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Models of organic bulk heterojunction photovoltaics which include the effect of spatially varying
composition of donor/acceptor materials are developed and analyzed. Analytic expressions for
the current-voltage relation in simplified cases show that the effect of varying blend composition
on charge transport is minimal. Numerical results for various blend compositions, including the
experimentally relevant composition of a donor-rich region near the cathode (a “skin layer” of donor
material), show that the primary effect of this variation on device performance derives from its
effect on photocharge generation. The general relation between the geometry of the blend and its
effect on performance is given explicitly. The analysis shows that the effect of a skin layer on device
performance is small.

I. INTRODUCTION

Photovoltaic devices consisting of two types of organic
materials (referred to as donor (D) and acceptor (A))
have attracted considerable scientific interest in recent
years. Their operation consists of the generation of an
exciton in the donor molecule, which is then disassoci-
ated into free carriers at the D-A interface (the electron is
transferred to the acceptor molecule’s lowest unoccupied
molecular orbital (LUMO), leaving a hole in the donor
molecule’s highest occupied molecular orbital (HOMO)).
Carriers which avoid recombination are then collected by
contacts. The geometry first studied consisted of single
D and A layers, with a single planar interface [1]. The
resulting efficiencies were low (1 %), owing in part to
the short exciton diffusion length (10 nm) - only excitons
within this short distance from the interface lead to free
carriers. It was subsequently discovered that blending
D and A together throughout the device thickness led
to increased efficiencies [2], now above 5 % [3–5]. This
increase in efficiency is attributed to an increase in D-
A interfacial area; carrier transport is sufficiently robust
to the disorder present in the blend to accommodate rea-
sonable quantum efficiencies. If the organic blend is com-
pletely homogeneous, the contacts on the device must be
different in order to break spatial symmetry and permit
a nonzero short-circuit current in a preferred direction.
The key difference between the contacts is their work
function: a lower (higher) work function ensures that
the contact preferentially collects and injects electrons
(holes). Hence it is understood that the cathode collects
electrons, and the anode collects holes.

A major thrust of experimental efforts has been to
attain control over blend morphology in order to opti-
mize both exciton disassociation and charge transport.
Recent examples include using nanoimprint lithography
to control the structure of the donor-acceptor molecules’
interfacial profile [6], or using a graded donor-acceptor
blend to optimize both carrier collection and transport
[7]. A key challenge of engineering blend morphology is
the measurement and characterization of the structure
of the organic blend. Techniques for accomplishing this

include atomic force microscopy [8], ellipsometry [9], and
X-ray photoelectron spectroscopy [10]. These techniques
have revealed that typical methods for fabricating de-
vices lead to a layer of enhanced donor molecule density
at the cathode, which has been attributed to surface en-
ergy differences between the active layer and other com-
ponents [10]. This would seem to present an impediment
to good device performance: the cathode collects elec-
trons, but in its vicinity is mostly holes! Nevertheless,
internal quantum efficiencies of 90 % have been observed
in these materials [11], indicating that charge collection
is still a relatively efficient process [9].

In this work, I theoretically study the effect of a
nonuniform blend on organic photovoltaic (OPV) device
performance. I employ a drift-diffusion equation to de-
scribe electron and hole transport, a field and tempera-
ture dependent generation and recombination rate that
captures the exciton physics, and the Poisson equation
for electrostatics. To this model I add the effect of a spa-
tially varying effective density of states (EDOS) (note
that “density of states” refers to the number of states
per volume per unit energy, whereas “effective density of
states” refers to the number of states per volume). Part
I describes details of the model. In part II, I present ana-
lytic solutions for the transport under certain approxima-
tions; these point to the fact that the effect of a spatially
varying EDOS on charge transport is small. In part III,
I present numerical results which indicate that the pri-
mary effect of a spatially varying EDOS is on the charge
generation and ensuing Jsc. It is shown that this can be
understood in terms of the overall geometry of the com-
position profile. I conclude that since the skin layer near
the cathode is geometrically small on the scale of the
device thickness, its effect on performance is similarly
small.

II. MODEL

The model used to describe the system is similar to
that found in Ref. 14. Its basic equations are presented
here in dimensionless form. Table I shows the variable
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scalings used. The dimensionless drift-diffusion/Poisson
equations including a spatially varying EDOS are given
as [12]:
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where fµ = µh/µe is the ratio of hole to electron mobility,
G is the carrier density generation rate, and R is the re-
combination. N(x) and P (x) are the spatially-dependent
electron and hole effective density of states, respectively.
n and N are related via: n = Ne−(Ec−EF,n)/kT , where
EF,n is the electron quasi-Fermi level, Ec is the conduc-
tion band edge, and all quantities are position-dependent
(the densities are assumed to be such that the system is in
a nondegenerate regime). p and P are related similarly.
N(x) and P (x) are fixed material parameters, while n
and p are system variables that depend on applied voltage
and illumination. For a single band semiconductor, the

effective density of states N is given by 1√
2

(
m∗

nkBT

πh̄2

)3/2

,

where m∗
n is the effective electron mass. In the present

context of organic materials, N is more properly under-
stood as the number of HOMO states per unit volume,
and is proportional to the donor molecule density.

TABLE I: Normalization to dimensionless variables. In the
below N0 is the characteristic density (typically chosen to be
on the order of 10−25 m−3) Dn is the electron diffusivity, ϵ is
the dielectric constant of the organic blend, q is the magni-
tude of the electron charge, T is the temperature, and kB is
Boltzmann’s constant.

Quantity Normalization

density N0

position
√

ϵkBT/(q2N0) ≡ x0

charge current qDnN0/x0

electric potential kBT/q

rate density x2
0/N0Dn

The boundary conditions are given as:

n (0) = N (0) e−Eg+ϕL ,

p (0) = P (0) e−ϕL ,

n (L) = N (L) e−ϕR ,

p (L) = P (L) e−Eg+ϕR , (3)

where L is the device thickness (this represents placing
the anode at x = 0, and the cathode at x = L). ϕL(R)

is the absolute value of the difference between HOMO

(LUMO) and left (right) contact Fermi level. The bound-
ary condition for the Poisson equation is:

V (L)− V (0) = (Eg − ϕL − ϕR)− VA, (4)

where VA is the applied voltage (with the sign convention
above, VA > 0 corresponds to forward bias).

I consider only bimolecular recombination, with (di-
mensionless) form:

R =
(
np− n2

i

)
, (5)

where n2
i = n0p0, and n0 (p0) is the equilibrium elec-

tron (hole) density. The carrier generation rate density is
taken to be spatially uniform. As described in Ref. [14],
adding the exciton density as a system variable modifies
the source term in Eq. (1):

(G−R) → P̃ ×G0 −
(
1− P̃

)
×R, (6)

where G0 is the exciton density generation rate, and P̃
is a field and temperature dependent factor which repre-
sents the probability for an exciton to disassociate into
free electron and hole [14, 20]. The field and temper-
ature dependence is described by Braun’s extension of
Onsager’s theory of ion disassociation in electrolytes [21].

Charge recombination and generation also generally
depend on the donor and acceptor effective density of
states. The total source term of Eq. (1) (denoted here
by U(x)) is therefore of the generic form:

U(x) = P̃ ×G0 × g [N(x), P (x)]−(
1− P̃

)
×R× r [N(x), P (x)] . (7)

The appropriate forms for g and r depend on several
factors, such as the dependence of the optical absorption
and D-A interface area on relative D-A composition.

FIG. 1: (a) Energy diagram for device model; cartoon of par-
ticle flow depicts dark current in forward bias. (b) Spatial
dependence of EDOS: linear variation (shaded region), and
step-like change (dotted line) in both N(x) and P (x).
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III. ANALYTIC CASES

The set of equations described in Eq. (1) can be solved
analytically for limiting cases, which can provide some
insight into the effect of a spatially varying EDOS on the
transport. Two cases are considered here: the first is an
exponentially varying EDOS (which can be extrapolated
to a linearly varying EDOS), and the second is an abrupt,
step-like change in the EDOS. I present both solutions
first and discuss the physics they describe second.
In both cases the electric field E is taken to be spa-

tially uniform (so that V (x) = −Ex), and recombination
is ignored. I suppose further that G is constant, and in-
dependent of N,P (that is, g(N,P ) = 1 in Eq. (7)). The
exponentially varying EDOS is parameterized as:

N (x) = P (x) = A0 eax/L, (8)

where A0 = a/ (ea − 1) ensures that the total number of
states is independent of a. Substituting the expressions
for electron (hole) current density Jn(p) into the equation
of continuity (Eq. (1)) results in a second order differ-
ential equation for the electron (hole) density n (p). For
the EDOS of Eq. (8), the resulting general solution is:

n (x) = c1e
(a−f)x + c2 +

Gx

a− f
,

p (x) = c1e
(a+f)x + c2 +

Gx

a+ f
, (9)

where c1, c2 are determined by the boundary conditions
of Eq. (3). From this solution the current density can be
obtained directly.
I express the resulting current-voltage relation as a sum

of dark current and light current:

J (VA) = JD +GJL , (10)

Both light and dark currents are well described by ex-
panding to lowest order in the spatial variation of EDOS
parameter a; I take ϕL = ϕR = 0, and express the applied
voltage dependence in terms of f = (Eg − qVA) /kBT . f
is bigger than 1 in the region of interest [15], leading to
the further approximation that sinh f ≈ cosh f ≈ 1/2 ef .
It’s useful to express current-voltage relation in terms of
that for a uniform EDOS and electric field:

J0
D =

2f
(
eVA − 1

)
L (ef − 1) eVA

J0
L = L

(
2

f
− coth

(
f

2

))
. (11)

The dark and light current for the exponentially vary-
ing profile of Eq. (8) is then found to be:

Jexp
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)
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I next consider a step function form of N(x), P (x). I
use the following form:

N (x) = P (x) =

{
1− a/2 if x < L/2,

1 + a/2 if x ≥ L/2.
(13)

The general solutions for each region (x < L/2, x > L/2)
are of the form given by Eq. (9) with a=0. In addition
to the boundary condition Eq. (3), there’s an additional
boundary condition for this EDOS of continuity of charge
and current density at x = L/2. Making the same ap-
proximations as above leads to the following dark and
light current:

J step
D ≈ J0

D

(
1− a2e−f/2 +O

(
a4
)
+ ...

)
,

J step
L ≈ J0

L

(
1− a2

2

fe−f/2

f − 2
+O

(
a4
)
+ ...

)
. (14)

A number of interesting and relevant features emerge
from these solutions: first, only even powers of a appear
in the expansions. This is a consequence of the symme-
try built in to the system: when ϕL = ϕR and fµ = 1,
electron particle transport from left to right is equal to
hole particle transport from right to left. In both the ex-
ponential and step-like cases above, holes encounter an
expansion in the EDOS along their transport direction,
which increases the hole current. Conversely, electrons
encounter a constriction, which decreases the electron
current. To linear order (and all odd orders) in the ex-
pasion/contraction parameter a, these effects cancel each
other so that the total charge current only appears with
even powers of a. If the electron/hole symmetry is bro-
ken, or the symmetry of the EDOS is reduced (by shifting
the step away from the center of the device), then odd
powers of a are present (with prefactors whose magnitude
reflects the degree of symmetry breaking).

The other relevant feature of Eqs. (12) and (14) is the
small magnitude of the a2 prefactor. Noting again that
f is generally larger than 1 for the applied voltages of
interest to solar cells, it’s clear by inspection that the
prefactors are much smaller than 1. This indicates that
the effect on transport of a spatial variation of the EDOS
is quite weak.

The intuitive picture that emerges from this analy-
sis is that electrons and holes can very easily “squeeze”
through regions of reduced density. A natural ques-
tion concerns the way in which transport is ultimately
“pinched off” by letting the density vanish at a point in
space. This is shown in Fig. (2), which shows the current
in the step-like structure as a → 2. The way in which
the current vanishes is very steep; it is only at very small
values of EDOS at the cathode that the current drops ap-
preciably (in this limit, the approximation a ≪ 1 used in
deriving Eq. (14) is not satisfied, hence the discrepancy
between exact solution and Eq. (14)). However, for very
small values of HOMO and LUMO density in real sys-
tems, the model presented here is likely not appropriate.
This point is discussed more fully in the conclusion.



4

0 0.2 0.4 0.6
0

0.5

1

1.5

EDOS at cathode

J/
J 0 (

x1
06 )

 

 

Exact
Approx

FIG. 2: Extinction of current when EDOS goes to zero.
This is for the step-like change in EDOS, for parameters
G = 10−9, VA = 0.7. Both approximate and exact values
are shown (where the approximate expression is given by Eq.
(14)). It is seen that the current decreases substantially only
when the EDOS is nearly zero (or when a is nearly 2).

IV. NUMERICAL STUDIES

I next consider the effect of spatially varying EDOS
when the Poisson equation for the electric potential and
bimolecular recombination are included. Recall that
the dependence of the generation and recombination on
EDOS of electron N and hole P is described generically
as:

P̃ ×G0 × g (N,P )−
(
1− P̃

)
×R× r (N,P ) . (15)

I make the following ansatz for g (the main conclusion
can be formulated in a way that’s independent of this
specific choice for g):

g (N,P ) = P 2N . (16)

This is motivated by the observation that the D-A inter-
facial area requires both P and N , hence g has a factor
of each; an extra factor of P is added since the exciton
is initially generated in the donor. r is taken simply to
be 1, since R already has N and P dependence built in
through n and p. Adding a factor of P to the recombi-
nation (so that the N,P -dependence of both generation
and recombination is the same) has only a weak effect on
the results.
A range of composition profiles has been explored for

the numeric evaluation of device performance, and I
present two representative examples here:

N1(x) = 1− P1(x) =
a

(ea − 1)
eax/L , (17)

N2(x) = 1− P2(x) =
1

2

(
1 + (1− 2a) tanh

(
x− x0

λ

))
.

(18)

Fig. (3) shows the J − V curves for the (N2, P2) case
(Eq. (18)) for the uniform profile (a = 1/2), and a sharp

FIG. 3: Current density-Voltage relation for two spatial pro-
files of D-A EDOS profiles. Blue dotted line is for uniform
EDOS profile, red line is for S-shaped EDOS profile, given by
Eq. (18)

S-shaped profile (a = 0.95). Note that the effect of the
EDOS profile on the short circuit current Jsc is substan-
tial, while the effect on open circuit voltage Voc is small.

The previous analysis can explain the relative insen-
sitivity of Voc to a nontrivial EDOS profile: the effect
of a varying EDOS profile on transport is weak, so that
the injected current required to offset the photogenerated
current (and the corresponding required voltage - Voc) is
only weakly sensitive to changes in EDOS [16].

The change in Jsc can be understood as a direct conse-
quence of the model construction. Jsc is the current col-
lected in the absence of an applied voltage, that is, in the
absence of charge injected from the contacts. As such it
is simply equal to the total charge generation rate in the
device: Jsc =

∫
dx (Generation(x)− Recombination(x)).

As described above, this is directly parameterized as:

Jsc =

∫
dx

(
P̃ ×G0 × g [N(x), P (x)]−

(1− P̃ )×R× r [N(x), P (x)]
)
. (19)

In analyzing the effect of N(x), P (x) on Jsc, it is instruc-
tive to separate the N,P dependence of the generation
from the above integral. This leaves a quantity δU which
depends only on the geometry of the D-A EDOS profile:

δU =

∫
dx g [N(x), P (x)] (20)

=

∫
dx N(x)P 2(x). (21)

Strictly speaking the integral in Eq. (19) does not
factorize in a manner that leads lead directly to a δU
term. However, as I show in the following, δU is a good
predictor of the effect of the geometry of the EDOS on
the device performance.

For each EDOS profile, I also vary other system param-
eters. The three different parameterizations are shown
in Fig. (4). In system 1, HOMO/LUMO levels are
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aligned with cathode/anode Fermi levels (ϕL = ϕR = 0),
and electron and hole mobility are equal. For system 2,
ϕL = ϕR = 0, but electron and hole mobilities are not
equal (µe = 10µh). In system 3, the HOMO/LUMO are
offset from cathode/anode by 0.2 eV (ϕL = ϕR = 0.2 eV),
and electron/hole mobilities are equal.

FIG. 4: Cartoon of the three system parameterizations: sys-
tem 1: ϕL = ϕR = 0, µh = µe, system 2: ϕL = ϕR = 0, µh =
10µe, system 3: ϕL = ϕR = 0.2 eV, µh = µe

Fig. (5a) and (5b) shows δU as the profile parameter a
is varied, for various EDOS configurations given by Eqs.
(17) and (18), respectively. This is shown for the three
system parameterizations. The overall device efficiency
η tracks δU very closely for all of these cases (the effi-
ciency is proportional to the maximum absolute value of
(JV ) in the 4th quadrant of the J − V plane). For this
reason I conclude that the primary effect of a spatially
varying EDOS on device performance is to change the
total carrier generation rate and ensuing Jsc. δU in Fig.
(5) is calculated using Eq. (21), however the conclusion
is valid for any choice of g I’ve tried. Hence the effect of a
nonuniform blend on performance can be approximately
specified in the generic form given by Eq. (20).

FIG. 5: The efficiency η and geometrical factor δU (normalized by their maximum value) versus geometrical parameter a for
(a) exponentially varying profile (N1(x) of Eq. (17)) (b) S-shaped profile N2(x) of Eq. (18), with x0 = L/2, λ = L/8), (c)
“skin” layer geometry. Representations of the spatial variation of EDOS as a function of a are shown above the figure. The
gray and white regions represent N(x) and P (x), respectively. The efficiency closely follows the geometrical factor δU for most
cases. For each geometry I use the three system parameterizations described in Fig. (4) (the subscript of η specifies the system
parameterization).

Next I turn to the experimentally motivated geometry
of a skin layer of D near the cathode. It’s parameterized
as:

N(x) = 1− P (x) =
2 + a

4
+

2− a

4
tanh

(
x− x0

λ

)
,

(22)

with λ = 0.0075 L, x0 = 0.05 L. Fig. (5c) shows how
the efficiency evolves as the skin layer goes from mostly
D-like (small a), to an even D-A mix, to mostly A-like
(large a) (the experimentally realistic case is smaller a).
The change in efficiency is a rather small effect for all
three cases (a maximum of 10 % change). Also shown is

the geometrical factor δU (solid line). The efficiency of
system 1 conforms most closely to the geometrical fac-
tor profile dependence. Inspection of the J − V curves
for the three systems reveals subtle differences in the fill-
factor between the three; there is no simple or obvious
source for the difference in behavior between the three
system parameterizations. The difference in behavior
between the three systems is more conspicuous for the
skin layer geometry because the effect of a nonuniform
blend is smaller for the skin layer, so that the overall
performance is more sensitive to other system parame-
ters. (When the blend profile leads to larger effects, for
example that shown in Fig. (5b), there is a similar de-
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pendence of device performance on profile for all system
parameterizations.) Nevertheless, the important conclu-
sion common to all three system parameterizations of
the skin layer geometry is that the effect of the skin layer
is small. Its smallness can be understood in terms of
the analysis of the previous sections. The analytic work
points to the fact that the effect of blend non-uniformity
on charge transport is generically small (except in ex-
treme cases). The numerical work of the previous test
cases indicates that the effect of blend non-uniformity
can be understood in terms of its effect on charge gener-
ation and resulting Jsc - and that this effect is essentially
geometrical (see Eq. (20)). Since a skin layer is by defi-
nition geometrically small, its effect is similarly small.

V. CONCLUSION

In this work I presented a simple model for the effect of
nonuniform blend profiles on OPV device performance.
The main effect of a nonuniform D-A blend is on the the
charge generation and resulting short-circuit current: in
regions where the blend is primarily of one type at the ex-
pense of the other, there is less charge generation due to
a reduced D-A interfacial area. The details of how charge
generation depends on local blend mix are complicated,
and involve almost all aspects of OPV device operation
(e.g optics [19], exciton diffusion [7], etc.). The influence
of a nonuniform blend on electron and hole transport is
a weaker effect.

It’s important to appreciate the simplicity of the model
presented here relative to the complexity of real OPV de-
vices. Two simplifications of the model are: its treatment
of the metal-organic interface, and its restriction to 1 spa-
tial dimension. I make no attempt to capture the effect
of a skin layer geometry on the metal-organic contact.
The physics at this interface is included most simply as
a finite recombination velocity [22] (which can also de-
pend on temperature and field [23]). A hallmark of less
effective charge collection/injection at this interface is S-
shaped J − V curves [24]. This feature is correlated to
metal contact deposition techniques [24], and is not ubiq-
uitously observed in devices. I therefore conclude that
the details of the metal-organic contact is not directly
tied to the phase segregation in the organic blend.

A more severe approximation of this model is its re-
striction to 1-d. When the EDOS is small, the charge
and current density is also small. However, experiments
reveal localized hot-spots of conducting paths [8]. A 1-d
model necessarily averages these localized hot-spots or
large current density over the entire cross-sectional area,
leading to a diffuse current. As the overall area of hot-
spots decreases, the charge and current density they must
accommodate increases, and current may become space-
charge limited. A 1-d model is unable to capture the
physics described in this scenario. However for less ex-
treme cases, the treatment described here offers the sim-
plest account for a spatially varying blend structure.

I acknowledge very useful discussions with Behrang
Hamadani and Lee Richter.
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