P9 + P16
P7 = P0 + P1 P17 = M58 + P2 P28 = P11 + P25
P8 = M50 + M53 P18 = M63 + P5 P29 = P15 + P20
P9 = M55 + M63 P19 = P2 + P3 W0 = P13 + P22

Figure 9: Bottom linear transform in reverse direction. Outputs are W 0 . . . W 7.

long as the topology derived from the tower-of-fields method is maintained, we conjecture
that it is unlikely that the size of the circuits can be significantly reduced without increasing
the depth. We also conjecture that it is unlikely that the depth can be reduced without
significantly increasing size. Of course, if the logical base is expanded, we may be able to
do better. For example, if NAND gates are used in the circuit for inversion in GF (24), it is
not hard to reduce the number of gates by two without increasing the depth. Since there
are only 256 possible inputs, we verified the circuits fully against the specifications in [9].

References

[1] J. Boyar	 and R. Peralta. A new combinational logic minimization technique with
applications to cryptology. In P. Festa, editor, SEA, volume 6049 of Lecture Notes in
Computer Science, pages 178–189. Springer, 2010.

[2] J. Boyar, R. Peralta, and D. Pochuev.	 On the multiplicative complexity of Boolean
functions over the basis (∧, ⊕, 1). Theoretical Computer Science, 235:43–57, 2000.

[3] D. Canright. A very compact Rijndael S-box. Technical Report NPS-MA-05-001, Naval
Postgraduate School, 2005.

10

[4] C. Fuhs and P. Schneider-Kamp. Optimizing the AES S-Box using SAT. In Proceedings
of the 8th International Workshop on the Implementation of Logics, 2010.

[5] C. Fuhs and P.	 Schneider-Kamp. Synthesizing shortest linear straight-line programs
over GF(2) using SAT. In O. Strichman and S. Szeider, editors, SAT, volume 6175 of
Lecture Notes in Computer Science, pages 71–84. Springer, 2010.

[6] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in GF (2m)
using normal bases. Inf. Comput., 78(3):171–177, 1988.

[7] O. B. Lupanov. A method of circuit synthesis.	 Izvestia V.U.Z. Radiofizika, 1:120–140,
1958.

[8] S. Morioka	 and A. Satoh. An optimized S-Box circuit architecture for low power
AES design. In Revised Papers from the 4th International Workshop on Cryptographic
Hardware and Embedded Systems, pages 172–186, London, UK, 2003. Springer-Verlag.

[9] NIST.	 Advanced Encryption Standard (AES) (FIPS PUB 197). National Institute of
Standards and Technology, November 2001.

[10] Y. Nogami, K. Nekado, T. Toyota, N. Hongo, and Y. Morikawa.	 Mixed bases for effi­
cient inversion in f(((22)2)2) and conversion matrices of subbytes of AES. In S. Man­
gard and F.-X. Standaert, editors, CHES, volume 6225 of Lecture Notes in Computer
Science, pages 234–247. Springer, 2010.

[11] C. Paar.	 Optimized arithmetic for Reed-Solomon encoders. In IEEE International
Symposium on Information Theory, page 250, 1997.

[12] C. E. Shannon. The synthesis of two-terminal switching circuits. Bell System Tech. J.,
28:59–98, 1949.

11

