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Abstract 

We look at arithmetic progressions on elliptic curves known as Huff curves. 
By an arithmetic progression on an elliptic curve, we mean that either the x or 
y-coordinates of a sequence of rational points on the curve form an arithmetic 
progression. Previous work has found arithmetic progressions on Weierstrass 
curves, quartic curves, Edwards curves, and genus 2 curves. We find an 
infinite number of Huff curves with an arithmetic progression of length 9. 
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1. Introduction 

Recently, several researchers have looked at arithmetic progressions on elliptic 
curves. Bremner [3], Campbell [4], Garcia-Selfa and Tornero [8] used elliptic curves 
given by a Weierstrass equation, while Campbell [4], MacLeod [12], and Ulas [15] 
have looked at quartic models. Moody [13] has studied the problem on Edwards 
curves. Alvarado [1] and Ulas [16] have extended similar results to genus 2 hyper-
elliptic curves. The historical motivation for this problem is discussed in [8]. 

Besides Weierstrass equations, quartic curves, and Edwards curves [6], there 
are other models for elliptic curves. These include Jacobi intersections [5], Hessian 
curves [10], and Huff curves [9], for example. Originally introduced in 1948, Huff 
curves have recently been shown to have applications in cryptography [11], [7]. An 
elliptic curve in Huff’s model can be written as 

Ha,b : x(ay 2 − 1) = y(bx2 − 1). 

In this work, we look at arithmetic progressions on Huff curves. By this we mean 
a sequence of rational points (x1, y1), . . . , (xn, yn) on Ha,b with the xi forming an 
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Source Model Longest progression Longest progression 
for infinite family 

[3],[4] Weierstrass curves 8 8 
This work Huff curves 9 9 

[13] Edwards curves 9 9 
[2],[12],[15] quartic curves 14 12 
[1],[16] genus 2 quintics 12 12 
[16] genus 2 sextics 18 16 

Table 1: Longest arithmetic progressions on curves 

arithmetic progression. The main result of this paper is to show several infinite 
families of Huff curves with arithmetic progressions of length 9. In comparison, 
Table 1 gives the length of the longest arithmetic progression for the previously 
mentioned models. Note in general the length increases as we have more variables 
in the defining curve equation we can specify. 

2. Arithmetic progressions 

Huff curves are elliptic curves that can be written as x(ay2 − 1) = y(bx2 − 1), when 
ab(a − b)  0. Clearly we have symmetry in x and y if we switch a and b, so we = 
only look for arithmetic progressions on the x-coordinates. Note trivially that the 
point (0, 0) is always on the curve. Notice also that an arithmetic progression of 
x-coordinates of the form {−kd, −(k − 1)d, . . . , −d, 0, d, 2d, . . . , (k − 1)d, kd} can 
always be rescaled so that d = 1. This is seen as follows. If the point (jd, y) is 
on the curve Ha,b, then the point (j, y/d) is on the curve Had2 ,bd2 . As a conse­
quence, we will focus on finding Huff curves which have x-coordinates in the set 
{±1, ±2, ±3, ±4}. 

We will repeatedly need the following calculation. If we require a rational point 
(x, y) on Ha,b with x = n, then we must have that any2 −(bn2 −1)y−n = 0. In order 
for y ∈ Q, the discriminant (bn2 − 1)2 + 4an2 must be a rational square. Applying 
this to x = 1, we need (b − 1)2 +4a = j2 for some rational j. The same equation is 
true for x = −1. Similarly, if we require rational points with x-coordinate ±2 and 
±3, then we must have (4b − 1)2 + 16a = k2 , and (9b − 1)2 + 36a = l2 for some 
rational k and l. Solving for a in our first equation, we have 

a =
1  

j2 − (b − 1)2
 
. (2.1)

4

Eliminating a from the other two equations, we are left with the system 

12b2 + 4j2 − k2 = 3, (2.2) 

72b2 + 9j2 − l2 = 8. (2.3) 
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We now parameterize the solutions in terms of b and a parameter m. Some 
easy algebra verifies that j = 3b2 − 1 and k = 6b2 − 1 is a solution to (2.2). Let 
j = 3b2 − 1 + t and k = 6b2 − 1 + mt. Substituting these values into (2.2) yields 

t (m 2 − 4)t + 12mb2 − 24b2 − 2m + 8 = 0. 

Solving for t, we see t = −2 (6b2−1)m−4(3b2−1) , and thus m2−4 

(3b2 − 1)m2 − 2(6b2 − 1)m + 4(3b2 − 1)
j = , (2.4)

m2 − 4 

−(6b2 − 1)m2 + 8(3b2 − 1)m − 4(6b2 − 1)
k = . 

m2 − 4 

We substitute this expression for j into (2.3) and seek a rational solution for l. 
Some more algebra shows that this is equivalent to 

81(m−2)4b4 +18(m−2)2(m 2 +22m+4)b2 +m 4 −36m 3 +172m 2 −144m+16 (2.5) 

being a rational square. Considering this as a polynomial in b, we first check to 
see what values of m will lead to the constant term being square. The equation 

2E : v = m4 − 36m3 + 172m2 − 144m + 16 clearly has the rational point (0, 4), 
and so determines an elliptic curve. Using SAGE [14], the curve E is found to 
have rank 0, and torsion points (0, ±4), (1, ±3), (2, ±12), (4, ±12), and (−2, ±36). 
We exclude m = ±2, as this leads to division by 0 in the expressions for j and k. 
When m = 1 or m = 4, then (2.5) is not the square of a polynomial in b. When 
m = 0, then (2.5) is 16(9b2 + 1)2 . 

1So letting m = 0, we have j = −(3b2 − 1), and a = b(3b − 2)(3b − 1)(b + 1) by 4 
(2.1). With this expression for a, then the curve Ha,b has an arithmetic progression 
of length 7, namely x = −3, −2, −1, 0, 1, 2, 3. In order for x = ±4 to be a rational 
point, we are led to the discriminant 144b4 + 144b2 + 1 needing to be a square. As 
the curve 

E1 : v 2 = 144b4 + 144b2 + 1 

clearly has rational point (0, 1), then E1 is an elliptic curve. By SAGE, this curve 
17 29has rank 2 with generators ( 1 , ), and ( 1 , ). Each rational point on E1 leads12 12 8 16 

to a value for b so that the Huff curve Ha,b has an arithmetic progression of length 
9. We thus have our first infinite family of Huff curves with a progression of length 
9. 

3. More families 

Returning to (2.5),we consider it as a polynomial in m, 

2(9b2 + 1)2 m 4 − 36(18b4 − 9b2 + 1)m 3 + 4(486b4 − 360b2 + 43)m 
(3.1)

− 144(18b4 − 9b2 + 1)m + 16(9b2 + 1)2 . 
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If we compare this to � �218(18b4 − 9b2 + 1) 
(9b2 + 1)m 2 − m + 4(9b2 + 1) ,

9b2 + 1 

the difference is 
160m2(324b4 − 45b2 + 1) 

.
(9b2 + 1)2 

If the difference is equal to 0, then (3.1) is a square. The case m = 0 was already 
examined. The other zeroes are when b = ± 1 , ± 1 . Letting b = − 1 , then 3 6 3 

(3m − 4)(m − 3)(m + 1)(m + 4) 
a = − .

9(m2 − 4)2 

The condition that x = ±4 is the coordinate of a rational point is equivalent to the 
corresponding discriminant being a rational square; i.e. we seek a rational point 
on the curve 

E2 : v 2 = 169m 4 − 128m 3 − 264m 2 − 512m + 2704. 

1The choice of b = leads to the same curve. Similarly, when b = ± 1 , we are led 3 6 
to the curve 

E3 : v 2 = 46m 4 − 440m 3 + 1968m 2 − 1760m + 736. 

Both E2 and E3 are elliptic curves with rank 2 and 1 respectively. These ranks were 
computed by SAGE. Each rational point on one of the curves leads to a Huff curve 
with a rational point having x-coordinate ±4, and thus a progression of length 9. 

By experimentation, we found a few other infinite families. Using the same 
parameterization as above, let b = ± 1 or ± 1 . Then it can be checked that x = ±44 8 
is the x-coordinate of a rational point on the Huff curve Ha,b with a determined 
by (2.1) and (2.4). However, we are no longer guaranteed that x = ±3 is on the 
Huff curve. Requiring x = ±3, we arrive at the following curves 

E4 : v 2 = 625m 4 − 4680m 3 + 22936m 2 − 18720m + 10000, (b = ±1/4) 

E5 : v 2 = 5329m 4 − 127368m 3 + 614296m 2 − 509472m + 85624. (b = ±1/8) 

These elliptic curves have ranks 1 and 2, leading to two more infinite families of 
Huff curves with progressions of length 9. 

Finally, letting b = ± 1 the parameterized Huff curve is Ha,±1/2, with 2 

(3m − 2)(m − 6) 
a = − . (3.2)

64(m − 2)2 

The condition that there is a rational point with x = ±3 leads to a quadratic, 
instead of a quartic as in previous cases: 

v 2 = 169m 2 − 604m + 676. (3.3) 



115 Arithmetic progressions on Huff curves 

A parametric solution to (3.3) is given by 

4(13s + 151) 
m = − , 

s2 − 169 

2(13s2 + 302s + 2197) 
v = − . 

s2 − 169 

Substituting this expression for m into (3.2), and requiring x = ±4 we have the 
curve 

E6 : r 2 = 46s 4 + 2288s 3 + 42124s 2 + 335712s + 1017846, 

which has rank 1. Each rational point of E6 gives a rational s, which in turn 
determines a rational m and a. The curve Ha,±1/2 will have rational points with 
x-coordinates ±3 and ±4. 

4. Conclusion 

In the previous section, we produced six infinite families of Huff curves having the 
property that each has rational points with x-coordinate x = −4, −3, −2, −1, 0, 1, 
2, 3, 4. This produces an arithmetic progression of length 9. We have performed 
computer searches to see if we can find any rational points on these curves leading 
to x = ±5 being the x-coordinate of a rational point on Ha,b. So far these searches 
have failed to turn up such a point. It is therefore an open problem to find a 
Huff curve with an arithmetic progression of length 10 (or longer). It would also 
be interesting to investigate arithmetic progressions on the remaining models of 
elliptic curves. 

Acknowledgments. We would like to thank the anonymous referee for noticing 
a few minor mistakes in our formulas. 
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