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1. Introduction

In this paper, a version of the moment problem is considered. It is shown, if U and W are jointly continuous random
variables having a sequence of finite product moments αj = E[UW j

], j = 0, 1, 2, . . . satisfying uniqueness conditions
associated with a moment problem, then these moments uniquely determine ψ(w) = E[U | W = w]. Also, a numerical
procedure is derived to recover ψ(w) from the αj. The classical moment problem asks, given a sequence of complex
numbers α0, α1, α2, . . . , when does there exist a measure or a function of bounded variation with αj its jth moment and
when is it unique. There are at least three versions of the moment problem, the Hausdorff moment problem, the Stieltjes
moment problem and the Hamburger moment problem, all differing by their supports. These classic problems gave rise to
an abundance of mathematics, Stieltjes integrals, Pade approximations, orthogonal polynomials, Riesz–Markov theorem.
A partial list of famous mathematicians involved in its solution are Chebyshev, Hausdorff, Riesz, Stieltjes, Krein, Markov,
Hamburger, Nevanlinna, Akhiezer, Karlin. The texts and tracts [1–3] contain comprehensive coverage of the moment
problem.

The Hamburger and Stieltjes moment problems are defined in terms of the Hankel matrices

H(1)n =


α0 α1 α2 · · · αn
α1 α2 α3 · · · αn+1
α2 α3 α4 · · · αn+2
...

...
...

...
...

αn αn+1 αn+2 · · · α2n

 H(2)n =


α1 α2 α3 · · · αn+1
α2 α3 α4 · · · αn+2
α3 α4 α5 · · · αn+3
...

...
...

...
...

αn+1 αn+2 αn+3 · · · α2n+2

 .
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The Hamburger moment problem. Suppose an infinite sequence of complex numbers αj (j = 0, 1, 2, . . .) is given. A necessary
and sufficient condition for the existence of a function of bounded variation σ(x)(−∞ < x < ∞) with moments αj
satisfying

αj =


∞

−∞

xjσ(dx) j = 0, 1, 2, . . .

is that the sequence of αj is positive definite, i.e.


j,k≥0 αj+kcjck ≥ 0 for an arbitrary sequence {cj, j ≥ 0}, or equivalently
det(H(1)n ) > 0, n = 0, 1, 2, . . . . If in addition, there exist constants C > 0 and R > 0 such that

|αj| ≤ CRjj! j = 1, 2, . . .
then σ(x) is unique.
Stieltjes moment problem. Suppose an infinite sequence of complex numbers αj (j = 0, 1, 2, . . .) is given. Necessary and
sufficient conditions for the existence of a function of bounded variation σ(x)(0 < x < ∞)with moments αj satisfying

αj =


∞

0
xjσ(dx) j = 0, 1, 2, . . .

are that the sequences det(H(1)n ) > 0 and det(H(2)n ) > 0, n = 0, 1, 2, . . . . The function σ(x) is unique if there exist constants
C > 0 and R > 0 such that

|αj| ≤ CRj(2j)! j = 1, 2, . . . .
Hausdorff moment problem. Suppose an infinite sequence of complex numbers αj (j = 0, 1, 2, . . .) is given, then a necessary
and sufficient condition for the existence of a function of bounded variation,σ(x)with finite support−∞ < a < x < b < ∞

satisfying

αj =

 b

a
xjσ(dx) j = 0, 1, 2, . . .

is that the sequence of moments αj, j = 0, 1, 2, . . . satisfy the inequalities

∆kαj =

k
i=0

(−1)i

k
i


αi+j ≥ 0, for all k, j = 0, 1, 2, . . . . (1)

If a solution exists, then it is unique.
There are distributions not uniquely determined by theirmoments. For example, Stieltjes [4,5] showed distributionswith

densities
a exp(−t1/4) and bktk−log t t ∈ (0,∞)

are not uniquely determined by their moments, where a, bk are positive normalizing constants. Heyde [6] showed that the
familiar lognormal distribution is not moment determinate. Other examples can be found in [7,8]. Common terminology
calls a distribution uniquely determined by its momentsM-determinate, if not, it is calledM-indeterminate. The lognormal
is an M-indeterminate distribution. If F(w) is the distribution function of the random variable W that is M-indeterminate,
then setting U = F(W )

E[U | W = w] = F(w)
makes E[U | W = w]M-indeterminate in terms of σ(x) =

 x
0 F(w)dF(w) = F 2(x)/2. This follows from the Krein condition:

F(x) is M-indeterminate if


∞

−∞
− ln f (x)/(1 + x2)dx < ∞, f (x) the probability density of F(x), f (x) > 0 for all x. Criteria

other than those stated in the moment problems above can be used to determine if a distribution is M-determinate. There
are the Carleman and Krein conditions reviewed in [9]. The criteria in the Krein condition is pleasing, because it depends
entirely on the probability density function of F(x).

Except for trivial text book examples, an exact expression for E[U | W = w] is rare. The Gaussian case is an exception,
i.e. when U and W are jointly normal, the conditional expectation is exactly known to be linear. For the Hausdorff case, it
is shown in [10] how to recover a distribution function in terms of its moments. Recovery of a distribution function from
moments for the Hausdorff moment problem can be found in [11–15]. We derive an expression for E[U | W = w] in terms
of αj, j = 0, 1, 2, . . . . More precisely, we show in Theorem 2 under certain assumptions

E[U | W = w] = lim
n→∞

1
p(w)

2n
j=0

v[n(Mn+w)/Mn]j
nj+1

M j+1
n
αj

where vij are entries in a Vandermonde matrix, p(w) is the marginal density ofW and Mn/n → 0.
Numerous applications exist either in stochastic processes, economics, statistics, control theory and other branches of

applied mathematics where an estimate for E[U | W ] is needed. Because conditional expectations are projections, they are
important for deriving optimal estimators. This concept is particularly important in regression and filtering type problems.
Applications in structural equations in economics, the Kalman–Bucy Filter in control theory and in regression in statistics
can be found in [16–18]. Our solution, is applied to the errors in variables regression problem, see [19] for details on errors
in variables.
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2. Characterization

It will be assumed throughout that, (i) (U,W ) is a continuous random vector with W having marginal distribution
F(w) with support either of the moment intervals (−∞,∞) (Hamburger), (0,∞) (Stieltjes) or [a, b] (Hausdorff), (ii) all
the product moments E[UW j

], j = 0, 1, 2, . . . are finite and (iii) F(w) is differentiable with derivative p(w). The function,
E[U | W = w] is continuous for allwwhere p(w) > 0 and E[U | W = w] is integrablewith respect to F(w) since E[U] < ∞.

Applying the law of total probability reveals the moment relationship between E[U | W = w] and its product moments
E[UW j

]

αj = E[UW j
] =

 B

A
wjE[U | W = w]dF(w) j = 0, 1, 2, . . . (2)

where the integration is over one of the moment intervals and whenever an integral sign of this form appears, it is so to be
interpreted.

Under assumptions (i)–(iii), it is shown that E[U | W = w] is the only function of w integrable with respect to F(dw)
with moments, E[UW j

].

Theorem 1 (Characterization Theorem). If ψ(w) is any continuous, Riemann–Stieltjes integrable function with respect to F(w)
over the moment interval defined by A and B, B

A
wjψ(w)dF(w) = αj j = 0, 1, 2, . . . (3)

and the sequence αj, j = 0, 1, 2, . . . satisfies the uniqueness conditions associated with themoment problem for the limits of inte-
gration, thenψ(w) = E[U | W = w]. That is, the productmoments E[UW j

], j = 0, 1, 2, . . . uniquely determine E[U | W = w].

Proof. Since ψ(w) is integrable with respect to F(w), then

σ(x) =

 x

A
ψ(w)dF(w) A < x < B (4)

is of bounded variation, see [20]. From (2), the function of bounded variation
 x
A E[U | W = w]dF(w) has moments αj. By

the uniqueness property in the moment problem, σ(x) ≡
 x
A E[U | W = w]dF(w). Thus, for each A < x < B and δ > 0

1
δ

 x+δ

x
ψ(w)dF(w) =

1
δ

 x+δ

x
E[U|W = w]dF(w).

Using the continuity of both ψ(w) and E[U | W = w] and letting δ go to zero gives ψ(w) = E[U | W = w].

3. Reconstruction

Next, it is shown how to recover ψ(w) = E[U | W = w] from its product moments, i.e. ψ(w) is expressed in terms of
αj = E[UW j

]. Let Mn be a sequence of positive real numbers increasing to infinity, with Mn/n approaching zero (specified
exactly in Theorem 2), then

ψ(w) = lim
n→∞

1
p(w)

2n
j=0

v[n(Mn+w)/Mn],j
nj+1

M j+1
n
αj (5)

where [ ] denotes the greatest integer function, p(w) = F ′(w) and vij is the ijth entry of the inverse of V2n (set vi,j = 0 if i or
j > 2n), the Vandermonde matrix with nodes atmj = −n + j, j = 0, 1, . . . , 2n

V2n = V (−n,−n + 1, . . . , n) =


1 1 · · · 1
−n −n + 1 · · · n
(−n)2 (−n + 1)2 · · · n2

...
...

...
...

(−n)2n (−n + 1)2n · · · n2n

 . (6)

The convention in this paper is to allow the indices of matrices to start at zero rather than 1, i.e. the first row and column
are denoted by v0,j, vi,0.

Explicit formulae and computational schemes for solving Vandermonde systems and finding the inverse of its matrix
exist. The most celebrated is by Björck and Pereyra [21]. The high accuracy of its solutions has been justified theoretically
in [22]. Other results on the inverse of Vandermonde matrices can be found in [23,24]. Ref. [25] contains a short algorithm
for solving a moment system of equations.
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We need the following lemmas to validate our reconstruction. The proof of Lemma 1 is a very close adaptation of the
proof of Theorem 1 from [26]. Let σm be the mth elementary symmetric function in the variables x1, . . . , xN ,N ≥ 1

σm = σm(x1, . . . , xm) =


xν1xν2 · · · xνm (1 ≤ m ≤ N) (7)

and let σ λm = σm(x1, . . . , xλ−1, xλ+1, . . . , xm).

Lemma 1. Let VN = VN(x1, . . . , xN) be the Vandermonde matrix with nodes at x1, . . . , xN and let V−1
N = (vλµ), 1 ≤ λ,µ ≤ N

denote its inverse. Assume xν ≠ xµ for ν ≠ µ. The following holds:

N
µ=0

|vλµ| |x|µ ≤

N
ν≠λ

(|x| + |xν |)

N
ν≠λ

|xν − xλ|
1 ≤ λ ≤ N, for all x. (8)

Proof. First we show

N
m=1

|σm| |x|N−m
≤

N
ν=1

(|x| + |xν |). (9)

Let q(x) =
N
ν=1(x − xν). Then

q(x) =

N
m=0

(−1)mσmxN−m.

In particular,

q(−x) = (−1)N
N

m=0

σmxN−m. (10)

On the other hand, by definition

q(−x) = (−1)N
N
ν=1

(x + xν). (11)

If xν ≥ 0, 1 ≤ ν ≤ N , then all σm ≥ 0 and form (10) and (11), we have
N

m=0

|σm| |x|N−m
=

N
m=0

σm|x|N−m
= (−1)Nq(−|x|) =

N
ν=1

(|x| + xµ) =

N
ν=1

(|x| + |xν |).

So, (9) holds, exactly, for nonnegative xν . Using the definition (7)

|σm(x1, . . . , xm)| ≤ σm(|xν1 |, . . . , |xνm |) 1 ≤ m ≤ N.

We find using the case of positive xν that

N
m=0

|σm(x1, . . . , xm)| |x|n−m
≤

N
ν=1

(|x| + |xν |) (12)

proving (9) holds for all xν . It is shown in [27, p. 416] that

vλµ = (−1)N−µ
σ λN−µ

ν≠λ

(xν − xλ)
. (13)

Therefore,

N
m=0

|vλµ| |x|µ =

N
µ=1

|σ λN−µ| |x|
µ


ν≠λ

|xν − xλ|
.

Lemma 1 follows from (9).
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Lemma 2. For 1 ≤ i ≤ 2n, the following holds:

2n
j≠i
(n + | − n + j|)

2n
j≠i

|i − j|
≤ Cn ∼


4n


n
π

2

. (14)

Proof. Here we will use the fact that the largest binomial coefficient is the central binomial coefficient and its asymptotic
expansion given in [28].

2n
j≠i
(n + | − n + j|)

2n
j≠i

|i − j|
≤

n
j=1
(2n − j)

2n
j=n+1

j

2n
j≠i

|i − j|
=

2


n

j=1
2n − j

2

2n
j≠i

|i − j|
(15)

=
(2n!/(n − 1)!)2

i!(2n − i)!
=

2n!
((n − 1)!)2


2n
i


= n2


2n
n


2n
i


≤


n

2n
n

2

∼


4n


n
π

2

. (16)

Theorem 2. Let ψ(w) have support (−∞,∞). If there exists a sequence of positive constants Mn satisfying Mn/n → 0 and
4
Mn

2n+1 
|u|>Mn

u2ndσ(u) → 0 as n → ∞ (17)

where σ(u) =
 u
−∞

ψ(x)dF(x) and a neighborhood N where p(w) is nonzero for w ∈ N , then the following holds:

ψ(w) = lim
n→∞

1
p(w)

2n
j=0

v[n(Mn+w)/Mn],j
nj+1

M j+1
n
αj w ∈ N . (18)

Proof. Set ψn(w) equal to

ψn(w) =
1

p(w)

2n
j=0

v[n(Mn+w)/Mn],j
nj+1

M j+1
αj w ∈ N . (19)

To show pointwise convergence atw ∈ (−∞,∞), fix ϵ > 0 and substitute the expression for αj in (19),

ψn(w) =
1

p(w)

2n
j=0

v[n(Mn+w)/Mn],j
nj+1

M j+1
n


∞

−∞

ujdσ(u)

=
1

p(w)

2n
j=0

v[n(Mn+w)/Mn],j
nj+1

M j+1
n

 Mn

−Mn

ujdσ(u)

+
1

p(w)

2n
j=0

v[n(Mn+w)/Mn],j
nj+1

M j+1
n


|u|>Mn

ujdσ(u) = ψ1n(w)+ ψ2n(w). (20)

For each n > 0, divide [−Mn,Mn] into subintervals with endpoints contained in En = {wj = wjn =
Mn
n (−n + j), j =

0, 1, . . . , 2n}. Forw fixed in N and ϵ, ζ > 0, we may choose N1 large enough such that for n > N1,

(i) There exists, win ∈ En ∩ N , win ≤ w with w − win < Mn/2n, which implies [n(Mn + w)/Mn] = [n + (n/Mn)win +

(n/Mn)(w − win)] = [in + (n/Mn)(w − win)] = in.
(ii) p(win) > 0.

(iii) |
p(win )

p(w) − 1| < ζ .

(iv) |ψ(w)− ψ(win)| < ϵ/4.



134 C. Hagwood / Journal of Computational and Applied Mathematics 276 (2015) 129–142

Therefore for n > N1,

|ψn(w)− ψ(w)| = |ψn(win)− ψ(w)+ ψn(w)− ψn(win)|

=

ψn(win)− ψ(w)+


1

p(w)
−

1
p(win)

 2n
j=1

vinjαj
nj+1

M j+1
n


=

ψn(win)− ψ(w)+ ψn(win)


1 −

p(win)

p(w)


=

ψn(win)+ ψn(win)


1 −

p(win)

p(w)


− [ψ(w)− ψ(win)+ ψ(win)]


=

ψn(win)− ψ(win)+ ψn(win)


1 −

p(win)

p(w)


− [ψ(w)− ψ(win)]


≤ ζ |ψn(win)| + ϵ/4 + |ψn(win)− ψ(win)|. (21)

To show convergence, it suffices to consider, |ψn(win)− ψ(win)|. Set i = in, then

ψ1n(wi) =
1

p(wi)

2n
j=0

vij
nj+1

M j+1
n

2n−1
k=0

 wk+1

wk

ujdσ(u). (22)

The Riemann–Stieltjes integral may be bounded by the maximum and the minimum of uj in the interval [wk, wk+1] giving

1
p(wi)

2n
j=0

vij
nj+1

M j+1
n

2n−1
k=0

w
j
k∆+(wk) ≤ ψ1n(wi) ≤

1
p(wi)

2n
j=0

vij
nj+1

M j+1
n

2n−1
k=0

w
j
k+1∆−(wk+1) (23)

or equivalently

1
p(wi)

2n−1
k=0

(n/Mn)∆+(wk)

2n
j=0

vij
nj

M j
n
w

j
k ≤ ψ1n(wi) ≤

1
p(wi)

2n−1
k=0

(n/Mn)∆−(wk+1)

2n
j=0

vij
nj

M j
n
w

j
k+1 (24)

where∆+(wk) = σ(wk+1)−σ(wk) = σ(wk +M/n)−σ(wk) and∆−(wk+1) = σ(wk+1)−σ(wk) = σ(wk+1)−σ(wk+1 −

M/n).
It was stated in the proof of Lemma 1, that the Vandermonde matrix is related to the Lagrange interpolation polynomial

basis function by

qi(m) =

2n
j=0
j≠i

m − mj

mi − mj
=

2n
j=0

vijmj i = 0, 1, . . . , 2n m ∈ (−∞,∞). (25)

Obviously, qi(mk) =
2n

j=0 vijm
j
k = δik, 0 ≤ k ≤ 2n. Therefore, Eq. (24) becomes

1
p(wi)

2n−1
k=0

(n/Mn)∆+(wk)δik ≤ ψ1n(wi) ≤
1

p(wi)

2n−1
k=0

(n/Mn)∆−(wk)δik+1

(n/Mn)
σ (wi + Mn/n)− σ(wi)

p(wi)
≤ ψ1n(wi) ≤ (n/Mn)

σ (wi)− σ(wi − Mn/n)
p(wi)

. (26)

This inequality implies

−ψ(wi)+
n/Mn

p(wi)

 wi+Mn/n

wi

ψ(u)p(u)du ≤ ψ1n(wi)− ψ(wi)

≤ −ψ(wi)+
n/Mn

p(wi)

 wi

wi−Mn/n
ψ(u)p(u)du.

Now choose N2 > N1, such that for all n > N2

max
ψ(wi)−

n/Mn

p(wi)

 wi

wi−Mn/n
ψ(u)p(u)du

 , ψ(wi)−
n/Mn

p(wi)

 wi+Mn/n

wi

ψ(u)p(u)du
 < ϵ/4.

Therefore for all n > N2

|ψ1n(wi)− ψ(wi)| < ϵ/4.
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Applying Lemmas 1 and 2,

|ψ2n(wi)| ≤
1

p(wi)

2n
j=0

|vij|
nj+1

M j+1
n

M j−2n
n


|u|>Mn

|u|2ndσ(u)

≤
1

p(wi)

n
Mn

M−2n
n


|u|>Mn

u2ndσ(u)
2n
j=0

|vij|nj

≤
1

p(wi)

n2

Mn
M−2n

n
42n

π


|u|>Mn

u2ndσ(u)

≤ C0
42n+1

M2n+1
n


|u|>Mn

u2ndσ(u)

≤ ϵ/4 (27)

for all n > N3 for some N3 > N2 by hypothesis. Therefore, or n > N3,

|ψn(win)− ψ(win)| ≤ ϵ/2 (28)

and by (28) ψn(win) is bounded. Therefore in (21), ζ may be chosen such that ζ |ψn(win)| < ϵ/4, giving

|ψn(w)− ψ(w)| < ϵ

as desired to show pointwise convergence.

Theorem 3. Let ψ(w) have support (0,∞). If there exists a sequence of positive constants Mn satisfying Mn/n → 0 and
4
Mn

2n+1 
u>Mn

u2ndσ(u) → 0 as n → ∞ (29)

where σ(u) =
 u
0 ψ(x)dF(x), u > 0 and a neighborhood N where p(w) is nonzero for w ∈ N , then the following holds:

ψ(w) = lim
n→∞

1
p(w)

2n
j=0

v[nw/Mn],j
nj+1

M j+1
n
αj w ∈ N (30)

where vij is the i, j entry of the inverse of the Vandermonde matrix V (0, 1, 2, . . . , n).

Proof. The proof is almost identical to the proof of Theorem 2.

Theorem 4. Let ψ(w) have support (A, B), A and B finite. Let p, ψ ∈ C2n+2
[A, B], i.e. p, ψ have 2n + 2 continuous derivatives

in [A, B] and let

ψn(wi) =
2n

(B − A)π

n
j=1

vijαj

p(wi)


1 −


2wi − B − A

B − A

2


wherewi are the Chebyshev nodes in [A, B]

wi =
B − A

2
cos


2i − 1
2n

π


+

B + A
2

and let vij denote the ijth entry in the inverse of V (w1, w2, . . . , wn). For 1 ≤ i ≤ n and n sufficiently large

|ψn(wi)− ψ(wi)| ≤
Rn

(2n)!22n+1
33/4(1 +

√
2)n


B − A

2

2n+1p(wi)


1 −


2wi − B − A

B − A

2
 (31)

Rn = 2π sup1≤j≤n |f (2n)j (ξj)|, A < ξj < B and fj(w) = wjψ(w)p(w)

1 − ( 2w−B−A

B−A )
2
.

Proof. The Gauss–Chebyshev quadrature approximation, [29] gives

αj =

 B

A
wjψ(w)p(w)dw =

B − A
2n

π

n
i=1

w
j
iψ(wi)p(wi)


1 −


2wi − B − A

B − A

2

+ Rj,n
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for j = 1, . . . , nwhere Rj,n =
2π f (2n)j (ξj)


B−A
2

2n+1

22n+1(2n)!
, A < ξj < B and fj(w) = wjψ(w)p(w)


1 − ( 2w−B−A

B−A )
2
. It suffices to prove

the result for [A, B] = [−1, 1].

ψn(wi)p(wi)


1 − w2

i =
n
π

n
j=1

vijαj =
n
π

n
j=1

vij

 1

−1
wjψ(w)p(w)dw

=
n
π

n
j=1

vij


π

n

n
k=1

w
j
kψ(wk)p(wk)


1 − w2

k + Rj,n



=

n
k=1

w
j
kψ(wk)p(wk)


1 − w2

k

n
j=1

vijw
j
k +

n
π

n
j=1

vijRj,n.

Now we may apply the result following (25) in Theorem 2, to get for n sufficiently large

|ψn(wi)− ψ(wi)| ≤ sup
j

Rj,n
n
π

∥V−1
∥∞(p(wi)


1 − w2

i )
−1

≤
Rn

(2n)!22n+1
33/4(1 +

√
2)n(p(wi)


1 − w2

i )
−1 (32)

Rn = supj |f
(2n)
j (ξj)| and the estimate in (32) for the infinity norm for the inverse of a Vandermonde matrix can be found

in [26].

Illustration: Assume U,W have a bivariate distribution with

ψ(w)p(w) ∼ wse−βwt
s, β > 0, t > 1w ∈ (0,∞).

This incorporates the symmetric standard normal distribution. HereMn is found so that the condition (17)
4
Mn

2n+1 
w>Mn

w2ndσ(w) =


4
Mn

2n+1 
w>Mn

w2nψ(w)p(w)dw =


4
Mn

2n+1

In → 0

is satisfied. Using formula 9 from Section 3.381 of Gradshteyn and Ryzhik [30]

In =


∞

Mn

w2n+se−βwt
dw =

0
 2n+s+1

t , βM t
n


tβ(2n+s+1)/t

=
0(kn + 1, rn)
tβ(2n+s+1)/t

(33)

kn =
2n + s + 1

t
− 1 (34)

rn = βM t
n (35)

where 0(a, x) =


∞

x e−t ta−1dt denotes the incomplete gamma function. By a derivation similar to the derivation of the
asymptotic expansion 8.11.12 in the NIST Handbook of Mathematical Functions [31]

0(kn + 1, rn) = rknn e−rn

2πrn


1 +

1
12rn

+
1

288r2n
+ · · · + · · ·


. (36)

Let

Ĩn =


4
Mn

2n+1 rknn e−rn
√
2πrn

tβ(2n+s+1)/t
= C42nMs−t/2

n e−βMt
n .

Giving

log(Ĩn) = log(C)+ 2n log(4)+ (s − t/2) log(Mn)− βM t
n.

TakeMn = nϵ where 1/t < ϵ < 1, thenMn/n → 0 and log(Ĩn) → −∞.

4. Implementation, examples and caveats

In this section, the reconstruction of ψ(w) = E[X | W = w] using product moments is implemented. This is performed
with a known finite sequence of cross product moments αj = E[XW j

], j = 1, 2, . . . , n and when the αj’s are estimated
using sample cross product moments. Also, in this section, the reconstruction is applied to the errors in variables problem.



C. Hagwood / Journal of Computational and Applied Mathematics 276 (2015) 129–142 137

Fig. 1. Comparison with Mnatsakanov’s method. The red plotmarkers represent ψn(w) from this paper and the blue plotmarkers represent ψ̄n(w) from
Mnatsakanov’s paper [15]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Implementation: The product moments can be obtained several ways. If the joint distribution, f (x, w), of X andW is known,
then by integration the moments αj, j = 1, 2, . . . may be obtained. If one observes (Xi,Wi), i = 1, 2, . . . ,N from the
distribution f (x, w), then the sample product moments may be estimated by

α̂j =
1
N

N
i=1

XiW
j
i .

In all the examples, the Vandermonde matrices were inverted using the Björck and Pereyra algorithm [21], see p. 187 in
the book by Golub and Van Loan [25] for the algorithm used.

Example 1. First the product moments reconstruction is compared to some well known work by Mnatsakanov, in [15,32,
33]. Mnatsakanov used a moment procedure based on a Bernstein polynomial basis to recover probability densities and
distribution functions. See Feller, [10] for a discussion of the Bernstein polynomials. Mnatsakanov’s results may be used to
obtain an estimate of ψ . Consider the case where ψ is nonnegative and (X,W ) has a bivariate Dirichlet joint density with
parameters a1 = 1/3, a2 = 1 and a3 = 1/2

f (x, w) =
0(a1 + a2 + a3)
0(a1)0(a2)0(a3)

xa1−1wa2−1(1 − x − w)a3−1

where x > 0, w > 0 and x + w < 1. The marginal densities of X and W have beta distributions, Beta(a1, a2 + a3),
Beta(a2, a1 + a3), respectively and ψ(w) = E[X | W = w] = a1(1 − w)/(a1 + a3). The product moments are given
by αj = E[XW j

] = (a1)1(a2)j/(a1 + a2 + a3)1+j, where (a)k represents the Pochhammer symbol. The approximation for
E[X | W = w] from Eq. (5) of Mnatsakanov [15] is

ψ̄n(w) =
0(n + 2)

0([nw] + 1)

n−[nw]
m=0

(−1)mαm+[nw]

m!(n − [nw] − m)!
w ∈ [0, 1].

A graphical comparison of ψ̄n(w)with the product moments estimate ψn(w) gotten using Theorem 4 is shown in Fig. 1. In
this example, A = 0 and B = 1 and we set n = 35.

The plots ofψn(w) and ψ̄n(w) are similar to each other. Further investigation is required to make this comparison more
accurate.

Example 2. In the Hamburger case, let us consider the regression problem with the data (Wi, Yi), i = 1, 2, . . . ,N ,

Yi = f (Wi)+ ϵi i = 1, 2, . . . ,N.

Assume f (x) = (x − 3.5)2, x ∈ (2, 5), Wi’s i.i.d. random variables distributed according to Normal (3.5, 1) and the ϵi’s
distributed according to Normal (0, 0.52), with the Wi’s and ϵi’s independent. Suppose we seek to estimate the regression
function, ψ(w) = E[Y | W = w] = f (w). See Efron, [34] for an interesting application.

Each αj = E[YW j
] is estimated using the sample moment

α̂j =
1
N

N
i=1

YiW
j
i .
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Fig. 2. Plot of ψn versus a Linear Models (LM) estimate.

We simulated (Wi, Yi), i = 1, 2, . . . ,N = 100, formed α̂j, j = 1, . . . , n and createdψn(w) using Eq. (19), 1000 times. Then,
the mean of theψn(w)’s over all 1000 simulations was computed as our estimate of f (w). When using (19), we took n = 55
and M = 28 and used the kernel density, ‘‘KernelMixtureDistribution’’ from Mathematica. Also, an estimate of f (x) was
obtained using least squares assuming the linear model Y = β0 + β1W + β2W 2

+ error and using the same simulation
procedure. Both estimates of f (x) are plotted in Fig. 2, along with the true function f (x) = (x−3.5)2. These plots are in close
agreement. Also, the percent error, N−1N

i=1 |ψn(wi)− f (wi)|/f (wi) for each simulation was calculated and averaged over
all 1000 simulation replicates giving a value of 1.999. A similar average percent error was performed for the least squares
estimate giving a value 2.06. The estimates are very similar.

Example 3. Assume again, one wants to estimate the curve f (x) from data (Xi, Yi), Yi = f (Xi)+ ϵi. In this example, assume
the true Xi cannot be observed directly, but with noise, say, Wi = Xi + Ui is observed rather than Xi, where the noise
Ui satisfies E[Ui] = 0. These errors occur in timing instruments, dosimeters or other instruments where the independent
variable cannot bemeasured exactly. For example, sampledwaveforms are known to suffer from timing jitter errors, see [35]
and in medicine, dosimeters for measuring dosage exposure to radiation are subject to errors, e.g., in [36]. This problem is
common in statistics and is called the errors in variables problem by the authors in [19] and in [17].

The errors in variables problem is not uniquely solvable, i.e. identifiable, without additional information about the dis-
tribution of the noise, U . For normal data with mean zero and variance σ 2

U , knowledge of σ 2
U is sufficient to determine

U via its moment. Indeed, when r is odd E[U r
] = 0 and when r is even E[U r

] = σ r
U r!/[2

r/2(r/2)!]. If replicates of
U are available, σU may be estimated from the replicates. For an arbitrary U that is moment determinate, the moments
µ
(j)
U = E[U j

], j = 1, 2, . . . determine the distribution of U .
It is well known, if a regression model is used to fit f (x), then ignoring the measurement error in Xi leads to biased esti-

mates of the regression parameters. A relatively recent approach to provide better estimates of the regression parameters
is to regress Y on E[X | W ] rather than the noisyW , since X is more likely to be closer to its expectation than toW . It is pop-
ularity is due to its transparency and intuitive appeal. Indeed, for the simple model Y = a+ bX + ϵ, E[Y | X] = a+ bX and
thus E[Y | W ] = E[E[Y | X] | W ] = a + bE[X | W ]. Thus, using E[X | W ] occurs naturally in this case. The approach can be
applied to more complicated models. This procedure is called regression calibration, see [17]. Regression calibration is usu-
ally applied in the multiple linear regression problem. For the nonlinear case, that cannot be transformed to a linear model,
regression calibration can be applied when the degree of nonlinearity is small and when a Taylor series provides a good lin-
ear approximation to themodel as discussed in [17]. Even in the nonlinear case, whenmeasurement error is small, X is more
likely to be closer to its expectation, E[X | W , Z] than toW . One caveat of this approach is, an exact expression for E[X | W ]

exists only in rare cases, e.g. for Gaussian variates. For X andW jointly normal randomvariateswith correlation coefficient,ρ

E[X | W ] = µX + ρ
σX

σW
(W − µW ) (37)

in the univariate case and in the multivariate case a similar expression holds. This caveat can be dealt with by using the
approximation,ψn(w) for E[X | W ] provided in Section 3. Estimates of αj = E[UW j

], j = 0, 1, . . . are only required. Below,
it is shown how to calculate these moments from data (Wj,Uj), j = 1, 2, . . . ,N .

Since E[X | W ] = W − E[U | W ], all computations can be done using E[U | W ]. If one observes (Wi,Ui, Yi), i =

1, 2, . . . ,N , then one can estimate αj by

α̂j =
1
N

N
i=1

UiW
j
i .



C. Hagwood / Journal of Computational and Applied Mathematics 276 (2015) 129–142 139

Often though, the noise U is unobservable, but assumptions about the moments of the noise can be made from experience.
In this case, assumingµ(j)W = E[W j

] andµ(j)U = E[U j
], j = 1, 2, . . . are available (or estimates of), αj may be found as follows.

Using the binomial expansion

E[UW j
] =

j
i=0


j
i


E[U i+1

]E[X j−i
] =

j
i=0


j
i


µ
(i+1)
U µ

(j−i)
X .

The moments, µ(j)X = E[X j
] may be obtained from the binomial expansion of E[W k

] = E[(X + U)k] by recursively solving

µW = µX (38)

µ
(2)
W = µ

(2)
X + µ

(2)
U (39)

µ
(3)
W = µ

(3)
X + 3µXµ

(2)
U + µ

(3)
U (40)

... (41)

µ
(r)
W =

r
j=0


r
j


µ
(j)
U µ

(r−j)
X . (42)

In regression calibration, the normal approximation (37) is often used for E[U | W = w] when the data are not normal.
The following simulation experiment illustrates the improvement of ψn(w) over the normal approximation when the data
are not normal. In the simulation, the noiseU is distributed as a symmetric normal,N(0, σ 2

U ), X is assumed to be independent
of U and from a contaminated normal distribution,

P[X ≤ x] = (1 − ϵ)Φ(x/σ1)+ ϵΦ(x/σ2) 0 ≤ ϵ ≤ 1 (43)

whereΦ(x) is the standard normal distribution function and the following parameters are used:

σU σ1 σ2 ϵ

0.2 0.1 0.2 0.1

First we find the distribution of W = X + U and the exact expression for E[U | W ] when X has a contaminated normal
distribution. One can easily show that

F(w) = (1 − ϵ)Φ


w/


σ 2
1 + σ 2

U


+ ϵΦ(w/


σ 2
2 + σ 2

U ) (44)

E[U | W = w] = (1 − ϵ)
fX1+U(w)

fW (w)
E[U | X1 + U] +

fX2+U(w)

fW (w)
E[U | X2 + U] (45)

where fZ (x) denotes the density of the random variable Z and Xi are standard normal random variables with variances σ 2
i ,

i.e. the contamination components of the variate X . Justification of (44) is shown below.

P[W ≤ w] = P[X + U ≤ w] =


∞

−∞

P[U ≤ w − x]dP[X ≤ x]

= (1 − ϵ)


∞

−∞

P[U ≤ w − x]dP[X1 ≤ x] + ϵ


∞

−∞

P[U ≤ w − x]dP[X2 ≤ x]

= (1 − ϵ)P[U + X1 ≤ w] + ϵP[U + X2 ≤ w].

Expression (45) can be shown similarly.
In this simulation, the interval [−Mn,Mn] = [−3, 3] with n = 35 is used, which is sufficiently large to approximate

E[U | W = w]. Indeed, when w = −1.8, p(w) = F ′(w) = 2.264(10−10). The results are shown in Table 1. The moment
approximations are close to the exact values, E[U | W = w], even up through p(w) of the order 10−10, whereas the normal
approximate is reasonably close to the exact approximation for values of p(w) below 0.14, but performs poorly for values
ofw with p(w) < 0.14.

Another issue with using the normal approximation (37) in the errors in variables problem is that it requires ρ, the
correlation coefficient between X and W . This correlation coefficient is usually unknown, since X is not observed. If it is
assumed the true value, X , and the measurement error, U , are independent, then ρ = σU/σW , which is usually estimable.
This dependence is briefly discussed in [19].

The moment algorithm described above requires only E[UW j
], j = 1, 2, . . . , not the independence of X and U . To show

ψn(w) provides a better approximation than the normal approximation when independence between X and U fails, the
following simulation is run. Let X and U have Gaussianmarginal distributions withmeans and variances (0, σ 2

X ) and (0, σ
2
U ),

respectively, but rather than being uncorrelated, their joint distribution is determined by the Farlie–Gumbel–Morgenstern



140 C. Hagwood / Journal of Computational and Applied Mathematics 276 (2015) 129–142

Table 1
Contaminated normal data: Comparison of ψn(w) with its true value E[U | W = w] and with the normal approximation
given in (37). (Results rounded to 4 digit precision.)

w ψn(w) E[U | W = w] Normal aprox p(w)

−1.71429 −0.8134 −0.8572 −1.294 1.488 (10−9)
−1.62857 −0.8376 −0.8146 −1.229 8.923 (10−9)
−1.54286 −0.7599 −0.7721 −1.164 4.884 (10−8)
−1.45714 −0.7369 −0.7303 −1.100 2.442 (10−7)
−1.37143 −0.6861 −0.6897 −1.035 1.118 (10−6)
−1.28571 −0.6536 −0.6516 −0.9704 4.702 (10−6)
−1.2 −0.6165 −0.6176 −0.9057 0.00001830
−1.11429 −0.5904 −0.5898 −0.8410 0.00006664
−1.02857 −0.5686 −0.5690 −0.7763 0.0002304
−0.942857 −0.5533 −0.5531 −0.7116 0.0007662
−0.857143 −0.5365 −0.5366 −0.6469 0.002464
−0.771429 −0.5130 −0.5130 −0.5822 0.007600
−0.685714 −0.4789 −0.4789 −0.5175 0.02204
−0.6 −0.4345 −0.4344 −0.4528 0.05874
−0.514286 −0.3819 −0.3819 −0.3881 0.1410
−0.428571 −0.3237 −0.3237 −0.3235 0.3006
−0.342857 −0.2619 −0.2619 −0.2588 0.5633
−0.257143 −0.1979 −0.1979 −0.1941 0.9222
−0.171429 −0.1325 −0.1325 −0.1294 1.314
−0.0857143 −0.06644 −0.06644 −0.06469 1.627
0 0 0 0 1.747
0.0857143 0.06644 0.06644 0.06469 1.627
0.171429 0.1325 0.1325 0.1294 1.314
0.257143 0.1979 0.1979 0.1941 0.9222
0.342857 0.2619 0.2619 0.2588 0.5633
0.428571 0.3237 0.3237 0.3235 0.3006
0.514286 0.3819 0.3819 0.3881 0.1410
0.6 0.4345 0.4344 0.4528 0.05874
0.685714 0.4789 0.4789 0.5175 0.02204
0.771429 0.5130 0.5130 0.5822 0.007600
0.857143 0.5365 0.5366 0.6469 0.002464
0.942857 0.5533 0.5531 0.7116 0.0007662
1.02857 0.5686 0.5690 0.7763 0.0002304
1.11429 0.5904 0.5898 0.8410 0.00006664
1.2 0.6165 0.6176 0.9057 0.00001830
1.28571 0.6536 0.6516 0.9704 4.702 (10−6)
1.37143 0.6861 0.6897 1.035 1.118 (10−6)
1.45714 0.7369 0.7303 1.100 2.442 (10−7)
1.54286 0.7599 0.7721 1.164 4.884 (10−8)
1.62857 0.8376 0.8146 1.229 8.923 (10−9)
1.71429 0.8134 0.8572 1.294 1.488 (10−9)

copula C(u, v) = uv+ θu(1− u)v(1− v), 0 ≤ u, v ≤ 1, see [37,38]. Let the normal approximation be computed assuming
independence of X and U . Table 2 contains the results of this simulation. Shown are ψn(w), E[U | W = w], and the normal
approximation. The joint distribution of (X,W ), as well as, the marginal distribution ofW = X + U is required to compute
E[U | W = w] andαj. These distributions can be found in [39]. In the computations, σX = 0.1, σU = 0.2, and the Hamburger
approximation with (−Mn,Mn),Mn = 4, n = 35 were used. The results of Table 2 clearly show ψn(w) is closer to the true
conditional expectation, even for the Farlie–Gumbel–Morgenstern copula, where the dependence between the marginals is
modest. Thus, using ψn(w) should lead to less error, regardless of whether dependence exists between X and U .
Comments, caveats and comparisons: The condition numbers of the inverse of n × n Vandermonde matrices on [−1, 1] with
equispaced and Chebyshev nodes are approximately π−1e−π/48n and 4−133/4(1 +

√
2)n, see [25]. Thus, inaccuracies in the

higher moments caused by roundoff or measurement errors result in errors in the solution of a Vandermonde system and
can make the moment algorithm unstable. Some software packages allow one to increase the precision of calculations and
thus mitigate some of these errors. In our calculations, Mathematica was used, which allowed calculations with 100 digits
of precision. For instances when the algorithm is not stable (i.e. precision and roundoff errors produce large values of ψn),
in addition to increasing precision, I found by centering p(w), i.e. solving the moment problem for W ′

= W − µW instead
ofW helps stabilize the algorithm. Condition number calculations shown in (p. 418) [27] suggest that the condition number
of the inverse of a Vandermonde matrix decreases for intervals symmetric about zero. There is no loss in generality by
centering, because ψW (w) = ψW ′(w − µW ). For symmetric distributions W about the origin whose tails decay like the
normal distribution or faster, I found the algorithm had no problemwith stability. If the algorithm fails to stabilize, one may
have to perform some form of regularization. I should point out that stability of almost all moment reconstructions will be
affected if empirical moments are used to estimate αj, j = 0, 1, 2, . . . . Usually, p(w) is not known; it can be estimated with
a nonparametric kernel density. Since computation time is not a problem with this algorithm, n the number of summands
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Table 2
Comparison of ψn(w) and the normal approximation with the true value E[U | W = w] in the errors in variables
problem, when the true value X and the measurement error U are dependent having joint distribution defined by the
Farlie–Gumbel–Morgenstern copula. (Results rounded to 4 digit precision.)

w ψn(w) E[U | W = w] Normal approx p(w)

−1.48571 −0.08613 −0.2978 −0.2971 5.524 (10−10)
−1.37143 −0.2929 −0.2753 −0.2743 1.443 (10−8)
−1.25714 −0.2510 −0.2528 −0.2514 2.901 (10−7)
−1.14286 −0.2307 −0.2305 −0.2286 4.485 (10−6)
−1.02857 −0.2082 −0.2082 −0.2057 0.00005331
−0.914286 −0.1861 −0.1861 −0.1829 0.0004870
−0.8 −0.1640 −0.1640 −0.16 0.003417
−0.685714 −0.1419 −0.1419 −0.1371 0.01840
−0.571429 −0.1196 −0.1196 −0.1143 0.07594
−0.457143 −0.09699 −0.09699 −0.09143 0.2396
−0.342857 −0.07377 −0.07377 −0.06857 0.5777
−0.228571 −0.04981 −0.04981 −0.04571 1.068
−0.114286 −0.02514 −0.02514 −0.02286 1.530
0 0 −1.4619 (10−17) 0 1.722
0.114286 0.02514 0.02514 0.02286 1.530
0.228571 0.04981 0.04981 0.04571 1.068
0.342857 0.07377 0.07377 0.06857 0.5777
0.457143 0.09699 0.09699 0.09143 0.2396
0.571429 0.1196 0.1196 0.1143 0.07594
0.685714 0.1419 0.1419 0.1371 0.01840
0.8 0.1640 0.1640 0.16 0.003417
0.914286 0.1861 0.1861 0.1829 0.0004870
1.02857 0.2082 0.2082 0.2057 0.00005331
1.14286 0.2307 0.2305 0.2286 4.485 (10−6)
1.25714 0.2510 0.2528 0.2514 2.901 (10−7)
1.37143 0.2929 0.2753 0.2743 1.443 (10−8)
1.48571 0.08613 0.2978 0.2971 5.524 (10−10)

was chosen as large as possible, greater thanMn, i.e. until the algorithm appears to become stable. There are probably more
rigorous methods to choose n, e.g. by simulation if possible.

There are several different approaches to the moment problem, see for example, the work by Mnatsakanov, Tagliani
among others in [15,32,33,40–43]. Most of these approaches deal with reconstruction of a density or its distribution
function and mostly for the Hausdorff moment problem. The reconstruction of the conditional moment function requires
less constraints, and thus is simpler to implement. The most common numerical moment problem is the determination
of a probability density, f (x) from it moment sequence. This problem requires three constraints (1)


f (x)dx = 1, (2)

xkf (x)dx = µk, k = 0, 1, 2, . . . and (3) f (x) > 0. Because of these constraints, this problem is usually solved by finding the
maximum entropy density, i.e., by maximizing the entropy functional E(f ) =


f (x) ln(f (x))dx subject to the constraints

(1) and (2). By using Lagrange multipliers and taking the Frechet derivative of E(f ), this problem has a closed form solution
f (x) = exp[−λ0 −λ1x−· · ·−λnxn]where


xk exp[−λ0 −λ1x−· · ·−λnxn]dx = µk, k = 0, 1, . . . , n. Resulting in the latter

system of nonlinear equations for λi. Tagliani has done quite a bit of work on this problem, see [11–13]. The Jacobian matrix
for this systemof nonlinear equations is an ill-conditionedHankelmatrixwith conditionnumber of the order (1+

√
2)4n/

√
n.

Thus, it suffers the same stability issue the Vandermonde system suffers. Tagliani and Gzyl [40] have found away tomitigate
this issue using fractional moments. For U nonnegative, ψ(w) = E[U | W = w] > 0, a maximum entropy reconstruction
ofψ(w) can be determined by removing constraint (1), ψ̂(w) = exp[−λ1x−· · ·−λnxn],


xk exp[−λ1x−· · ·−λnxn]dx =

µk, k = 0, 1, . . . , n can be applied only for the Hausdorff moments. I was not able to get this approximation forψ(w)with
infinite support to stabilize.

5. Conclusions

It has been shown that for a jointly continuous random vector (U,W ) with conditional expectation function ψ(w) =

E[U | W = w], ψ(w) is determined by the moments αj = E[UW j
], j = 0, 1, . . . . Uniqueness holds provided the sequence

αj, j = 0, 1, . . . is either a Hamburger, Stieltjes, or Hausdorff moment sequence, depending on the support of the marginal
distribution, F(w) of W . Furthermore, a procedure to reconstruct ψ(w) from its moments was derived and it was shown
how this reconstruction provides an improvement over normal approximations in the regression calibration problem.
Disclaimer: The National Institute of Standards and Technology does not endorse any software product mentioned in this
article.
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