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ABSTRACT   

We present a method to combine measurements from different techniques that reduces uncertainties and can improve 
measurement throughput.  The approach directly integrates the measurement analysis of multiple techniques that can 
include different configurations or platforms.  This approach has immediate application when performing model-based 
optical critical dimension (OCD) measurements.  When modeling optical measurements, a library of curves is assembled 
through the simulation of a multi-dimensional parameter space. Parametric correlation and measurement noise lead to 
measurement uncertainty in the fitting process with fundamental limitations resulting from the parametric correlations. A 
strategy to decouple parametric correlation and reduce measurement uncertainties is described.  We develop the rigorous 
underlying Bayesian statistical model and apply this methodology to OCD metrology. We then introduce an approach to 
damp the regression process to achieve more stable and rapid regression fitting.  These methods that use a priori 
information are shown to reduce measurement uncertainty and improve throughput while also providing an improved 
foundation for comprehensive reference metrology.  

1. INTRODUCTION  
There has been significant interest in new methods to combine measurement techniques that reduce uncertainties and 
improve measurement throughput.  Hybrid metrology can enable both improved throughput and accuracy or 
alternatively, improved measurement uncertainty in reference metrology [1].  In general, one can combine measurements 
from different systems on a weighted or equal basis, treating them as independent measurements, or one can integrate 
the measurements directly in the data fitting routines.  In the latter implementation we can link the data analysis using a 
unified parametric fit across the methods or we can use a Bayesian statistical model that uses a priori information from 
the different measurements in a model-based regression.  These methods combine measurements from different 
metrology tool configurations or platforms, potentially improving throughput and measurement accuracy.   
 
Although methods such as scanning electron microscopy (SEM) are beginning to use model-based regression in 
improved edge detection, this hybrid approach has immediate utility when performing model-based optical critical 
dimension measurements [2, 3].  When modeling optical measurements, a library of curves is assembled through the 
simulation of a multi-dimensional parameter space.  A least squares fitting routine is then used to choose the optimum 
set of parameters that yield the closest experiment-to-theory agreement.  When using a model-based approach, it is 
essential that the model adequately describes the physical measurement conditions and that an acceptable goodness-of-fit 
is achieved with the best set of parameters.   
 
In the data fitting process parametric correlation (uncertainty arising from the interaction between modeling parameters), 
measurement noise, and model inaccuracy all lead to error and measurement uncertainty.  The cross-correlations among 
parameters can lead to very large uncertainties even when a measurement technique demonstrates good sensitivity to a 
single parameter [4].  The hybrid metrology approach can directly improve measurement uncertainty introduced through 
parametric correlation and has further utility in selecting the correct minima among multiple nearby local minima in the 
fitting space. 
 
We develop a regression fitting routine and then apply Bayesian statistical methods to decouple parametric correlation 
and reduce measurement uncertainties.  We then apply the rigorous statistical model to scatterometry and scatterfield 
measurement applications.  Unlike a conventional chi-square minimization, the statistical regression allows us to both 
interpolate the calculated library grid and guide the library calculations through iteration.  A damping term is also 
introduced to the regression procedure to achieve more stable regression fitting and a more robust iteration procedure. 
As a benefit to this approach we can also reduce the calculation volume of the parametric simulation space.  To 
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demonstrate embedding information we use a priori information from AFM measurements in the optical fitting process.  
Both simulation results and experimental data demonstrating this methodology are presented.   
 
Although in some circumstances a parallel regression of data from multiple platforms using a single uniform set of 
characterization parameters may provide the best fitting uncertainties, using embedded metrology allows us to take 
better advantage of best attributes of each technique.  As an example we can use an OCD metrology tool in combination 
with an optical film thickness measurement and take into account the linewidth sensitivity of an OCD tool with the 
throughput of a film thickness tool to achieve an improved measurement uncertainty and throughput.   

2. THE SCATTERFIELD HARDWARE PLATFORM AND SAMPLE PLAN 
The scatterfield microscopy technique has been described in detail elsewhere [5, 6].  The basic instrument is based on a 
Köhler illuminated bright field microscope with a large accessible conjugate back focal plane.  Data are acquired as a 
function of angle as shown in Figure 1. A charge coupled device (CCD) image is captured at each angle.  A window 
(kernel) is placed in the image, the total intensity for that window is integrated, and a normalized intensity per unit area 
is calculated.  The intensity is then plotted as a function of angle.  The intensity pattern may include only a zero-order 
specular reflection component or higher order diffraction components.  Although for the data presented here we used the 
scatterfield platform in an angle-resolved mode, we have also used the platform in a spectroscopic mode which has been 
shown in scatterometry to result in lower parametric correlation [7]. 
 
The angle-resolved mode is similar to conventional angular scatterometry except that the high magnification optical train 
allows small targets or several targets to be measured simultaneously.  We can perform massively parallel scatterometric 
measurements throughout the field of view by breaking the imaged field into an array of small targets or pixel groupings.  
Alternatively, we can perform scatterometry-type measurements on very small, embedded targets since the signals are 
spatially resolved.  
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Figure 1. Schematic of the experimental apparatus 

 
Two different types of samples are analyzed in this paper.  We use an array of lines shown in Figure 2 and an array of 
pillars as described in Figure 3.  The line array has nominal printed middle width values of 35 nm based on atomic force 
microscopy (AFM) measurements.  The parameters used to characterize the line geometry are defined in the figure.  The 
AFM is used to acquire line width profiles, pitch, and height which serve three purposes.  First, the AFM values are used 
as the initial starting point for the simulation library.  In this application the measurement uncertainty is not relevant 
since the AFM is merely used to define the approximate space of the simulation domain.  Second, the AFM values are 
used as reference values to compare with the optical fitting data results based solely on optical critical dimension (OCD) 

Proc. of SPIE Vol. 8083  808307-2



fitting routines.  Third, the AFM measurement values and their uncertainties are used as a priori information to be 
embedded in the OCD fitting routines.   
 
Figures 2 and 3 show the geometrical parameters used to approximate the shape.  Also shown in the figures are an 
example of the die and their reference measurement values.  In general, top width, middle width, bottom width, side wall 
angle, pitch and height are all reported with measurement uncertainties.  
 
A set of experimental data including parametric fitting results is shown in Figure 2 for each of the examples.  Once the 
data are acquired and normalized, they can be analyzed using library-based fitting techniques.  To compare the 
experimental signatures with electromagnetic scattering simulations, a comprehensive parametric analysis is used.  
When fitting the optical measurements, a library of curves is assembled through simulation of a multi-dimensional 
parameter space that includes the variation of n, k, height, pitch, sidewall, and CD.  Simulations were completed here 
using a rigorous coupled waveguide analysis (RCWA) model or a three dimensional finite difference time domain model 
[8,9].    
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Figure 2. Geometrical parameters used to approximate the line shape.  Also shown in the figure is an example of 
the die and their reference measurement values. 
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Figure 3. Geometrical parameters used to approximate the pillar shape.  The figure also shows an example of two 
die from the FEM and their reference measurement values. 
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Historically, a least-square fitting routine has been used to choose the optimum set of parameters that yields the closest 
experiment-to-theory agreement and minimum uncertainties in the covariance matrix [4].  These data demonstrate good 
agreement between the simulated library of curves and the experimental data using standard chi-square analysis and the 
optical microscope normalization procedures described in Ref. [10]. The goodness-of-fit values and residuals are 
acceptable, although depending on the simulation set, the uncertainties may be unacceptably large.  We next develop the 
regression theory and the Bayesian statistical approach to reduce uncertainties and improve measurement accuracy. 

3. NONLINEAR REGRESSION DERIVATION 
We now develop the nonlinear regression model and then expand the model using a Bayesian approach to include a 
priori information.  In addition, a damping term is added to the regression for both embedded and non-embedded 
regression.  The goal is to develop a rigorous method to embed reference metrology or other a priori information gained 
by knowledge of the manufacturing process.  Only an overview of the derivation is given here, see Ref. 11 for a more 
detailed formalism. 
 
 In general a complete set of measurements consists of N data points acquired under a varying set of conditions for both 
simulations and experimental measurements. The K model parameters are expressed as a vector 1{ ,..., }Ka a=a , and 
represent the model input parameters, for example, CD, sidewall, height. We have N measured values of Y denoted as 

1{ ,..., }Ny y  and N simulated values ( ; )iy x a corresponding to the ith data point xi . We want to compare the measured 

1{ ,..., }Ny y  with simulated { ( ; )}, 1,..., }iy x i N=a  and find an optimal estimator of the parameter vector 

1{ ,..., }Ka a=a . In general, ( ; )iy x a  is a nonlinear function of a .  Treating ( ; )iy x a as a mean response of iy , we 

have a nonlinear regression for iy  and ( , )iy x a  for 1,...,i N=  given by 
 

                                         ( , )i i iy y x ε= +a    for 1,...,i N= ,                                              (1) 
 
where iε  is the corresponding random error with zero mean. Using a first-order Taylor expansion, a linear 
approximation of the nonlinear regression is given by 
 

1 (0)

( ; )( ; (0)) ( (0))
K

i
i i k k i

kk

y xy y x a a
a

ε
= =

⎡ ⎤∂
= + − +⎢ ⎥∂⎣ ⎦

∑
a a

aa ,   (2) 

 
where 1(0) { (0),..., (0)}Ka a=a ) is an initial value or an optimal value of  a and iε  is the corresponding random  
error with zero mean [11].  By re-parameterization, the model can be expressed as  
 

1
(0) (0) (0)

K

i ik k i
k

y D β ε
=

= +∑ ,       (3) 

 
with 

(0)

( ; )(0) i
ik

k

y xD
a

=

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦

a a

a
,     (4) 

 
and (0) (0)k k ka aβ = −  and (0) ( ; (0))i i iy y y x= − a , see Ref. 12.  The covariance matrix of the experimental 

values 1{ ,..., }Ny y  is denoted by 2 2
1[ ,..., ]Ndiag σ σ=V .  
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We can now write the re-parameterized model from Eqn. 2 in a matrix form.   
 

(0) (0)= +Y D(0)β ε       (5) 
 

with    
11 1

1

(0)..... (0)
(0) ........

(0)..... (0)

K

N NK

D D
D

D D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.     (6) 

 
It can be shown that the generalized least squares estimator of (0)β  is now given by  
 

( )ˆ (0) =
-1T -1 T -1β D(0) V D(0) D(0) V Y(0) ,    (7) 

 
 where 1ˆ ˆ ˆ(0) ( (0),..., (0))Kβ β=β  are the best linear unbiased estimators of (0)β . Namely, it is the linear unbiased 
estimator with the smallest variance as well as the smallest mean squared error. See Ref. 13.   
 
It should be noted that the linear unbiased β estimators are based on the assumption of a linear space in the region where 
the D(0) derivatives are calculated.  Although the parameter space is smoothly varying, it is in general nonlinear due to 
the complexity of the electromagnetic scattering equations and parametric correlation.  The space also potentially has 
multiple subtle minima depending on the geometry, materials stack, and correlation.   To obtain a well behaved 
regression and limit overshoot or jumping into a nearby minimum, a damping factor is applied to the β values. 
 
The generalized least square estimator of the original parameters and their covariance matrix are now given by 

ˆˆ (0) (0)k k ka aβ= +     k = 1,…,K    , and  ( ) 1ˆar[ ] (0) (0)TV a D V D
−

= ⋅ ⋅
r

.   Note that when { }iε  are Gaussian 

distributed, from (7) ˆ (0)β  and â are also Gaussian distributed.  
 
Following Ref. [14], p. 40-41 we can use the Gauss-Newton method to improve  â  iteratively and keep improving the 
estimates until the desired minimal change is achieved. Thus, we can assume that 1(0) { (0),..., (0)}T

Ka a=a  in (2) is 
an estimate vector from the Gauss-Newton method. This allows the use of an initially sparse grid, with detailed 
electromagnetic simulations for each iteration about the new a(0) and new set of D(0) derivatives.  In this approach it is 
important to check the residuals to determine whether the estimates are really improved. 
  
When additional information on one or more parameters is available (e.g. the parameters and their uncertainties are 
obtained by AFM reference metrology or other sources), we can treat these as prior information and embed these in the 
model to obtain new parameter estimates and their corresponding uncertainties using a Bayesian statistical approach. In 
this implementation a parameter that was allowed to float freely is now influenced by the a priori information such as 
the mean value and its probability distribution from an external measurement of that floated parameter.   
 

As an example, when the first parameter among the K parameters has a known distribution with a mean of *
1a * and 

variance of 
1

2
aσ , we can obtain new parameter estimatorsa and a new covariance matrix by embedding the prior 

information into the model.  Referring to the regression model above in Eqn. (5), from [Ref 15], we can treat the prior 
information of 1β  as another “data point” in the regression. Thus, corresponding to (4), we have an expanded matrix 
model given by 
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=* * *Y (0) D (0)β(0) + ε ,     (8) 
 

11 1

1

(0)..... (0)
........

(0)..... (0)
1,0.....................0

K

N NK

D D

D D

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

* D(0)
D (0) =

1
,    (9) 

 

( )ˆ -1# * T *-1 * * T *-1 *β (0) = D (0) V D (0) D (0) V Y (0) ,   (10) 

and for the parameter estimates  # #ˆˆ (0) (0)k ka aβ= +     for   k=1,…,K.      

As an example we can evaluate #ˆ (0)β  with K=2 floating model parameters and p=1 a priori measurements with a 

known mean value and its uncertainty.  For this example #ˆ (0)β is given by 

1
1

*
11

21 1 2
21 2

0ˆVar[ (0)](0)1ˆ ˆ(0) ,
ˆ ˆCov[ (0), (0)]a

a

gQ Q
Q

βββ
σ β β σ

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟= + +⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

#β (0)   (11) 

 
where Q  and 1Q  are the determinants of T* *-1 *D (0) V D (0)  in (10) and T -1D(0) V D(0) in (7). 

In Eqn. 11 it can be seen that #ˆ (0)β  is a linear combination of terms including components from both the optical 
measurements and the AFM reference measurements.  The posterior covariance matrix of the parameter estimators is 
given by 

( ) 1ˆˆCov[ ] Cov[ ]
−

= =# # * T *-1 *a β (0) D (0) V D (0) .   (12) 

 
It can also be shown that the parameter uncertainties are improved by including the additional information such that 

#ˆ ˆ[ (0)] [ (0)]k kVar Varβ β≤  , 1,...,k K=   see Ref [11]. 
 

4. APPLICATIONS OF THE BAYESIAN APPROACH 
We next demonstrate the Bayesian method using embedded a priori measurement values and their uncertainties from a 
CD-AFM reference metrology measurement to improve multiple aspects of the final measurement uncertainties.  In the 
first example we use the line array described in Section 2 above.  Figure 4 shows optical fitting results for three die from 
a focus exposure matrix (FEM) having design values of 45 nm linewidth and 157 nm pitch.   The figure reports the 
middle width values, the side wall angles (SWA) and the line height values for each die based only on OCD fitting using 
the regression algorithm described above.  There are no reference values used in these fitting data, although AFM 
reference values were used to define the starting point for the simulations [16].  A large enough parameter space is then 
simulated to cover all three die with ample parameter coverage to ensure the best estimate values are well within the 
space. 
 
Each panel in the figure shows four scans, two polarization scans are shown for each scan axis.  The tables show the 
floated parameter, the mean value reported, and the uncertainty for that parameter.  The symbols are the experimental 
values and their error bars are shown for each data point as well.  These data show good fits with small residuals and 
reduced chi-square values ranging from 1 to 3.    The uncertainties reported in the figure are 1σ and are combined 
uncertainties.  These combined uncertainties include all aspects of measurement uncertainty including repeatability and 
other systematic measurement errors such as wavelength and angle uncertainties [17].  
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Figure 4.  Parametric fitting of L45P157 linear arrays with and without embedded AFM. 

 
Also shown in the figure are the results obtained by including AFM reference height data in the regression fits. The 
middle row of tables show the new OCD fit values with the AFM data embedded and the uncertainties.  The lower set of 
tables show the AFM measured values for each of the embedded values and their associated uncertainties used in the 
simulations.  In all cases the uncertainties are unchanged or reduced and the OCD best estimate values are seen to 
change relative to those values obtained in the without the embedded AFM reference measurements.   
 
One notable item is the systematic offset between the AFM values and the OCD best fit values.  This was explored in 
more depth.  The samples are etched silicon and there is an expected conformal native oxide covering the lines.  To test 
these assumptions, simulations were performed with a conformal oxide that showed a lack of sensitivity to the oxide at 
450 nm measurement wavelength.   On the other hand, the AFM is expected to measure this 1.5 nm to 2.0 nm oxide.  
The optical modeling results are shown below in Figure 5. These data are a likely explanation for the offset between the 
OCD fittings results and the AFM reference data. 

 
4.1 Using appropriate types of uncertainties.   

It is important to define the type of uncertainties used in the regression modeling.  If a combined uncertainty is used for 
the reference measurements then we need to evaluate Type A and Type B uncertainties for the optical measurements as 
well.  Although defined in detail in Ref [17], these correspond approximately to those elements determining 
measurement repeatability and systematic components such as wavelength and angle measurement errors.  For both 
experimental data and simulation data, the appropriate uncertainties must be evaluated.  If an AFM measurement with an 
uncertainty that includes both Type A and Type B components is used then the same must be used in the OCD 
regression fits.  However, when combining SEM measurements and OCD measurements, for example, that do not have 
combined uncertainties for each method, one can still combine the methods by using equivalent uncertainties.  What is 
essential is that comparable types of uncertainties be used to achieve the correct balance or influence in the regression 
analysis. 
 
The situation is more constrained however when using combined uncertainties for reference metrology. Fundamentally 
the OCD electromagnetic scattering models require accurate parameter inputs since the models use SI units.  If an 
unknown systematic error in a parameter, either fixed or floating, is introduced then the regression or chi square fitting 
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routines will go to an incorrect place in the parameter space to find the best fit.  In this case introducing systematic errors 
in the parameters drives the minimization algorithms to an incorrect minimum. 
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Figure 5.  Simulations for an arrayed line width sample are shown with and without a conformal oxide.  

 
In the research presented here, repeat acquisitions are used to evaluate the experimental Type A uncertainties.  Type B 
components are evaluated (e.g., angle, spectral width, tool normalization) and also RMS added to the experimental 
repeatability data.  We also need to evaluate systematic errors associated with the model and simulations.  Examples of 
these errors are grid size, calculation convergence and also the set of errors due to any discrepancies between the model 
and the physical target (e.g., rounding, footing). 
 
4.2 Measuring a three-dimensional array of pillars.   

The next example is the three dimensional pillar structure also described in Section 2.  Figure 6 shows the optical data 
from  Die (-1,0) and Die (0,0) with the scan data on the left and OCD regression and AFM reference values on the right, 
as labeled.  The OCD-only data analyses have large uncertainties due to parametric correlation in the two dimensional 
structures.  One noticeable attribute in the data is the significant gap in the two scan directions.  This is due to 
asymmetry in the pillars in the x and y directions.  There is nominally a 20 percent difference in the major and minor 
axes of the ellipse that defines the pillar cross section.  Physically, this results from the lithography process.  
 
OCD regression fitting values are shown on the right in the second and fourth tables in Fig. 6 where damping is used and 
multiple iterations are shown.  The damping coefficients are shown in the table and range from 0.32 to 1.0.  For 
Die (0,0), the smallest residuals are seen in the first couple of iterations and the D(0) matrix of derivatives send the a(0) 
estimators down a trough in parameter space to an unphysical height of 86 nm.  This is the direct result of the subtle 
correlation effects between the various floating parameters and an effective lack of uniqueness seen in the regression 
minima.  In this example, after six iterations, regression was stopped as the β values stayed within the grid size of the 
library.  Though the last iterated χ2 value for Die (0,0) is greater than that at the original a(0) starting point, the final 
iterated a(0) is adjacent to the point 44, 27, 86 with χ2 of 5.09, which is lower than the starting value for that die.       
 
To address the strong parametric correlation seen in the data as noted by the many nearby minima in the arrayed two 
dimensional structures we can introduce embedded AFM reference height values.  With the embedded reference data the 
regression estimates quickly approach the best fit values requiring few iterations with little change seen in the β values 
with further iteration.          
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1 60 20 72 1.2 -9.99 5.05 1.39 -0.05 0.80 9853.30

2 52 24 74 1.125 -0.98 -3.11 -0.87 0.08 1.00 490.33

3 51 21 `74 1.2 0.19 -0.61 -0.97 -0.01 1.00 7.41

AFM values:  middle = 60.2 nm ± 2.1 nm, δ = 19.6 nm ± 3.8 nm, height = 72.8 ± 2.0 nm

Iteration 
number

a(0) β dampen. 
ratio χ2

mid (nm) δ (nm) h (nm) aspect mid (nm) δ (nm) h (nm) aspect

1 48 20 76 1.2 -2.73 6.27 6.12 -0.01 0.32 6.71

2 47 22 78 1.2 -2.63 4.99 6.00 -0.02 0.33 5.49

3 46 24 80 1.2 -1.98 3.55 5.13 -0.01 0.39 6.24

4 45 25 82 1.2 -1.46 2.89 4.2 < -0.01 0.48 23.21

5 44 26 84 1.2 -0.17 1.54 1.66 < -0.01 1.00 67.99

6 44 28 86 1.2 -0.75 0.26 0.92 < 0.01 1.00 38.66

7 43 28 86 1.2 0.42 0.02 0.44 < 0.01 1.00 41.85

Die (0,0), OCD regression

Die (0,0), OCD regression and AFM height embedded
Iteration 
number

a(0) β dampen. 
ratio χ2

mid (nm) δ (nm) h (nm) aspect mid (nm) δ (nm) h (nm) aspect

1 48 20 76 1.2 1.01 -2.14 -2.27 < -0.01 0.88 9.36

2 49 18 74 1.2 0.13 -0.42 -0.40 -0.01 1.00 10.54
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AFM values:  middle = 55.3 nm ± 2.4 nm, δ = 18.7 nm ± 2.4 nm, height = 72.8 ± 2.0 nm 
 

Figure 6.  Pillar arrays with and without embedded AFM metrology. 

 
The discrepancy between the modeled and physical structures was further analyzed to better understand the offset 
between the AFM data and the OCD data.  Since the AFM is known to have limited ability to measure footing and 
undercut at the bottom of line and pillar structures, simulations were run to evaluate the effects from corner rounding and 
footing.  Although these parameters were not floated in the three dimensional modeling due to the extensive simulation 
times required, limited simulations were performed to evaluate the magnitude of the effects.  Similar to the line array 
example, a native oxide is expected to create an offset that was not accounted for here. 
 
The AFM had limited ability to identify correctly the elliptical cross section of the pillars as well as to provide an initial 
accurate target height due to the rounded pillar corners. Additional AFM algorithm development was necessary to adopt 
the height algorithms used on lines to measure the pillar heights.  This is an example where the combination of 
techniques is invaluable for reference metrology. The two dimensional pillar structures highlighted subtleties were only 
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“seen” by using multiple measurement methods.  In addition to reducing the combined uncertainties, we were able to 
flag likely causes of systematic offsets between the reference and measurement data results. 
 
Although this hybrid metrology technique of using a priori information can be used to combine an individual reference 
measurement and single tool OCD regression fit, the method is also well suited to an iterative approach used between 
multiple model-based measurements.  As an example, an SEM that uses edge profile fitting algorithms can be iteratively 
combined with an OCD fitting process.  When using the Gauss-Newton method, the regression algorithms are well 
suited to iterate between a combination of tools that each use a regression algorithm to find the best-fit minima and 
parameter estimates, see Ref. [14].  This iterative implementation allows one to embed measurements from multiple 
tools that result in intricately linked hybrid measurements.   Alternatively, a parallel regression amongst multiple 
methods can be carried out.  This may be better suited to reference metrology where throughput is generally less of an 
issue.  However, the parallel regression approach requires at least a partially overlapping set of floating characterization 
parameters. 

5. CONCLUSION 
 
An approach to hybrid embedded metrology was presented and demonstrated to improve reference metrology 
uncertainties.  It has applications in both reference metrology and manufacturing process control metrology.  This 
Bayesian approach enables the rigorous combination of diverse metrology solutions.  A few related approaches were 
shown that can be applied to multiple measurement instruments to arrive at an optimum measurement result that 
combines the individual measurement results and their individual uncertainties.  This approach is likely a requirement to 
improve future reference metrology uncertainties and enables a new architecture for, and approach to reference 
metrology. 
 
This method has important implications in devising measurement strategies that take advantage of the best measurement 
attributes of each individual technique.  This includes both sensitivities to geometrical aspects or materials attributes as 
well as consideration of measurement throughput. Using the embedded metrology approach with a judicial choice in 
floating parameters can both reduce parametric correlation and reduce the required simulation volume of the 
measurement space, potentially saving significant time while improving accuracy.  
 
A Gauss-Newton iteration procedure was introduced to guide the library calculations through iteration and generate a 
dense simulation space near the best estimator.  A damping term was also introduced to the regression procedure to 
achieve more stable regression fitting and a more robust iteration procedure. An appropriate iteration implementation 
can effectively reduce the calculation volume of the parametric simulation space. 

Scatterfield microscopy was used to demonstrate quantitative measurements of dense line arrays with dimensions that 
result in only specular reflected light.  Although the technique was applied to larger scatterometry arrays that fill the 
optical field of view, this technique is capable of scatterometry-type measurements on very small targets, enabling in-
chip applications with reduced target size.  This also enables parallel measurements of multiple targets having potential 
applications in both CD and overlay metrology.  Using accurate background normalization and optical tool 
compensation, quantitative nanometer-scale measurements can be achieved. 
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