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Reconstructing the past from imprecise
knowledge of the present: Effective
non-uniqueness in solving parabolic
equations backward in time
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Identifying sources of ground water pollution and deblurring astronomical galaxy images are two important applications
generating growing interest in the numerical computation of parabolic equations backward in time. However, while
backward uniqueness typically prevails in parabolic equations, the precise data needed for the existence of a particular
backward solution is seldom available. This paper discusses previously unexplored non-uniqueness issues, originating
from trying to reconstruct a particular solution from imprecise data. Explicit 1D examples of linear and nonlinear parabolic
equations are presented, in which there is strong computational evidence for the existence of distinct solutions w9 (x, t)
and w9"(x,t), on 0 < t < 1. These solutions have the property that the traces w'9(x, 1) and w9"(x, 1) at time t = 1 are
close enough to be visually indistinguishable, while the corresponding initial values w"(x, 0) and w9 " (x, 0) are vastly
different, well-behaved, physically plausible functions, with comparable L2 norms. This implies effective non-uniqueness
in the recovery of w'd(x, 0) from approximate data for w'd(x, 1). In all these examples, the Van Cittert iterative procedure
is used as a tool to discover unsuspected, valid, additional solutions w9"¢"(x, 0). This methodology can generate numerous
other examples and indicates that multidimensional problems are likely to be a rich source of striking non-uniqueness
phenomena. Published 2012. This article is a US Government work and is in the public domain in the USA.
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1. Introduction

Uniqueness backward in time is a characteristic feature of a large class of parabolic equations. In practice however, at a given positive
time, the precise data needed for the existence of a particular backward solution are seldom available, and one must use approximate
values. This paper discusses computationally generated 1D examples of effective non-uniqueness, originating from trying to recon-
struct a particular solution from imprecise data. These examples are unexpected and of a type not previously known in the literature,
to the author’s knowledge. Such non-uniqueness is of major significance in applications. Resolving the increased uncertainty in back-
ward reconstructions may require more detailed prior information about the true solution than is available. The methodology used
to create these examples can generate numerous other examples. Multidimensional problems are likely to be a rich source of striking
non-uniqueness phenomena.

As is well known, backward parabolic equations are notoriously ill-posed and prone to amplification of high-frequency noise in the
input data. Such instability can create the appearance of non-uniqueness. As shown in [1] for the case of the 1D heat equation on a finite
interval, perturbing the input data at time t = 1 by adding a spurious high-frequency sinusoid, with almost imperceptible amplitude,
can result in a noticeably different solution at t = 0, where that amplified sinusoid becomes highly visible. To prevent such spurious
oscillations, smoothness constraints, together with non-negativity constraints when required by physics, have long been used in back-
ward parabolic problems to regularize the inversion. Indeed, smoothness and non-negativity constraints are widely used in many other
ill-posed contexts.

_______________________________________________________________________________________________________________________________________________|
Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

*Correspondence to: Alfred S. Carasso, Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
T E-mail: alfred.carasso@nist.gov

Published 2012. This article is a US Government work and is in the public domain in the USA. Math. Meth. Appl. Sci. 2013, 36 249-261




A.S.CARASSO
_____________________________________________________________________________________________________
However, the non-uniqueness phenomena discussed here do not exhibit obvious tell-tale features and cannot be prevented
by imposing smoothness and non-negativity constraints. Linear and nonlinear examples are given with ‘false’ solutions that are
qualitatively quite similar to the true solution. Examples are also given with smooth, non-negative true solutions, yet with ‘false’ solu-
tions that are also non-negative, smoother, and perhaps even more plausible. Moreover, such effective non-uniqueness can occur even
with fairly accurate approximate data at time t = 1.

There has been growing interest in recent years in the development of numerical methods for solving parabolic equations back-
ward in time. In [1-15], various useful methods are analyzed and illustrated with interesting test computations. Currently, the two most
significant areas of application of backward parabolic equations are hydrologic inversion and image deblurring. In hydrologic inversion,
the aim is to identify sources of groundwater pollution by reconstructing the contaminant plume history. This involves solving the
advection dispersion equation backward in time, given the contaminant spatial distribution g(x, y) at the current time T,

G =V{DVC}—Viv(C}, 0<t<T,
Coy. T)=g(xy), (xy) €R.

Here, C is the mass concentration, D is the diffusion tensor, and v is the velocity vector. There is a large literature on this topic. Instruc-
tive expository discussions of this problem, together with backward calculations of realistic examples, principally in 1D, may be found
in [16-23].

Brownian motion is pervasive in many branches of science, including image science. For this reason, images blurred by Gaussian
point spread functions are a common occurrence. Deblurring Gaussian blur is mathematically equivalent to solving the heat conduc-
tion equation backward in time, with the noisy blurred image g(x,y) as data at time t = 1 and with conduction coefficient « > 0
proportional to the point spread variance,

Mm

wr =aAw, 0<t<T, @
wix,y, 1) =g(xy), (xy)eR?

A discussion of this problem may be found in [24-29]. In many areas of applied science, the underlying random process involves a fun-
damental modification of Brownian motion, whereby the motion takes place in a specific randomized operational time Q(t), rather than
in standard clock time t. This new subordinated Brownian process leads to non-standard diffusion equations. Such notions have also
been found useful in image deblurring. In [30], and references therein, backward in time problems for 2D fractional and/or logarithmic
diffusion equations,

we = —a(—A)Pw, wp=— [A log {1 n y(—A)ﬂ}] w, 0<t<T, 3)

are successfully applied, in a blind deconvolution scheme, to enhance Hubble Space Telescope images, as well as scanning electron
microscope images of interest in nanotechnology. In (3), &, B, A, and y are positive constants, with § < 1.

2. Stabilized problems, backward uniqueness, and stability estimates

Theoretical discussions of backward parabolic equations and other non-standard problems may be found in [31-35] and the references
therein. Backward parabolic equations are classical examples of ill-posed problems in the sense of Hadamard. Typically, a backward
solution exists only for highly restricted data satisfying certain smoothness and other requirements that are not easily characterized. In
most cases of practical interest, when a solution exists, it is unique. However, backward solutions depend discontinuously on the data
for which they exist and slight changes in that data can result in very large, if not explosive, changes in the corresponding solutions.

Backward parabolic equations can be stabilized by prescribing an a-priori bound M for the L2 norm of the solution at time t = 0.
The following situation illustrates the general ideas. Let 2 be a bounded domain in R" with smooth boundary 92. Let L be an ellip-
tic operator in Q acting on smoothly differentiable functions vanishing on 92. In the simplest case, L is a linear self-adjoint differential
operator with variable coefficients that may depend on time. However, we will also consider nonlinear problems. In all cases, the forward
equation w; = Lw, t > 0, is well-posed. The stabilized backward parabolic problem for L may be stated as follows. Given f(x) € L?(Q)
and M, § > 0, with § < M, find all solutions of

wr=1lw, x€Q, w=0x€dQ, 0<t<T, 4

such that
[w(,T)=fll2<é, [|w(,0) [2=M. (5)

It is assumed that f(x), §, and M are compatible with the existence of solutions. Here, f(x) is presumed to be a sufficiently close L2
approximation to the exact values w(x, T) att = T, of a solution w(x, t) of (4), believed to satisfy || w(.,0) ||2< M.In many engineering or
applied science contexts, only educated guesses would generally be available to estimate § and M, rather than exact values. Typically,
the L2 relative error

[wi.T)=Ffll2/ I w(.T)ll2= 8/ fll2 =8} =8/ fll, 6)

might be expected to be on the order of 1% or thereabouts. Since the given data f(x) may simultaneously approximate several distinct
solutions wP (x, t) of (4) at time T, there are, in general, infinitely many possible solutions of (4) and (5). If § is small, it is generally assumed
|
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that any two such solutions would differ only slightly. The extent to which this expectation is justified is determined by the backward
stability inequality governing the particular parabolic equation w; = Lw.

The following logarithmic convexity method [31, 33, 35] is often used to obtain stability inequalities for ill-posed continuation prob-
lems. Let w' (x, t) and w?(x, t) be any two solutions of the equation wy = Lw.For0 <t < T, let F(t) =|| w' (., t) — w?(, t) ||3. With the
use of the properties of the differential operator L, together with appropriate restrictions on the class of solutions being considered,
the aim is to establish the following inequality

FOF"(t) = {F ()}? = —a; F(t)F (t) —ax F2(t), O0<t<T, 7)

where a; and a; are constants.
If ay = a; = 0in (7), then log F(t) is a convex function of t and

F() < (FO3 T TRMYT, 0<t<T. (®)
More typically, a; # 0in (7). In that case, let
g=—ax/2ay, p(t)={e "1} {e_‘“r - 1}_1 , 0<t<T. 9)
Then, as shown in [31, 33, 35],
e2IF(t) < {F(0)}' 7+ {e2qTF(r)}“ O o<t=m. (10)

Inequalities of this type have been obtained for a wide class of problems, in addition to the class of parabolic equations w; = Lw
considered in this paper; see [31-35]. For solutions satisfying a prescribed L? bound M at t = 0, we obtain from (10), for0 <t <T,

®
e W' () = w2, 0) 2= 2M) 4O LT Wl () = w2, T I}

()]
This inequality establishes L2 Holder-continuous dependence of solutions at any fixed t with 0 < t < T, on the data at time T. The
Holder exponent p(t) satisfies 0 < wu(t) < 1, with p(t) > 0,t > 0, u(T) = 1, #(0) = 0, and . (t) | 0 monotonicallyast | 0.

2.1. Backward uniqueness

The inequality (11) implies backward uniqueness of solutions satisfying a prescribed bound. Indeed, if || w' (., T) —w?(,, T) ||]2= 0, then
| w'(,t) —w?(,t) |2=0forevery 0 <t <T,since u(t) > 0 for t > 0. By continuity, | w'(,t) —w?(,t) [2=00n0<t<T.

Remarkably, backward uniqueness even holds true for the Navier-Stokes equations. This landmark result was obtained in [34] by
establishing the stability inequality (10) appropriate for these equations.

2.2. Backward continuity

We may now address the recoverability of solutions in the stabilized backward problem (4), (5). Let w'(x, t), w? (x,t) be any two possible
solutions of (4), (5). Then,

| w'(,0)=w?(,0)|2<2M, |[w'(,.T)=w?(T)|2<25. (12)
Hence, from (11),

u(t)
, 0<t<T. (13)

e | W' (1) — w2(, t) [2< 2M'—H©® {equ}

Here, the dependence of the Holder exponent w(t) on t, illustrated in Figure 1, plays a crucial role. In the best possible case, that
of a linear self-adjoint elliptic operator L with time-independent coefficients, we have u(t) = t/T, so that u(t) decays linearly to
zero as continuation progresses fromt = Ttot = 0. Att = T/2, we have u(T/2) = 1/2 and with the assumption that g = 0,

| w'(,T/2) —w2(,T/2) |l2< 2+/MS. This loss of acccuracy from O(§) to O («/g), while still only half way to t = 0, is noteworthy.

More typically, with a; < 0 in (7), u(t) is sublinear in t, possibly with rapid exponential decay. This can lead to much more severe
loss of accuracy as reconstruction progresses to t = 0. As shown in [32], rapid decay of i to zero can be brought about by various
factors, including nonlinearity, non-self-adjointness, diffusion coefficients that grow rapidly with time, or adverse spectral properties
in the elliptic operator L. In all cases, (13) does not guarantee any accuracy at t = 0, but only provides the redundant information
| w!(,0) —w2(,0) ||2< 2M.

While inequality (13) is best possible in general, it necessarily contemplates worst case scenarios that may be too pessimistic in some
applications. Indeed, successful recoveries of contaminant plumes in hydrology, as well as striking enhancement of Hubble telescope
galaxy images, have been documented [18,19,30]. Nevertheless, the behavior of the Holder exponents in (13) reflects a basic underlying
truth. This behavior is indicative of the rate at which the particular evolution equation w; = Lw has forgotten the past and, hence, of the
subsequent difficulty of reconstructing the past from imperfect knowledge of the present. This paper illuminates this deeper meaning
by exhibiting specific 1D parabolic equations on 0 < t < 1, with distinct solutions w™d(x, t) and w9e"(x, t). These solutions are
such that their traces at t = 1, w™d(x, 1), w9e"(x, 1), approximate one another with an L2 relative error typically smaller than 1% and
are visually indistinguishable. However, their corresponding initial values w"d(x, 0), w9"e" (x, 0), are vastly different. Therein lies the
difficulty of reconstructing the correct backward solution from approximate dataatt = 1.
|
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Behavior of Holder exponent in backward problems
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Figure 1. Behavior of Holder exponent w(t) in inequality (13) reflects rate at which the forward evolution equation w; = Lw has forgotten the past, as t increases
fromt = 0tot = T = 1. Deviations away from a linear, time-independent, self-adjoint spatial differential operator L can lead to exponential decay in w1 (t),t J 0,
and affect backward reconstruction from t = T.

3. Exploring backward solutions using Van Cittert iterations

Consider the well-posed, forward, linear, or nonlinear parabolic initial value problem w; = Lw,0 <t < 1,w(x,0) = W{)ed(x). Define S to
be the associated solution operator at time t = 1. Thus, given any h(x) in L2(2), the operator S uses h(x) as initial data w(x, 0) in (4) and
produces the corresponding solution wy(x, 1) at t = 1, so that S[h(x)] = wp(x, 1). In particular, S [w{fd(x)] = w'd(x, 1). Next, let f(x)
be an approximation to wd(x, 1) with || w'd(, 1) — f [|l2< &, as in (5). With fixed relaxation parameter y > 0, and with h' (x) = yf(x),
consider the following iterative procedure

A" () = h"(x) +y {f0) —S[A"x)]}, n>1. (14)

In spectroscopy and image processing, with S an explicitly known linear convolution integral operator, this procedure is the widely
used Van Cittert iteration [36, 37]. In these applications, the Van Cittert method generally produces useful results after finitely many
iterations although it may not converge. In the present case, S may be highly nonlinear and is not known explicitly. For given h(x) in
L2(82), S[h(x)] must be obtained by numerically solving the well-posed forward parabolic problem.

Clearly, in the present parabolic context, the Van Cittert iteration is unlikely to converge. Indeed, if h" — htin [2(Q) in (14), then
S[hT (x)] = f(x). However, S[hT (x)] necessarily satisfies highly restrictive smoothness requirements, and these are not likely to be met
by the given approximate data f(x). Nevertheless, as will be seen below, the Van Cittert iteration is a valuable exploratory tool. In a wide
variety of 1D linear and nonlinear parabolic equations, this procedure typically generates iterates h" (x) such that the L% norm of the
residual, || f—S[h"] ||c0, decays quasi monotonically to a small value after finitely many iterations. This is often sufficient for our purpose.
From (5), if for some positive integer N we find || f — S[AV] [|l2< 8, with || AN |l2< M, then hN(x) is a valid candidate reconstruction of
w'd(x,0), given the approximation f(x) to the unavailable w'd(x, 1). In the first four examples below, we have § < 8.0E-3,§/M < 2.0E-3.
The last example has § =3.7E-2, §/M =1.2E-2.

An unexpected dividend of the truncated Van Cittert iteration is its ability to produce reconstructions that are relatively noise free.
This ‘self-regularizing’ property is commonly observed in several iterative image restoration procedures, [25,37].

4. Numerical implementation of Van Cittert’s iteration

All of the examples discussed below are one dimensional, take place on the interval —1 < x < 1, involve smooth coefficients
and initial values, and have homogeneous Dirichlet boundary conditions. To implement the iterative process in (14), use is made
of an efficient, highly accurate parabolic equation solver. This method of lines procedure is discussed in [38] and is implemented
as subroutine DO3PDF/DO3PDA in the NAG Mathematical Software Library. It uses Chebyshev C° collocation for spatial differencing,
together with backward time differencing to advance the solution forward in time. Here, one hundred equispaced breakpoints,
—1=x7 <X <x3 <---<x100 = 1,are placed on [—1, 1]. Between each pair of breakpoints, the solution of w; = Lw is approximated by
a cubic Chebyshev polynomial whose space and time derivatives are made to satisfy the parabolic equation at two collocation points
chosen internally by the subroutine. C° continuity is enforced at the breakpoints. This leads to a total of 298 (non equispaced) mesh
points on [—1, 1]. For each ty = kAt, the computed solution w(x, ty) is a piecewise cubic polynomial in x on [—1, 1].

|
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All five examples below will follow the same road map. With initial data w{,ed (x), the parabolic problem w; = Lw is first integrated up
to time t = 1, to produce a presumed good approximation f(x) to the unknown true solution w'd(x, 1). This calculated f(x), shown
as a black curve in the figures, is then viewed as given data in an applied science or engineering context and is used in the Van Cittert
procedure (14) to recover the unknown initial value w¢(x, 0) that gave rise to f(x) at t = 1. However, it will turn out that f(x) is also a

close approximation to an unsuspected additional solution w9'"(x, 1) corresponding to initial data wgreen(x) that can be vastly dif-

ferent from w{)ed (x). A small perturbation of f(x) can result in yet another candidate initial value, w(t)"”e(x), as shown in Example 5. The

relaxation parameter y in (14) was set to 0.5 in all five examples.

5. Example 1 (Figure 2). Linear self-adjoint

The following relatively well-behaved example is used to set the stage for the less well-behaved examples to follow. With a = 0.05,
a = 0.05, 0 = 0.025, consider the linear, self-adjoint, variable coefficient problem

wr:a{e(‘”‘“‘t)wx} , —1<x<1, 0<t<1.0,
x (15)
w(x,0) = e*sin(Qyx), —1<x<1, w(=1,t)=w(1,t)=0, t>0.

The initial value in (15), denoted by w{)ed (x), is shown as the red trace in Figure 2. Using the parabolic solver in Section 4, the computed
solution at time t = 1, denoted by f(x), is shown as the black trace in Figure 2. While that computed solution is, in fact, an excellent
approximation, we view f(x) as merely a good approximation to the unknown true solution w'd(x, 1) with I wed(, 1) — f l2< 6. We
stress that in an actual engineering application with real data, the expected L? relative error 8/ || f || might be on the order of 1% or
thereabouts. Using f(x) in the Van Cittert procedure (14), we seek to recover the unknown initial values wy(x, 0) that gave rise to f(x) at
t = 1. For each successive iterate h"(x) in (14), we can evaluate and monitor the L residual, || f — S[h"] ||co, as well as the L? relative
erroratt=1,| f—S[h"] || / || f ||2- In this example, these two errors decay monotonically.

After 200 iterations, the L°° residual is 3.1E-3, so that the trace of S[h2%°](x) is visually indistinguishable from that of f(x), while the

L2 relative error at t = 1 is 0.4%. The iterate h2%0(x) is shown as the green trace Wgreen(x) in Figure 2. Moreover, || WBEd 2= 1.8, while
| wg " ||l2= 1.7. Therefore, both solutions w™(x, t) and w9"¢" (x, t) satisfy
[w(, 1) —f2<8=<0.004|f ]2, [w(,0)2=M=18. (16)

green

Since || f [l2= 0.36, we have § < 1.44E-3, and §/M < 8E-4. Thus, given only the approximate data f(x), wg  (x) in Figure 2 can be
considered a valid reconstruction of the unknown initial data. Evidently, f(x) is a close approximation to (at least) two distinct true
solutions at t = 1, w®d(x, 1) and w9 (x, 1). These two solutions have visually indistinguishable traces at t = 1, but have distinct
traces at t = 0. In this example, either reconstruction at t = 0 might be considered successful.

Mild backward non uniqueness in Example 1

Y CoORBINATE

L4 I‘lllllll'l'l

.' | | | | | |
-1 -04 H Py ’
x coommimare

Either red or green initial values at t=0, terminate on black curve
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Figure 2. Well-behaved self-adjoint problem. Data f(x) (black curve), approximating solution w™d(x, t) at time t = 1 with an L? relative error of 0.41%, recovers

reasonably close initial value wj **" (x), in lieu of true initial value w4 (x).
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6. Example 2 (Figure 3). Burgers equation

Behavior in this instructive nonlinear example involving Burgers equation is strikingly different from that in Example 1, although very
similar solutions are involved. With a = 0.05, consider

we=a(wy)x —wwy, —1<x<1, 0<t<1.0,

w(x,0) = esin2yx), —1<x<1, w(=1,t)=w(1,t)=0, t>0. a7
The initial value w{)ed(x) in (17) is shown as the red trace in Figure 3 (bottom), while the computed approximation f(x) to wd(x, 1)
is shown as the black trace in the same figure. The red and black traces in Figure 3 (bottom) bear much the same qualitative and
quantitative relationships to each other that characterize the corresponding traces in Figure 2. By using f(x) in (14), the Van Cittert
procedure was applied for 40 000 iterations, resulting in a final L residual of 7.8E-6, and an L relative error at t = 1 of 0.00122%. That
relative error is 300 times smaller than was the case in Example 1. The behavior of log{|| f — S[h"] ||cc} Versus n, is shown in Figure 3

Behavior of Van Cittert residual norm in Example 2
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Figure 3. TOP. Behavior of log{|| f — S[h"] ||o} for first 40000 iterations n, in Van Cittert procedure in Example 2. BOTTOM. Intractable recovery in nonlinear

Burgers equation. Despite highly accurate data f(x) (black curve) approximating solution w™(x, t) at time t = 1 with an L? relative error of 0.00122%, true initial

value wie? (x) is not recovered. Valid, but noticeably different initial value wg - (x) is obtained. Compare with self-adjoint behavior in Figure 2.
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(top). Clearly, S[h*0%90(x)]) = wIreen(x, 1) is a very accurate match to the given data f(x) and to w"d(x, 1). However, even with such
small residuals, h*0%%(x) = w3'**" (x), shown as the green trace in Figure 3 (bottom), differs markedly from wEd (x). The two traces are

qualitatively similar, and have comparable L2 norms with || w™d(,0) ||,= 1.8 and || w9e"(, 0) |,= 2.2.Since || f ||= 0.31, we have

§ < 3.67E-6,and §/M < 1.67E-6. Evidently, the two valid distinct solutions, w9 (x, 1) and w'd(x, 1), are extremely close to each other.

Significantly more accurate data f(x) might be needed to reconstruct the correct initial value W(')ecj (x). Such accuracy is highly unlikely

in practice. This is in sharp contrast to Figure 3, where, with a 400 times larger L*° residual of 3.1E-3, the reconstructions w{fd (x) and
green . . . . .

wy  (x) are reasonably comparable. Clearly, accurate backward recovery may be intractable in some nonlinear parabolic equations.

This is a reflection of ill behavior in the Holder exponent j(t), as illustrated in Figure 1.

7. Example 3 (Figure 4). Linear non-self-adjoint
Effective non-uniqueness is easily achieved in non-self-adjoint problems. With a = 0.05, « = 0.25,0 = 0.125, consider

wtza{e("”"”)wx} +025w,, —-1<x<1, 0<t<1.0,
X (18)
w(x,0) = e*sin(Byx), —1<x<1, w(=1,t)=w(1,t)=0, t=>0.

Behavior of Van Cittert residual norm in Example 3
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Figure 4. Top. Behavior of log{|| f — S[h"] ||co} for the first 2500 iterations n, in Van Cittert procedure in Example 3. Bottom. Il behavior in non-self-adjoint
problem. Data f(x) (black curve), approximating solution w™(x,t) at time t = 1 with an L? relative error of 0.03%, recovers strikingly different initial value
wg " (x), in lieu of true initial value wi? (x).
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The initial value w{)ed(x) in (18) is shown as the red trace in Figure 4 (bottom), while the computed approximation f(x) to w™d(x, 1) is

shown as the black trace in the same figure. By using f(x) in (14), the Van Cittert procedure was applied for 2500 iterations and resulted
in h?%%0(x) = wg"**"(x), shown as the green trace in Figure 4 (bottom), with a final L* residual of 3.6E-4, and an L? relative error at
t = 1 of 0.03%. That relative error is 10 times smaller than was the case in the self-adjoint problem in Example 1. The behavior of

log{|| f — S[A"] |leo} Versus n is shown in Figure 4 (top). Here, || wied ||,= 1.55, while || wg " [l2= 1.31. Therefore, both solutions
w'ed(x, t) and w9 (x, t) in Example 3 satisfy
[w(, 1) —f2<8 <0.0003 |2 [w(0)]|2=M=1.6. (19)

Since | f [|2= 0.635, we have § < 1.9E-4, and §/M < 1.23E-4. Again, even though it is substantially different from wid (x), wg'*" (x)
must be considered a valid reconstruction of the initial data corresponding to the given data f(x) at t = 1. Evidently, such data closely
approximate at least two very distinct solutions of the parabolic problem in (18). Significantly, both solutions w"d (x, t) and w9"€e" (x, t)
are non-negativeon —1<x<1,0<t<1,and wgreen (x) is less oscillatory than is W{)ed (x). Non-negativity and smoothness constraints
are often applied to regularize ill-posed inverse problems. However, imposing smoothness and non-negativity constraints in this
example would clearly not prevent the ‘false’ solution w9'¢€" (x, t). Moreover, there is no obvious qualitative behavior in wgreen (x) that

would arouse suspicion.

Behavior of Van Cittert residual norm in Example 4
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Figure 5. Top. Behavior of log{|| f — S[h"] ||co } for first 750 iterations n, in Van Cittert procedure in Example 4. Bottom. Ill behavior in strongly nonlinear problem.
Data f(x) (black curve), approximating solution w™d(x, t) at time t = 1 with an L? relative error of 0.38%, recovers substantially different initial value wg'“” x),
in lieu of true initial value w{d (x).
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Red and green traces at t=1 coincide in Example 4
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Green trace was artificially raised to render red trace visible.

Figure 6. Red and green traces are the solutions at time t = 1, w"d(x, 1), w9""(x, 1), corresponding to the initial values wit9(x), wg" " (x), in Figure 5 (bottom).
Traces at t = 1 agree to within 2.6F — 2, pointwise. Similar close visual agreement occurs in all previous examples, illustrating the difficulty of recovering w{td (x)
from approximate values for w™d(x, 1).

If the perturbed approximation ft x) =f(x) {1 .0 + 0.035 cos (ef("))}, is used in the Van Cittert procedure (14) in lieu of f(x), a differ-

entinitial value wg'”e (x) results after 2500 iterations, with a larger L° residual of 3.98E-2 and a larger L relative error of 2.96% at t = 1.
However, this well-behaved candidate (not shown) now has oscillatory behavior with both positive and negative values.

8. Example 4 (Figures 5 and 6). Strongly nonlinear
We now consider parabolic equations where the diffusion coefficient is a nonlinear function of the solution,

w; = 0.05 (e°'4""wx) , —l<x<1, 0<t<10,
X (20)
w(x,0) = e¥sin(2yx), —1<x<1, w(=1,t) =w(1,t)=0, t>0.

The initial value w{fd (x) in (20) is shown as the red trace in Figure 5 (bottom), while the computed approximation f(x) to w'd(x, 1) is
shown as the black trace in the same figure. By using f(x) in (14), the Van Cittert procedure was applied for 750 iterations, resulting in a
final L° residual of 2.6E-2 and an L relative error of 0.38% at t = 1. That relative error is about the same as was the case in Example 1.
The function h”°0(x) = wgreen (x) is the green trace in Figure 5 (bottom). The behavior of log{|| f — S[h"] ||co} Versus n is shown in

Figure 5 (top). Here, | w9 [|,= 3.7, while || wg **" ||, = 3.9. Therefore, both solutions w"(x, t) and w9"¢e" (x, t) in Example 4 satisfy

[w(, 1) —fll2<8=<0.0038 | f|2, [ w(,0) [2=M=3.9. 21

Since || f ||l2= 1.95, we have § < 7.4E-3, and §/M < 1.9E-3. The traces for w'd(x, 1) and w9e"(x, 1) are plotted in Figure 6 and are
visually indistinguishable. The green trace in Figure 6 was artificially raised by a small amount, so as to render the red trace visible.

Evidently, Wgreen(x) is a valid reconstruction. Note, however, that || W(r)Ed loo= 10.6, while || W(g)reen loo= 23.4 is more than twice as

large. Accurate prior knowledge of the L> norm of w(x, 0) in (20), i available, might be used to reject wg - (x) as false.

9. Example 5 (Figures 7 and 8). Strongly nonlinear

While the level of accuracy in this final example is lower than in the preceding examples, that accuracy is representative of several
practical applications. Consider the nonlinear problem with non-negative solution

w; = 0.05 (eO'SWWX) +ww,, —-1<x<1, 0<t<1.0,
X (22)
w(x,0) = e¥sin®Byx), —1<x<1, w(=1,t)=w(1,t)=0, t>0.

The initial value w{fd (x) in (22) is shown as the red trace in Figure 7 (bottom), while the computed approximation f(x) to w™d(x, 1) is

shown as the black trace in the same figure. Here, || f ||2= 1.15,and || w{)ed |l2= M = 3.3.By using f(x) in (14), behavior in the Van Cittert
. ______________________________________________________________________________________________________|
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Behavior of Van Cittert residual norm in Example 5
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Figure 7. Top. Behavior of log{|| f —S[h"] || o } for first 200 iterations n, in Van Cittert procedure in Example 5. Bottom. Use of realistic levels of accuracy in strongly
nonlinear problem. Data f(x) (black curve) approximating solution w™?(x, t) at time t = 1 with an L? relative error of 3.24% recover quite plausible, but vastly

different initial values w§"¢ (x), wg *" (x), in lieu of true initial value wie?(x). Subsequent evolutions of wg =" (x) and wie? (x) are shown in Figure 8.

iteration is shown in Figure 7 (top). The L residual after 50 iterations has the value 4.7E-2, and the function h*%(x) = wgreen (x) is
the green trace in Figure 7 (bottom). The L2 relative errorat t = 1, || f — S[h°°] ||z / || f ||2= 2.68%. Next, if we perturb f(x) to form

Tx) = f(x) {1 .0 4+ 0.025 cos (ef("))} and use T (x) in the Van Cittert iteration, we obtain h*’ (x) = Wg'“e(x), the blue trace in Figure 7

(bottom), with a slighly larger L° residual of 5.4E-2, as well as a slightly larger L? relative error of 3.24% at t = 1. Thus, § < 3.7E-2, and
8/M < 1.2E-2. We stress that while these errors are larger than was the case in the well-behaved self-adjoint problem in Example 1, such
errors would not be considered unreasonable in many engineering contexts involving real data. Indeed, the red, green, and blue traces
in this example demonstrate the existence of at least three very distinct initial values at t = 0 that would be compatible with the data at
t = 1,at common levels of data uncertainty. In Figure 8, it is instructive to compare the time evolution of wg - (x) into f(x) at t = 1, with
the corresponding evolution of w9 (x). The evolution of wg " (x) is simple, easily understood, and plausible. The evolution of w4 (x)
is quite complex and not as easily anticipated. As was the case in Example 3, imposing smoothness and non-negativity constraints in
_____________________________________________________________________________________________________
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Evolution of green initial values in Example 5
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Figure 8. Comparing the time evolutions of wg “"(x) and w{t¢(x) as t increases from t = 0 to t = 1 in Example 5. The evolution of wj " (x) into f(x) at t = 1,
is simple and quite plausible, while the corresponding evolution of w{)ed (x) is quite complex and not as easily anticipated.

Example 5 would not eliminate the candidates wgreen(x), wg'”e(x). In Example 4, accurate prior knowledge of the L*® norm at t = 0,

rather than the L2 norm, could be used to reject wgreen (x). In the present case, all three candidates have comparable L>° norms, with

| Wi floo= 133, | wg™**" [loo= 12.5, and || w5 [|oo= 16.0. However, || wE? [2= 3.3, while || wg =" [|2= 9.7, and || w§'"“® ||,= 9.9.
The fact that w5'“¢(x) and wg " (x) have comparable L2 norms, together with the plausible simple evolution of w3 “*" (x) into f(x) in
Figure 8, might lead to possible rejection of the true solution w{)ed (x), given its complex evolution and substantially smaller L2 norm. In

contrast to Example 4, accurate prior knowledge of the L2 norm at t = 0, rather than the L% norm, would be beneficial in this example.

10. Concluding remarks

In recent years, there has been considerable interest in the numerical computation of ill-posed inverse problems, as a result of growth
in such fields as nondestructive evaluation, geophysical prospecting, remote sensing, diagnostic imaging in medical and industrial
applications, and other related areas. One central question, that of stabilizing ill-posed computations so as to prevent explosive noise
amplification, has received much attention. This is the regularization problem, which has spawned a large literature.

The problem discussed in this paper is unrelated to such noise amplification, but is equally serious. While backward uniqueness of
solutions holds true for large classes of linear and nonlinear parabolic equations, the exact, highly restricted data at time t = 1 neces-
sary to recover a particular solution, is seldom available. One must rely on approximate data. However, such data may unexpectedly
approximate several distinct plausible solutions at time t = 1.
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This paper has focused attention on a class of 1D parabolic equations w; = Lw and presented several examples where there is strong
computational evidence for the existence of distinct solutions w"d(x, t) and w9 (x, t) on 0 < t < 1, having the following properties:

e The quantity | w™d(,1) — w9 (1) [lso is small enough that the traces w'd(x, 1) and w9e"(x,1) at t = 1 are visually
indistinguishable when plotted.

o The 2 relative errorat t = 1, {|| wd(, 1) — w9, 1) || / | w4(, 1) ||2} is generally less than 1%.

e The functions w™d(x, 0) and w9 (x, 0) are smooth, well-behaved, physically plausible, and entirely different. Except in the case
of Example 5, these functions have comparable L2 norms.

In these examples, there is effective non-uniqueness in the recovery of w'®d(x, 0) in the stabilized backward problem (4), (5), because
reasonably accurate data f(x) for the unknown w'd(x, 1) also approximates w9 (x, 1). As noted in Section 1, a large variety of
numerical methods for backward parabolic equations exists. The present results raise fundamental questions regarding the general
reliability of solutions computed with any such method. Given reasonably accurate data f(x) at time t = 1, the physically meaningful,
highly plausible, solution w9"€e" (x, t) obtained with that method, may be vastly different from the true solution w™d(x, t) in the actual
engineering situation at hand. Moreover, there may be no indication that w9 " (x, t) is a false solution, and traditional smoothness and
positivity constraints may not prevent the occurrence of such spurious solutions.

The Van Cittert iterative procedure was a vital part of this investigation. While that iteration seldom converges and can behave
unpredictably and even diverge in some cases, it is able to generate unexpected, valid, noise free, candidate solutions w9¢"(x, t).
Small perturbations of the data f(x) input into the Van Cittert procedure can produce additional candidates wP'“e(x, t), as noted in
Examples 3 and 5. Other iterative procedures might be found that produce further viable, yet distinctly different, initial functions w(x, 0)
from the same data f(x). Such multiple possible solutions explain why the inequality (13) does not guarantee any accuracy at t = 0, but
only provides the redundant information || w' (., 0) — w?(.,0) ||2< 2M.

The Holder exponent p(t) in the inequality (13) plays an important behind the scenes role in the above examples. That exponent is
a property of the particular parabolic equation, and it reflects how fast that equation forgets the past. It may be viewed as a barometer
on the difficulty of backward reconstruction. The relatively well-behaved self-adjoint problem in Example 1, corresponds to the best
possible case where i (t) = t. However, as shown in [32] and illustrated in Figure 1, non-self-adjointness, nonlinearity, and other adverse
properties of the elliptic spatial operator L in (4) can cause significantly faster decay of j(t) to zero, as t | 0. The intractable recovery of
W(’)ed (x) in the Burgers equation in Example 2 is especially noteworthy.

These unexpected results imply a need for caution in applying backward parabolic equations. There is ever growing interest in
the use of backward parabolic equations as an all-purpose image sharpening tool. Images blurred by space variant, non-isotropic,
Gaussian-like point spread functions, are equivalent to solutions of 2D linear non-self-adjoint parabolic equations, with variable coef-
ficients. Example 3 suggests that false deblurred images are possible from approximately known blurred image data, even with very
little noise. Likewise, in the 2D or 3D advection dispersion equation (1), plausible, yet false, backward solutions are possible from an
approximately known contaminant spatial distribution at the current time T.
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