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ABSTRACT   

We used azimuthally-resolved spectroscopic Mueller matrix ellipsometry to study a periodic silicon line structure with 

and without artificially-generated line edge roughness (LER). The unperturbed, reference grating profile was determined 

from multiple azimuthal configurations using a generalized ellipsometer, focusing the incident beam into a 60 µm spot. 

We used rigorous numerical modeling, taking into account the finite numerical aperture, introducing significant 

depolarization effects, and determining the profile shape using a four trapezoid model for the line profile. Data obtained 

from the artificially perturbed grating were then fit using the same model, and the resulting root-mean-square error 

(RMSE) values for both targets were compared. The comparison shows an increase in RMSE values for the perturbed 

grating that can be attributed to the effects of LER. 
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1. INTRODUCTION  

Line edge roughness (LER) represents one of the challenges of current semiconductor technology process control [1]. 

The importance of LER increases with an increase of the ratio between LER and target line width, which is becoming 

one of the largest part of the uncertainty budget of current and future technologies. Optical metrology tools make up an 

important part of the suite of non-destructive inline process control tools that provide real-time assessment of the quality 

of production wafers after each lithographic step. There is constant need to assess the effectiveness of optical 

characterization methods, as new challenges rise from technological progress. One of the challenges is a requirement that 

measurements be made inside very small (usually smaller than 100 µm) targets. Measurements using spectroscopic 
ellipsometer techniques require significant focusing of the light beam, with numerical apertures on the order of a few 

degrees. The numerical aperture of the incident light beam puts additional demands on the optical modeling as well. 

Furthermore, it requires reevaluation of the sensitivity of the optical methods to the LER. The usual effect of the 

numerical aperture includes incident angle averaging, which can wash out important spectral features [2] and may 

decrease the sensitivity to imperfections such as LER. 

Previous theoretical studies of the sensitivity of angularly-resolved ellipsometry to LER were performed on large sets of 

2D gratings with randomly generated LER. It has been shown that randomly generated LER can be used as a heuristic 

tool to evaluate its impact on angle-resolved ellipsometric data [3, 4]. Nevertheless, case studies with real samples and 

measurements are needed in order to confirm the theoretical results. We have prepared periodically-perturbed line 

gratings and studied the impact of line-width roughness (LWR) on root-mean-square errors (fit residuals) for generalized 

spectroscopic ellipsometry data [5]. We have shown that the differences are solely due to the LWR using rigorous 2D 

numerical modeling, which represented the designed artificial LWR. For the purpose of this work we have manufactured 
samples with pseudo-random LER and applied previously developed optical models to the spectrally-resolved Mueller 

matrix data. The description of the samples can be found in Section 2, with corresponding scanning electron microscopy 

images of lines inside the studied targets. In the same section, we provide experimental details and optical methods used 

to characterize the targets.  In Section 3, we provide a detailed description of the rigorous modeling and fitting 

parameters. Section 4 summarizes and discusses the major results of our work. Finally, we make some conclusions in 

Section 5. 



 

 

 

 

2. EXPERIMENTAL DETAILS AND THEORETICAL METHOD 

The sample studied in this work was manufactured at the University of North Carolina, Charlotte using electron beam 

lithography followed by etching to make 736 nm pitch line gratings into a silicon wafer. The nominal height of the lines 

was 400 nm, and the nominal width of the lines was 300 nm. A scanning electron microscope image taken from the top 

of the reference target is shown on the left in Fig. 1. Artificially designed LER roughness is represented by non-periodic 

modulation of the line-width with the nominal depth being 2 % of the line-width (see Fig. 1, right). 

 

Figure 1. Unperturbed reference grating (left) and grating with artificially designed non-periodic LER (right).  

Both samples were measured using a generalized spectroscopic ellipsometer with an automated sample rotation stage, 

providing 11 elements of the normalized Mueller matrix (elements in the last line of Mueller matrix are not available) at 

different azimuthal configurations. The instrument uses focusing optics in order to project the beam onto the sample with 

spot size smaller than 60 µm at a fixed incident angle of 65°. Experimental azimuthal angles were chosen from -180° to 

180° in increments of 10° (0° corresponding to the grating direction). Azimuths of opposite sign and 180° rotation were 

simultaneously used during the modeling to decrease the importance of systematic experimental errors, which do not 

have the same symmetries as the natural physical symmetries present in the optical response of the line grating. It also 

effectively compensates for the missing off-diagonal elements of the Mueller matrices, considering relations between 
transposed elements taken at opposite azimuthal angles. The information in off-diagonal elements of the Mueller matrix 

is important for removing correlations between some profile parameters during the fitting process and for the sensitive 

determination of precise values of azimuthal offset. It also helps with independent assessment of the grating profile 

symmetry, as this can be determined directly from appropriate Mueller matrix elements. 

Measurements of the unperturbed and perturbed gratings were taken using the same azimuthal angles in order to directly 

compare the data. The two gratings were also designed with the same mean line width. This helps when comparing raw 

measured data without the aid of any model, due to the fact that the curves are very similar except in a few spectral 

regions. Differences between the data taken on the two gratings demonstrate sensitivity of spectroscopic ellipsometry to 

the magnitude of the periodic line width perturbation. 

We would like to confirm that the differences between data are solely due to the line edge perturbations and not some 

other imperfection in the model or other physical differences between them. In order to do that, we are going to establish 
a reasonably accurate optical model of the unperturbed grating and explain the remaining differences between the data 

measured on the perturbed sample. In previous work, we used periodically perturbed targets, for which we could apply 

biperiodic rigorous coupled-wave analysis (RCWA) to the periodically perturbed grating lines, in order to positively 

confirm differences in data [5]. In this study, we find the grating profile, which provides sufficiently stable and accurate 

description of the grating for all possible azimuthal angles, and then to compare the best fits of the unperturbed grating 

with those of the perturbed one. The differences in the root-mean-square error (RMSE) must be small compared with the 

RMSE value of the unperturbed lines, in order to exclude possible differences due to the grating profile simplification. 

Rigorous two dimensional model of the periodically perturbed lines provided explanation for the increase of the RMSE 

and positively confirmed origin of the differences in the data. From the increase of the RMSE of the perturbed grating, as 

compared to the small RMSE of the unperturbed one, we can deduce the sensitivity of the method to artificial non-

periodic roughness. 



 

 

 

 

3. RIGOROUS THEORY AND STATISTICAL ANALYSIS 

3.1 Rigorous coupled-wave analysis and Mueller matrix formalism 

Periodic gratings can be modeled using rigorous coupled-wave analysis (RCWA). The method uses Fourier series 

expansions of the electric and magnetic fields inside the structure in order to express and calculate propagating and 

evanescent waves in different layers of the structure. Afterwards, tangential field components are matched at the 

boundaries between the layers, resulting in the determination of the complex reflection and transmission coefficients for 

each of the diffracted orders. Standard RCWA implementations are based on the original work of Moharam and Gaylord 

[6, 7] using a staircase approximation of the grating profile. The convergence rate is significantly increased for lamellar 

gratings (especially in the case of absorbing materials) using inverse rules which appeared at first in the work of Lalanne 

and Morris [8] and were then mathematically proven by Li [9]. The inverse rule approach uses a more consistent 

treatment of the boundary conditions inside the lamellae, leading to better expansion of the permittivity into Fourier 

series and, consequently, to better convergence of the numerical algorithm. Another improvement to the original 

formulation uses the scattering matrix algorithm instead of the original transmittance matrix approach [10]. The latter 
permits calculations on deeper gratings using more terms in the Fourier series expansions, which would otherwise suffer 

from finite numerical precision. In the scattering matrix algorithm the modes outside of the structure are organized into 

two subsets: modes approaching the structure and modes leaving the structure. These improvements allow for more 

consistent calculation of the modes propagating through the structure and lead to an increased stability of the numerical 

implementation. Together with the original work of Moharam and Gaylord (or work of Rokushima for anisotropic 

gratings [11]), these methods are the workhorse for calculating optical response of periodic gratings. 

Using the RCWA calculation, the complete complex Jones matrix [12] for every reflected or transmitted diffraction 

order is determined. The complex Jones matrix J can be defined as 

,
2221

1211









=








=

sssp

pspp

JJ

JJ

JJ

JJ
J       (1) 

where s and p denote the transversal electric (TE) and transversal magnetic (TM) polarizations, respectively. The optical 

response of the periodic grating to a plane wave can be completely described using the Jones matrix formalism. In some 

measurements, depolarization can appear as a direct consequence of some experimental imperfections and has to be 

treated properly. The major source of depolarization considered in this work is the high numerical aperture (NA≈0.065) 

of the incident beam, which is focused into the very small spot on the sample (less than 60 µm in diameter). As a result, 

experimental data show depolarization due to the incoherent superposition of the optical response over all incidence and 

azimuthal angles from the experimental aperture range.  

In the most general case, the linear optical response can be described by the Mueller matrix formalism, which includes 

effects of depolarization on the measured signal. Mueller matrices are described using 4×4 real matrices of the form: 
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In order to model depolarizing Mueller matrices, the incoherent superposition of Mueller matrices of the representative 

set of incident directions for the given numerical aperture needs to calculated. Weights of selected points can be acquired 
using the known value of the numerical aperture [2], and the resulting depolarizing Mueller matrix can be written as 
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where k denotes the selected direction index, i and j are the Mueller matrix coefficients and wk denotes the appropriate 

weight. Modeling of the depolarizing experimental data has substantial impact on the calculation time due to the 

necessity to calculate multiple incidence configurations. In our numerical implementation, we use nine points 



 

 

 

 

representing given numerical aperture, which provides sufficient precision for the comparison with the experimental 

data, but it also increases calculation times by a factor of nine. The most significant impact of the numerical aperture 

(NA) on the measured data can be seen in spectral regions with sharp spectral features [13].  

3.2 Determining grating profile  

The profile of the grating was determined for each azimuth separately by a least-squares optimization procedure, 

searching for optimal values of model parameters, which provide the best correspondence between experimental and 

modeled Mueller matrix data. Searching for the optimal values of parameters (values corresponding to local minimum of 

the RMSE parametric function) is initiated using a numerical-gradient-based method, and the result is used as an initial 

guess for a subsequent search using the Levenberg-Marquardt method. The merit function, defined as a function of free 

parameter set p, can be written using all experimentally available elements of normalized Mueller matrices as follows: 
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where Mij,k denote the element Mij of the k-th spectral Mueller matrix, which is marked by m for the modeled and e for 

the experimental data, respectively. Numbers Ns and n denote the total number of spectral points and the number of free 

model parameters, respectively. 

In our fits, we modeled the grating profile with four trapezoids, illustrated in Fig. 2. The overall number of free 

parameters was 11: the total height of the line, heights of top, third, and bottom trapezoids; four trapezoid base widths; 

top width; offset to the nominal azimuthal angle; and the thickness of the silicon dioxide layer on the top. Different 

azimuthal angles were fitted separately in order to provide more reliable values of model parameters as the correlations 

between parameters change for different azimuthal angles. We combined data from opposite azimuthal angles, which do 

not provide new physical information (modeled values for azimuthal angle φ can be used to directly calculate values for 

azimuth –φ), and 180° symmetric azimuths in order to decrease impact of systematic experimental errors and partially 

compensate for the missing four Mueller matrix elements (the last line of the matrix). 

 

Figure 2. Fitted grating profile represented by layers as used directly in the RCWA code, determined for an azimuth of 30°. 
The profile is composed of four trapezoids on top of each other with a clear presence of an overhang on the top of the 

grating. 



 

 

 

 

4. RESULTS AND DISCUSSIONS 

Normalized, spectrally-resolved Mueller matrix data measured at the planar configuration inside the reference and the 

artificial LER targets is shown in Fig. 3. All block off-diagonal elements of the Mueller matrix are zero in this case and 

the element M22 should have the constant value of 1. We can see that there are horizontal shifts between both sets of data, 

which can be attributed to the fact that the reference grating does not necessarily have exactly the same line width as an 

effective average line-width of the perturbed grating. This validates our approach to not compare the raw data directly, 

but to compare results of the grating profile fits for both targets. Except the horizontal shift, we can also observe some 

other differences between the curve shapes which are likely to be attributed to the effects of LER. 

 

Figure 3. Spectral dependence (wavelength is in nanometers) of four non-zero elements of the Mueller matrix taken in the 

planar configuration for the reference grating (blue solid lines) and the artificial LER grating (red dash dotted lines). 

For a comparison, we also include data measured at 90° azimuth (light incident along the lines) as shown in Fig. 4. The 

situation is similar, as there are also no optical cross-polarization effects for symmetric profile line gratings at an azimuth 

of 90°. Nevertheless, we can see more interesting behavior of the element M22, which deviates significantly from unity in 

some particular spectral regions. This effect is due to the finite NA, which was explained in the previous section, and it 

has significant impact on the measured data in spectral regions with very sharp features. The reason for the substantial 

differences between elements M22 taken at azimuths of 0° and 90° is the typical behavior of the optical response of line 

gratings. Namely, while data vary rather slowly near azimuths close to 0°, they vary to a much greater degree near  90°. 

The finite NA is not only responsible for the changes due to the incidence angle averaging, but also due to the azimuthal 

angle averaging. As a result, depolarization effects will appear in the measured data to a greater extent near the azimuthal 

angle of 90°. 



 

 

 

 

 

Figure 4. Spectral dependence (wavelength is in nanometers) of four non-zero elements of the Mueller matrix taken at 90° 

azimuth for the reference grating (blue solid lines) and the artificial LER grating (red dash dotted lines). 

The results of fitting the azimuthally dependent Mueller matrix data are shown in Fig. 5. Profiles acquired at azimuthal 

angles from 0° to 90° (with a step of 10°) are plotted together to illustrate the stability of the fits and the consistency in 

the profile shape. Figure 5 shows enormous stability of the middle line-width, which is usually the most precisely 

determined dimension using optical methods. In fact, changes of the middle line width values between different azimuths 

are in the sub-nanometer scale. It is possible to notice that the hardest parts of the profile to be determined (the most 

correlated values) correspond to the top and the bottom of the grating where, unlike for the middle line width, the  

differences are noticeable. The main purpose of showing Fig. 5 is to illustrate the stability of the parameter determination 
which can be achieved for all possible configurations, not only for one selected, i.e., planar, configuration. The 

advantage of using multiple azimuth configurations is that validity of the grating model can be tested; if it did not 

represent the true profile of the line, it is unlikely that the local minima of the fits would yield the same profile 

parameters. 

 



 

 

 

 

 

Figure 5. Simultaneous plot of profiles fitted at ten different azimuthal angles from 0° to 90°. 

The final results of our work are shown in Fig. 6. The figure represents RMSE values acquired using the same profile 

model for the reference and the perturbed gratings. We can see a consistent increase of RMSE values for the LER grating 

as compared to the reference grating. The increase is not that large as was observed in our previous work on periodically 

designed LWR [5], but it is still evident. The absolute values of RMSE are larger than for the case in Ref. [5] and also 

ratios between RMSE differences and RMSE of the reference target are less favorable. In order to increase the contrast 

between RMSE values acquired on the reference and the perturbed gratings, the further improvement of the model is 

required, which means more details need to be introduced into the profile parameterization, while avoiding unacceptable 

correlations between parameters. Since the correlations between parameters were rather favorable, we believe that 

further improvements are possible. We stress here that keeping consistency over all azimuthal configurations is 

important, as it helps us to avoid the pitfall of selecting a profile having smaller RMSE at certain azimuths but less stable 
over other azimuths.  

 

Figure 6. Azimuthal dependence of RMSE acquired by fitting reference (blue boxes) and artificially perturbed (red circles) 

line gratings. 



 

 

 

 

5. CONCLUSIONS 

We have demonstrated a study of spectroscopic Mueller matrix ellipsometry to pseudo-random LER. In order to 

systematically evaluate the sensitivity of the method, we have manufactured a near perfect grating (that is, small natural 

LER) and artificially perturbed grating using a pseudo-random approach. The method involves using multiple azimuthal 

configurations in order to provide information on the stability of the results. The first step was to determine a four-

trapezoid-based profile model for the reference grating, which, when finite numerical aperture is correctly taken into 

account, corresponds well to the measured data and provide reasonable RMSE. In the next step, we applied the same 

model to the artificially perturbed grating in order to see differences in RMSE. Indeed, a consistent increase of RMSE 

for all azimuthal angles was observed confirming that we are sensitive to the manufactured LER. This conclusion is 

important in the context of the presence of significant NA which generally decreases the sensitivity to LER. We have 

also proposed that for further improvement of the sensitivity or the contrast between RMSE values acquired for the 

reference and the artificial LER gratings, a more detailed model of the profile can be considered. 
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