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Abstract 

New techniques for reducing the depth of circuits for cryptographic applications are 
described and applied to the AES S-box. These techniques also keep the number of 
gates quite small. The result, when applied to the AES S-box, is a circuit with depth 
16 and only 128 gates. For the inverse, it is also depth 16 and has only 127 gates. 
There is a shared middle part, common to both the S-box and its inverse, consisting of 
63 gates. 
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Introduction 

Constructing optimal combinational circuits is an intractable problem under almost any 
meaningful metric (gate count, depth, energy consumption, etc.). In practice, no known 
techniques can reliably find optimal circuits for functions with as few as eight Boolean 
inputs and one Boolean output (there are 2256 such functions). Thus, heuristic or specialized 
techniques are necessary in practice. 

Recently, Nogami et.al. [10] presented a technique for reducing circuit depth in the for­
ward direction of the AES S-box. Their technique was primarily to choose mixed bases for 
the tower-of-fields architecture in such a way that the matrices doing the linear transforma­
tions at the top and bottom had at most 4 ones in every row. In this way they were able 
to compute these transformations in depth 2 each, for a total of depth 4. Their technique 
cannot be simultaneously applied to the AES circuit in the reverse direction, as the inverse 
matrices do not have at most 4 ones in every row. We present more general techniques 
that are less dependent on the actual representation of the fields. These techniques allow 
us to produce circuits which are both smaller and shorter in both directions. Although the 
size of our construction is larger than the one reported in [1], which had only 115 gates, 
it is comparable to previous efforts to make a compact circuit (see [3, 8]). The latter two 
constructions have depths between 25 and 27. Nogami et. al. improved this, for the forward 
direction of the S-Box, to depth 22 at the cost of increasing size to 148. Our new circuits 
have depth 16 in both directions, size 128 in the forward direction, and size 127 in the 
reverse direction. The part that is shared between the forward and reverse directions is of 
size 63. 
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ported by the Danish Natural Science Research Council (SNF). Some of this work was done while visiting 
the University of California, Irvine. 

†Information Technology Laboratory, National Institute of Standards and Technology. 
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2 Combinational circuit optimization 

Many different logically complete bases are possible for circuits. Since the operations in 
the basis (XOR, AND) are equivalent to addition and multiplication modulo 2 (i.e., in 
GF (2)), much work on circuits for cryptographic functions uses this basis. For logical 
completeness, the negation operation (or the constant 1) is needed as well. In GF (2), 
negation corresponds to x + 1. For technical reasons, and for an accurate gate-count, we 
use XNOR gates (X N OR(x, y) = x + y + 1 in GF (2)) instead of negation. Components 
free of AND gates are called linear; our emphasis is on these components, though nonlinear 
components are also optimized. 

Under the basis (XOR,XNOR,AND), classic results by Shannon [12] and Lupanov [7] 
show that almost all predicates on n bits have circuit complexity about 2n 

. The multi-n 
plicative complexity of a function is the number of AND gates necessary and sufficient to 
compute the function. Analogous to the Shannon-Lupanov bound, it was shown in [2] that 
almost all Boolean predicates on n bits have multiplicative complexity about 2 

n 
2 . Strictly 

speaking, these theorems say nothing about the class of functions with polynomial circuit 
complexity. However, it is reasonable to expect that, in practice, the multiplicative com­
plexity of functions is significantly smaller than their Boolean complexity. This is one of 
the principles that guide our design strategy. 

Circuits with few AND gates will naturally have large sections which are purely lin­
ear. Boyar and Peralta [1] have used this insight to construct circuits much smaller than 
previously known for a variety of applications (see http://cs-www.cs.yale.edu/homes/ 
peralta/CircuitStuff/CMT.html). The heuristic is a two-step process which first reduces 
multiplicative complexity and then optimizes linear components. 

The work presented in this paper is based on the idea that a short circuit may be 
obtained by starting from a small (i.e. optimized for size) circuit and performing three 
types of depth-decreasing optimizations: 

•	 apply a greedy heuristic to re-synthesize linear components into lower-depth construc­
tions; 

•	 use techniques from automatic theorem proving to re-synthesize non-linear compo­
nents into lower-depth constructions; 

•	 do simple depth-shortening local replacement along critical paths. 

As these steps are automatic heuristics that do not consider size, we also coded a final step 
that reduces size via depth-preserving local replacement. These techniques are explained 
below. They will often increase the size of the circuit, but we start with a small circuit and 
the techniques are designed to minimize the increase. 

3 The tower field construction 

There are many representations of GF (28). We construct 

2•	 GF (22) by adjoining a root W of x + x + 1 over GF (2); 

2•	 GF (24) by adjoining a root Z of x + x + W 2 over GF (22). 
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2• GF (28) by adjoining a root Y of x + x + W Z over GF (24). 

As does Canright in [3], we represent GF (22) using the basis (W, W 2), GF (24) using 
the basis (Z2, Z 8), and GF (28) using the basis (Y , Y 16). 

Let A = a0Y + a1Y 16 be an arbitrary element in GF (28). Following [6], the inverse of 
A can be computed as follows: 

A−1 (AA16)−1A16 = 

((a0Y + a1Y 16)(a1Y + a0Y 16))−1(a1Y + a0Y 16)= 
2 

1 
2)Y 17 + Y 32))−1(a1Y + a0Y 16)=	 ((a0 + a + a0a1(Y 2 

((a0 + a1)
2Y 17 + a0a1(Y + Y 16)2)−1(a1Y + a0Y 16)=
 

= ((a0 + a1)
2W Z + a0a1)

−1(a1Y + a0Y 16).
 

Thus computation of the inverse in GF (28) can be done using operations in GF (24) as 
follows: 

T1 = (a0 + a1) 

T2 = (W Z )T1 
2 

T3 = a0a1 

T4 = T2 + T3 

T −1T5 = 4 

T6 = T5a1 

T7 = T5a0 

= T6Y + T7Y 16The result is A−1	 . 
The GF (24) operations involved are addition, multiplication, square and scale by WZ, 

and inverse. Of these, only multiplication and inverse turn out to be non-linear. We derive 
a standard GF (24) multiplication circuit by reduction to GF (22) operations. The standard 
inversion circuit, however, has more gates and depth than necessary. Hence we derive a 
better circuit here. 

Let Δ = (x1W + x2W 2)Z2 + (x3W + x4W 2)Z8 be an arbitrary element in GF (24). It 
is not hard to verify that its inverse is Δ−1 = (y1W + y2W 2)Z2 + (y3W + y4W 2)Z8 where 
the yi’s satisfy the following polynomials over GF (2): 

• y1 = x2x3x4 + x1x3 + x2x3 + x3 + x4 

• y2 = x1x3x4 + x1x3 + x2x3 + x2x4 + x4 

• y3 = x1x2x4 + x1x3 + x1x4 + x1 + x2 

• y4 = x1x2x3 + x1x3 + x1x4 + x2x4 + x2 

The heuristic Boyar and Peralta used in [1] to compute the yi’s was inspired by methods 
from automatic theorem proving. Consider an arbitrary predicate f on n inputs. We refer 
to the last column of the truth table for f as the signal of f . The columns in the truth table 
corresponding to each of the inputs to f are known signals. A search for a circuit for f starts 
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with this set S of known signals. If u, v are known signals for functions g, h respectively, 
then the bit-wise XOR (AND) of u and v is the signal for the predicate g⊕h (g∧h). We 
can grow the set S by adding the XOR of randomly chosen signals. We call this step an 
XOR round. The analogous step where the AND of signals is added to S is called an AND 
round. Each round is parameterized by the number of new signals added and the maximum 
number of AND gates allowed. In either an XOR round or an AND round, two signals 
are not combined if doing so creates a circuit with more AND gates than is allowed. The 
heuristic alternates between XOR and AND rounds until the target signal is found or the 
set S becomes too large. In the latter case, since this is a randomized procedure, we start 
again. 

Boyar and Peralta [1] used this heuristic to find a circuit with only 5 AND gates and 
11 XOR gates, but depth 9. In terms of size, this was a significant improvement over 
previous constructions. None of these constructions, however, was concerned with depth. 
To minimize depth, we used a different parametrization of these techniques and found a 
circuit with depth 4 and size 17. The straight-line program for the circuit is in Figure 1 
(arithmetic is over GF (2)). 

t1 = x2 + x3 t2 = x2 × x0 t3 = x1 + t2 

t4 = x0 + x1 t5 = x3 + t2 t6 = t5 × t4 

t7 = t3 × t1 t8 = x0 × x3 t9 = t4 × t8 

t10 = t4 + t9 t11 = x1 × x2 t12 = t1 × t11 

t13 = t1 + t12 y0 = t2 + t13 y1 = x3 + t7 

y2 = t2 + t10 y3 = x1 + t6 

Figure 1: Inversion in GF (24). Input is (x0, x1, x2, x3) and output is (y0, y1, y2, y3). 

A greedy heuristic for linear components 

The largest linear components in our circuit are the top linear and bottom linear compo­
nents. These components contain more than the linear operations defined explicity in the 
definition of the AES S-box and the matrices to do the basis changes. This is because they 
include some of the finite field inversion operations. The top linear component is defined by 
the matrix U , a 22 × 8 matrix (Figure 2). One can compute all 22 of the required outputs 
with only 23 XOR gates, and 23 are necessary [1, 5, 4]. But these results do not attempt 
to minimize depth (the depth is 7). Since there are only 8 columns in this matrix, each of 
the 22 outputs could clearly be calculated independently using depth at most 3, simply by 
using a balanced binary tree with the inputs as leaves. The challenge is to achieve the low 
depth without increasing the number of XOR gates drastically. The algorithm below does 
this. (Note that although the linear transformation at the top of Nogami et.al.’s circuit 
only has depth 2, they have XOR gates at depth 3, so their top linear component also has 
depth at least 3.) 

The bottom linear component is defined by the matrix B, an 8 × 18 matrix (Figure 3). 
The row with the largest Hamming weight (number of ones = number of variables added 
together) has 12 ones, so depth at most 4 is possible for this component. 

The smallest circuits for these two matrices, U and B, use the concept of cancellation 
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U =
 

⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 

0 0 0 0 0 0 0 1 
0 0 0 1 0 1 0 0 
1 0 0 0 0 0 1 0 
1 0 0 1 0 0 0 0 
1 0 0 0 0 1 0 0 
0 1 1 0 0 0 0 1 
0 1 1 1 0 0 0 1 
1 0 0 1 0 1 1 0 
1 1 1 0 0 0 0 1 
0 1 1 0 0 0 1 1 
1 1 1 0 0 1 1 1 
1 0 0 1 1 0 1 0 
1 1 0 1 1 1 1 0 
1 0 0 1 1 0 1 1 
1 1 1 1 1 0 1 0 
0 1 0 0 1 1 1 0 
0 1 0 0 1 1 1 1 
1 0 1 1 0 1 0 0 
0 1 1 1 1 1 1 0 
0 0 1 0 1 1 1 0 
1 0 1 0 1 1 0 0 
1 0 1 0 1 1 1 0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

Figure 2: The top linear transformation U . 

0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 
0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 
1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 
1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 

⎞⎛ 

B =
 
0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 
1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 
1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 

Figure 3: The bottom linear transformation B. 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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of variables. Note that in [1], the variable y11 is computed as y20 ⊕ y9. Since y20 = 
x0 ⊕ x1 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 and y9 = x0 ⊕ x3, the result is y11 = x1 ⊕ x4 ⊕ x5 ⊕ x6; the x0 

and x3 are cancelled. 
When attempting to find small, low-depth circuits for a linear component, one expects 

that cancellation of variables will be of limited help, since it would often require that 
something with a large Hamming weight has already been computed, before adding one to 
the depth at the gate where the cancellation occurs. Thus, it seems reasonable to start with 
a technique which does not allow cancellation, and then try to add cancellation afterwards 
where it helps. 

We modify Paar’s technique [11], a greedy approach which produces cancellation-free 
programs. Paar’s technique keeps a list of variables computed, which is initially only the 
inputs. Then it repeatedly determines which two variables, XORed together, occur in most 
outputs. One such pair is selected and XORed together. This result is added as a new 
variable which appears in all outputs where both variables previously appeared. This is 
repeated until everything has been computed. Paar’s technique is implemented by starting 
with the initial matrix and adding columns corresponding to the new variables which are 
added. When a new column is added, this corresponds to adding two variables, u and v. 
In all rows in the matrix which currently have a one in both of the columns corresponding 
to u and v, those two ones are changed to zeros, and a one is placed in the corresponding 
row of the new column. All other values in the new column are set to zero. 

The Low Depth Greedy algorithm maintains the greedy approach of Paar’s technique, 
but only allows this greediness as long as it does not increase the circuit’s depth unnecessar­
ily. Assume that k is the depth we are aiming for, i.e. k = plog2(w)l, where w is the largest 
Hamming weight of any row. The Low Depth Greedy algorithm has k phases, starting with 
0. At the beginning of a new phase, we check if any row has Hamming weight two. Since 
there must be an additional gate to produce that output, we produce it at the beginning of 
the phase so that it affects all counting in the current phase. During phase i ≥ 0, no row in 
the current matrix has Hamming weight more than 2k−i and only inputs or gates already 
produced at depth i or less are considered as possible inputs to gates in phase i. Thus, the 
depth of gates in phase i is at most i + 1. When choosing two possible inputs for gates, 
one chooses a pair which occurs most frequently in the current rows, with the restriction, 
of course, that both inputs are at level i or less. Pseudo-code for this algorithm is given in 
Figure 4. 

This algorithm produces a minimum depth (optimal depth) circuit. 

Theorem 1 When given an m × n 0-1 matrix, M , with maximum Hamming weight at 
most 2k in any row, Algorithm Low Depth Greedy, produces a correct, depth-k circuit for 
computing the linear component defined by the matrix. The running time is O(mt3), where 
t is the final number of columns and is at most mn + n − m. 

Proof. If one considers the inputs as being produced at depth zero, in phase i of the 
algorithm, only variables which have been produced at depth at most i are considered as 
possible inputs to XOR gates, so the XOR gates produced have depth at most i + 1. This 
is maintained inductively by only considering columns between 1 and ip, and ip is reset 
at the end of each phase to the last column produced in that phase. Since the algorithm 
maintains that at the beginning of phase i, no more than 2k−i of the current variables 
have to be XORed to produce any output, the algorithm terminates in phase k − 1, giving 
maximum depth k. Note that it will always be possible to proceed from phase i to phase 
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Low Depth Greedy(M , m, n, k): 
{ M is an m × n 0-1 matrix with Hamming weight at most 2k in any row}

s := n + 1 { index of the next column }
i := 0 
ip := n { columns up to n had depth at most i }
while there is some row in M with Hamming weight > 2k−i−1 do 
{ Phase i }

if some row £ in M with weight 2 
had weight 2 at the beginning of the phase 
then let j1 and j2 be the columns in row £ with ones 
else find two columns 1 ≤ j1, j2 ≤ ip 

which maximize |{£ | M [£, j1] = M [£, j2] = 1}|
add an XOR gate with inputs from the variables for columns j1, j2 

the output variable produced will correspond to column s 
for £ = 1 to m do 

if M [£, j1] = M [£, j2] = 1 
then M [£, j1] := 0; M [£, j2] := 0; M [£, s] := 1 
else M [£, s] := 0 

s := s + 1
 
ip := s − 1 { keep track of which gates had depth at most i }

i := i + 1
 

Figure 4: Algorithm for creating a minimum depth circuit for linear components 

i + 1, since combining the at most 2k−i ones any row by pairs will reduce the number of 
ones to at most half as many, at most 2k−i−1 . 

For each XOR gate added, the algorithm checks every pair of columns between 1 and 
ip < s, where s is the new column being added. For each of these pairs of columns, one 
checks for each row if both entries corresponding to these columns are one and then does 
some updating. The number of rows is n, so the total running time is O(nt3). Since there 
are at most n ones in every row, each row will be computed using at most n − 1 XORs, and 
all m rows will be computed with at most m(n − 1) XORs. There are n columns initially, 
so in all t ≤ mn + n − m. D 

Another possibility for an algorithm to produce optimal depth circuits for linear compo­
nents would have been to finish with all pairs of inputs before continuing to pairs involving 
gates at depth one, and then to finish with all pairs at depth one (or involving the possibly 
one remaining input which has not been paired), etc. However, the method chosen here 
allows more flexibility in choosing gates, thus allowing more possibilities to create gates 
which can be used more than once. 

After an initial attempt at minimizing depth and size in the entire circuit, we may 
be able to further decrease the number of gates in the top linear component since not all 
the XOR gates at level three (an output of the top linear component) would necessarily 
increase the total depth if they were at level four or more (for the AES S-box, k and k + 1 
more generally). Or, on the other hand, one might be able to reduce the depth even more 
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by calculating some outputs of the top linear component at lower depth than the depth 
indicated by the matrix row with largest Hamming weight, if these “outputs” are on the 
critical path. 

It is easy to determine which outputs of the top linear component could be allowed to be 
at a larger depth or should be at a lower depth if possible, using a program which calculates 
the depth and height of every gate. If all of the outputs of the top linear component which 
have depth and height values adding up to exactly the total depth of the circuit are such 
that they could have been calculated at lower depth than their current depth, then one can 
probably reduce the depth of the circuit. On the other hand, when these values add up to 
less than the total depth of the circuit, there is some slack at that gate. For XOR gates at 
depth 3 (in an AES S-box circuit) which have slack, one can check if they are the sum of 
any two of the other outputs of the top-linear part. If they are, these other outputs were 
computed at depth 3, so adding them together only gives depth 4, which is acceptable when 
the output was originally created at a gate with slack. Note that cancellation of variables 
should be allowed here. 

The Low Depth Greedy algorithm can be modified to take advantage of slackness. In 
this case, an extra array Factor is initialized for each input to the linear transformation. 
Rows with no slack are given the value 1, and rows that could be at j levels further down 
than the minimum are given the value 2j in Factor. Then, when checking if one should 
proceed to the next phase, rather than check if all rows have Hamming weight at most 2k−i 

for phase i, one checks if its Hamming weight divided by its value in Factor is at most 2k−i . 
This allows the possibility of choosing inputs required for these outputs at a larger depth. 
These techniques were not actually necessary to produce the circuits found. 

5 Reducing depth in linear components 

There are straight-forward techniques for reducing depth in linear components via local 
replacement. Consider any gate in such a component. The output produced there is the 
XOR of several values (either inputs or outputs from other gates). These values can be 
XORed in any order to get this result. Thus, for example, suppose g = g1 ⊕ g2, g1 is at 
depth d1 and g1 = g3 ⊕ g4, g2 is at depth d2, and g3 is at depth d3. If d2 and d3 are at depth 
at most d1 − 2, then calculating h1 = g2 ⊕ g3 and h2 = h1 ⊕ g4 results in h1 computing 
the same result as g, but at depth one lower. If the result computed at g1 was not used 
anywhere else in the circuit, then this does not increase the total number of gates. However, 
if g1 is used elsewhere, it would still need to be computed, and the number of gates would 
increase by one. 

6 The circuits 

The depth-16 circuits are shown in Figures 5, 6, 7, 8, and 9. Note that the addition and 
multiplication operations are modulo 2, so they are XOR and AND operations. The # 
operation is an XNOR (adding modulo 2 and then complementing the result). We used Al­
gorithm Low Depth Greedy for the four linear transformations (here, we do not include the 
binary matrices corresponding to the transformations in the reverse direction of the AES 
S-box). The circuits are divided into three components: top linear transformations (Fig­
ures 5 and 6), shared non-linear component (Figure 7), and bottom linear transformations 
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(Figures 8 and 9). 

T1 = U0 + U3 
T2 = U0 + U5 
T3 = U0 + U6 
T4 = U3 + U5 
T5 = U4 + U6 
T6 = T1 + T5 
T7 = U1 + U2 

Figure 5: Top linear transform in forward direction.
 

T23 = U0 + U3 
T22 = U1 # U3 
T2 = U0 # U1 
T1 = U3 + U4 
T24 = U4 # U7 
R5 = U6 + U7 
T8 = U1 # T23 

T19 = T22 + R5 
T9 = U7 # T1 
T10 = T2 + T24 
T13 = T2 + R5 
T3 = T1 + R5 
T25 = U2 # T1 
R13 = U1 + U6 

T17 = U2 # T19 
T20 = T24 + R13 
T4 = U4 + T8 
R17 = U2 # U5 
R18 = U5 # U6 
R19 = U2 # U4 
Y5 = U0 + R17 

T6 = T22 + R17 
T16 = R13 + R19 
T27 = T1 + R18 
T15 = T10 + T27 
T14 = T10 + R18 
T26 = T3 + T16 

Figure 6: Top linear transform in reverse direction.
 

M1 = T13 x T6 
M2 = T23 x T8 
M3 = T14 + M1 
M4 = T19 x D 
M5 = M4 + M1 
M6 = T3 x T16 
M7 = T22 x T9 
M8 = T26 + M6 
M9 = T20 x T17 
M10 = M9 + M6 
M11 = T1 x T15 
M12 = T4 x T27 
M13 = M12 + M11 
M14 = T2 x T10 
M15 = M14 + M11 
M16 = M3 + M2 

T8 = U7 + T6 T15 = T5 + T11 T22 = T7 + T21 
T9 = U7 + T7 T16 = T5 + T12 T23 = T2 + T22 
T10 = T6 + T7 T17 = T9 + T16 T24 = T2 + T10 
T11 = U1 + U5 T18 = U3 + U7 T25 = T20 + T17 
T12 = U2 + U5 T19 = T7 + T18 T26 = T3 + T16 
T13 = T3 + T4 T20 = T1 + T19 T27 = T1 + T12 
T14 = T6 + T11 T21 = U6 + U7 

M17 = M5 + T24 
M18 = M8 + M7 
M19 = M10 + M15 
M20 = M16 + M13 
M21 = M17 + M15 
M22 = M18 + M13 
M23 = M19 + T25 
M24 = M22 + M23 
M25 = M22 x M20 
M26 = M21 + M25 
M27 = M20 + M21 
M28 = M23 + M25 
M29 = M28 x M27 
M30 = M26 x M24 
M31 = M20 x M23 
M32 = M27 x M31 

M33 = M27 + M25 
M34 = M21 x M22 
M35 = M24 x M34 
M36 = M24 + M25 
M37 = M21 + M29 
M38 = M32 + M33 
M39 = M23 + M30 
M40 = M35 + M36 
M41 = M38 + M40 
M42 = M37 + M39 
M43 = M37 + M38 
M44 = M39 + M40 
M45 = M42 + M41 
M46 = M44 x T6 
M47 = M40 x T8 
M48 = M39 x D 

M49 = M43 x T16 
M50 = M38 x T9 
M51 = M37 x T17 
M52 = M42 x T15 
M53 = M45 x T27 
M54 = M41 x T10 
M55 = M44 x T13 
M56 = M40 x T23 
M57 = M39 x T19 
M58 = M43 x T3 
M59 = M38 x T22 
M60 = M37 x T20 
M61 = M42 x T1 
M62 = M45 x T4 
M63 = M41 x T2 

Figure 7: Shared part of AES S-box circuit (D = U7 in the forward direction and D = Y 5 
in the reverse direction). 

The circuits were generated automatically using randomization for tie-resolution. Differ­
ent runs of our code yield depth 16 consistently. However, size can vary by a few gates. As 
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L0	 = M61 + M62 L10 = M53 + L4 L20 = L0 + L1 S0	 = L6 + L24 
L1	 = M50 + M56 L11 = M60 + L2 L21 = L1 + L7 S1	 = L16 # L26 
L2	 = M46 + M48 L12 = M48 + M51 L22 = L3 + L12 S2	 = L19 # L28 
L3	 = M47 + M55 L13 = M50 + L0 L23 = L18 + L2 S3	 = L6 + L21 
L4	 = M54 + M58 L14 = M52 + M61 L24 = L15 + L9 S4	 = L20 + L22 
L5	 = M49 + M61 L15 = M55 + L1 L25 = L6 + L10 S5	 = L25 + L29 
L6	 = M62 + L5 L16 = M56 + L0 L26 = L7 + L9 S6	 = L13 # L27 
L7	 = M46 + L3 L17 = M57 + L1 L27 = L8 + L10 S7	 = L6 # L23 
L8	 = M51 + M59 L18 = M58 + L8 L28 = L11 + L14 
L9	 = M52 + M53 L19 = M63 + L4 L29 = L11 + L17 

Figure 8: Bottom linear transform in forward direction. Outputs are S0 . . . S 7. 

P0 = M52 + M61 P10 = M57 + P4 P20 = P4 + P6 W1 = P26 + P29 
P1 = M58 + M59 P11 = P0 + P3 P22 = P2 + P7 W2 = P17 + P28 
P2 = M54 + M62 P12 = M46 + M48 P23 = P7 + P8 W3 = P12 + P22 
P3 = M47 + M50 P13 = M49 + M51 P24 = P5 + P7 W4 = P23 + P27 
P4 = M48 + M56 P14 = M49 + M62 P25 = P6 + P10 W5 = P19 + P24 
P5 = M46 + M51 P15 = M54 + M59 P26 = P9 + P11 W6 = P14 + P23 
P6 = M49 + M60 P16 = M57 + M61 P27 = P10 + P18 W7 = P9 + P16 
P7 = P0 + P1 P17 = M58 + P2 P28 = P11 + P25 
P8 = M50 + M53 P18 = M63 + P5 P29 = P15 + P20 
P9 = M55 + M63 P19 = P2 + P3 W0 = P13 + P22 

Figure 9: Bottom linear transform in reverse direction. Outputs are W 0 . . . W 7. 

long as the topology derived from the tower-of-fields method is maintained, we conjecture 
that it is unlikely that the size of the circuits can be significantly reduced without increasing 
the depth. We also conjecture that it is unlikely that the depth can be reduced without 
significantly increasing size. Of course, if the logical base is expanded, we may be able to 
do better. For example, if NAND gates are used in the circuit for inversion in GF (24), it is 
not hard to reduce the number of gates by two without increasing the depth. Since there 
are only 256 possible inputs, we verified the circuits fully against the specifications in [9]. 
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