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Abstract

Confidence intervals for the treatment effect in random effects meta-
analysis model obtained from Harville-Jeske-Kenward-Roger approach
are obtained in explicit form. They are compared to some other in-
tervals commonly used in collaborative studies with a small number
of participants possibly with heterogeneous, study-specific variances.
Monte Carlo simulation experiments recommend the latter intervals.
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1 Confidence estimation in meta-analysis problems

The subject of interest here is confidence intervals for the common mean
when several different studies, methods, instruments or laboratories mea-
sure a given property of the same material or the difference between two
treatements. Combination or pooling of such measurements to allow statis-
tical analysis of several individual studies is a goal of meta-analysis. Al-
though some debate concerning advantages of random effects models in
meta-analysis continues, (see Borenstein et al., 2009), the following het-
erogeneous model has become a common tool of choice.

Denote by ni the number of observations made in the laboratory i, i =
1, . . . , p. In the interlaboratory studies applications which are of interest
here, neither p nor ni are large, but a Gaussian distribution condition is
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made. Namely, the observed data xik, k = 1, . . . , ni, is assumed to have the
form

xik = µ+ ℓi + ǫik, (1)

where µ is the treatment effect or the property value, ℓi represents the study
(or method) effect, which is normal with mean 0 and unknown variance σ2.
The independent normal zero mean random errors ǫik, have unknown (dif-
ferent) variances τ2

i . For a fixed i, xi =
∑

k xik/ni, is normally distributed
with the mean µ and the variance σ2 + σ2

i , where σ2
i = τ2

i /ni. If σ2 + σ2
i

were known up to a factor, then the least squares estimator of µ could be
used, µ̃ =

∑
i ωixi with normalized weights

ωi =

1
σ2+σ2

i∑
j

1
σ2+σ2

j

. (2)

In this situation,

Var(µ̃) = Φ =

[
∑

i

1

σ2 + σ2
i

]
−1

. (3)

Since the variances are unknown, these optimal weights have to be estimated.
In some problems of meta-analysis the sample sizes ni are not available, but
when they are, the classical unbiased statistic s2i =

∑
j(xij−xi)

2/[ni(ni−1)]

has the distribution σ2
i χ

2(νi)/νi, νi = ni − 1, and is independent of xi and
s2j , j 6= i. This is the situation studied in this paper.

To estimate σ’s the restricted maximum likelihood estimator (REML)
is commonly employed. It is well known that the plug-in version of (3),
which replaces the unknown σ2, σ2

1 , . . . , σ
2
p by statistics σ̃2, σ̃2

1 , . . . , σ̃
2
p such

that E(σ̃2 + σ̃2
i ) ≤ σ2+σ2

i , underestimates the variance of the corresponding
common mean estimator. Since (3) is an increasing function of σ’s, posi-
tively biased estimators partly compensate for this inequality. Our goal is
to derive REML based confidence intervals for the treatment effect in model
(1) which includes corrections to the traditional method by using Harville-
Jeske-Kenward-Roger approach.

The organization of this paper is as follows. In the next section 2 the
method of Harville and Jeske (1992), Kenward and Roger (1997) to obtain
confidence intervals is discussed. Explicit formulas for all characteristics
which determine these intervals are found. The common methods of stan-
dard error evaluation for the treatment effect µ do not explicitly take into
account the sample sizes ni. When the REML variance estimator ia applied
to (7), the resulting standard error of the confidence intervals exhibited in
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section 3, depends on the degrees of freedom νi. These confidence inter-
vals are compared via a Monte Carlo study in section 4. All mathematical
derivations are collected in the Appendix.

2 Restricted maximum likelihood method: vari-

ance approximations and information matrix

In a general context of mixed effects linear models, Harville and Jeske (1992),
Sec 4.2, suggested an estimator of the variance of a sample counterpart of
the least squares statistic, which in our case is the weighted average,

x̃ =
∑

i

xiω̃i = Φ̃
∑

i

xi

σ̃2 + σ̃2
i

with ω̃i = (σ̃2 + σ̃2
i )

−1/(
∑

j(σ̃
2 + σ̃2

j )
−1. They suggested to use the REML

variances estimator σ̃2, σ̃2
1 , . . . , σ̃

2
p and put forward two following approxi-

mations based on Taylor’s formula or the propagation-of-error method. The
first one deals with the mean squared difference between x̃ and µ̃:

E(x̃− µ̃)2 ≈ tr (VΛ) . (4)

Here V is the mean squared error matrix of (σ̃2, σ̃2
1 , . . . , σ̃

2
p), and Λ is the

covariance matrix of the vector (µ̃′0, µ̃
′

1, . . . , µ̃
′

p)
T , ∂σ2

0 = ∂σ2. This approxi-
mation was originally introduced by Kackar and Harville (1984).

The second approximation corrects for the bias of the plug-in estimator
Φ̃ of Φ,

EΦ̃ ≈ Φ +
1

2
tr (VH) = Φ − tr (VΛ) , (5)

where H is the Hessian of Φ, which is a negative semidefinite matrix, eval-
uated at σ2, σ2

1 , . . . , σ
2
p. In the model (1), Λ = −H/2. The formula (5)

requires (approximate) unbiasedness of (σ̃2, σ̃2
1 , . . . , σ̃

2
p), so that the linear

term in (σ̃2 − σ2, σ̃2
1 − σ2

1 , . . . , σ̃
2
p − σ2

p) can be neglected. Since x̃ is known
to be an unbiased estimator of µ, such that x̃− µ̃ is independent of µ̃, one
gets V ar(x̃) = E(x̃− µ̃)2 + Φ, which suggests the formula,

Ṽ ar(x̃) = Φ̃ + 2tr(ṼΛ̃) (6)

Here Ṽ is the estimated mean squared error matrix of (σ̃2, σ̃2
1 , . . . , σ̃

2
p) and

Λ̃ has a similar meaning.
Kenward and Roger (1997) gave a formalization of these approximations

in a general mixed effects linear model when the inverse of the restricted

3



likelihood information matrix J is used in lieu of V. Via a Monte Carlo study
they demonstrated good performance of the resulting variance estimators
and test statistics in several more general than (1) random effects models.
The SAS procedure ”MIXED” employs estimators and confidence intervals
derived by this method.

Since matrices V and Λ 6= 0 are positive semidefinite, tr(VΛ) > 0, and (6)
seems to confirm negative bias of the estimator Φ̃. Although in our problem
(σ̃2

1 , . . . , σ̃
2
p) can be assumed to be an (approximately) unbiased estimator

of (σ2
1 , . . . , σ

2
p), it is easy to verify that all non-negative estimators of σ2 are

biased. To adjust for that fact, the formula

EΦ̃ ≈ Φ + ΥΦ2
∑

i

1

(σ2 + σ2
i )

2
− tr (VΛ) ,

could be put in place of (5). Thus only positively biased estimators of
σ2 have a chance to give rise to (approximately) unbiased estimates of Φ.
Commonly σ̃2 is a positive part of an unbiased estimator, so that its bias is
positive, Υ = E(σ̃2 − σ2) > 0, and it can be substantial especially for small
σ2. Kenward and Roger (2009) suggest a different bias correction term in
general linear models obtained in terms of the inverse of the (full) likelihood
information matrix. However since in our situation the covariance matrix
of (x1, . . . , xp) is a linear function of the parameters σ2 + σ2

i , i = 1, . . . , p,
according to these authors, no bias correction in (6) is required.

When the estimates σ̃2’s are substituted for the unknown σ2’s, the esti-
mator (6) takes the form

Ṽ ar(x̃) = Φ̃ − Υ̃Φ̃2
∑

i

1

(σ̃2 + σ̃2
i )

2
+ 2tr(ṼΛ̃). (7)

By taking advantage of the specific form of the linear model (1), we give

now very explicit formulas for W,Λ and Ṽ ar(x̃) in (7) when REML variance
estimators are used.

The restricted likelihood function, when written as a function of sufficient
statistics xi, s

2
i , i = 1, . . . , p, has the form

RL = −1

2

[∑

i

(xi − µ̃)2

σ2 + σ2
i

+ log

(
∑

i

(σ2 + σ2
i )

−1

)
+
∑

i

log(σ2
i + σ2) +

∑

i

νis
2
i

σ2
i

+
∑

i

νi log σ
2
i

]
. (8)
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The inverse of the Fisher information matrix J = J (σ2, σ2
1 , . . . , σ

2
p) based

on (8) gives the asymptotic covariance matrix of the restricted maximum
likelihood estimators which is used as V.

For ωi defined by (2) put

Sm =
∑

i

ωm
i , m = 2, . . . ,

The results in the Appendix, section 6.1, show that

J =

(
a00 aT

a D + bbT

)
(9)

with

a00 =
S2 − 2S3 + S2

2

2Φ2
, (10)

a denoting the p-dimensional vector with coordinates ai,

ai =
ω2

i (1 + S2 − 2ωi)

2Φ2
, (11)

the vector b having coordinates bi,

bi =
ω2

i√
2Φ

, i = 1, . . . , p, (12)

and the diagonal matrix D given by elements dii,

dii =
νi

2σ4
i

+
ω2

i (1 − 2ωi)

2Φ2
. (13)

The inverse matrix J −1 = V has the form,

V =

(
v00 vT

v Q−1

)
=

(
a−1

00 + a−2
00 a

TQ−1a −a−1
00 a

TQ−1

−a−1
00 Q

−1a Q−1

)
, (14)

where Q = D + bbT − a−1
00 aa

T , so that Q−1 satisfies (25) in section 6.1.
Savin, Wimmer and Witkovsky (2003) considered the interval estimation

of the common mean by using (6). However, the information matrix for
restricted likelihood in the Appendix to their paper seems to be in error.

To use (7) one needs the form of matrices Λ and H. Let p-dimensional

vectors β, e have coordinates ω2
i Φ

−1/2
1 and 1 respectively. We also define the

diagonal matrix Ψ to have nonzero elements ψii = ω3
i Φ

−1, i = 1, . . . , p, and
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denote by I the p× p identity matrix. Then a direct calculation detailed in
section 6.2 shows that

Λ = −1

2
H =

(
eT

I

)(
Ψ − ββT

) (
e I

)
, (15)

so that

tr(VΛ) = tr
(
(Ψ − ββT )(v00ee

T + evT + veT +Q−1)
)

≈ 1

Φ

[
(S3 − S2

2)v00 + 2
∑

ω2
i (ωi − S2)vi +

∑

i

ω3
i (1 − ωi)

dii

]
, (16)

as tr((Ψ− ββT )Q−1) is numerically very close to tr((Ψ− ββT )D−1). While
V has full rank p+ 1, the matrices Λ and Ψ − ββT have rank p− 1.

The true REML estimator of σ2 is σ̃2 = max(0, σ̃2
RL), where σ̃2

RL is the
(unbiased) solution of the restricted likelihood equation, ∂RL/∂σ2 = 0. Its
approximate variance v00 = a−2

00 (a00 + aQ−1aT ) can be evaluated from the
formulas of section 6.1.

For example, when p = 2,

σ̃2
RL =

(x1 − x2)
2 − s21 − s22
2

has the variance [(2σ2 + σ2
1 + σ2

2)
2 + σ4

1/ν1 + σ4
2/ν2]/2 which happens to

coincide with v00.
The largest discrepancy between σ̃2

RL and its truncated version σ̃2 occurs
when σ2 = 0. Then 0.5 ≤ P (σ̃2

RL 6= σ̃2) = P (χ2(p − 1) ≤ p − 1). This
probability takes its largest value, 2Φ(1) − 1 = 0.6827.., when p = 2. The
formulas for Eσ̃2 and E(σ̃2 − σ2)2 can be found in section 6.3.

Figure 1 shows the plots of approximations to the variance of the REML
estimator which was obtained from 10000 simulations for each of the values
of σ2 = 0 : 0.2 : 5 when p = 2, n1 = 5, n2 = 3, σ2

1 = 0.1, σ2
2 = 0.5. This

figure and results of other simulations show that the approximation (6) is
not adequate in our problem as it substantially overestimates Var(x̃) for
small σ2.

3 Coverage factors

According to (16) if a truncated estimator σ̃2 is employed,

Ṽ ar(x̃) = Φ̃ − Υ̃S̃2 + 2tr(ṼΛ̃) ≈ Φ̃ − Υ̃S̃2 (17)
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Figure 1: Plot of the variance of REML estimator (continuous line), and its
approximations (6) (line marked by +), (7) (line marked by ∗), and of Φ̃
(dotted line) when p = 2.

+
2

Φ̃

[
(S̃3−S̃2

2)E(σ̃2−σ2)2+2
∑

ω̃2
i (ω̃i−S̃2)Eσ̃

2(σ̃2
i −σ2

i )+
∑

i

2ω̃3
i (1 − ω̃i)σ̃

4
i

νi

]
,

with Eσ̃2, E(σ̃2 −σ2)(σ̃2
i −σ2

i ) and E(σ̃2 −σ2)2 derived from formulas (28),
(29), (30) in section 6.3, and S̃k =

∑
i ω̃

k
i , k = 1, 2, . . ..

For large σ2 the approximation (26) there shows that

Ṽ ar(x̃) ∼
∑

(σ2 + σ2
i )χ

2(p− 1)

p(p− 1)
,

and the pivot (x̃− µ)/

√
Ṽ ar(x̃) is approximable by a t(p− 1)-distribution.

This approximation leads to the (1 − α)−approximate confidence intervals,

x̃± t1−α/2(p − 1)

√
Ṽ ar(x̃), (18)

where Ṽ ar(x̃) is found from (17). This interval will be compared to

x̃± t1−α/2(p − 1)
√

Φ̃. (19)

In addition to (19) there are confidence intervals for µ which do not use Φ
directly. One of them is based on Horn, Horn and Duncan (1975) procedure,

x̃± t1−α/2(p− 1)

√∑

i

ω̃2
i (xi − x̃)2

1 − ω̃i
. (20)
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Another interval discussed in Sec 7.3.4 of Hartung, Knapp and Sinha (2008)
is

x̃± t1−α/2(p− 1)

√∑

i

ω̃i(xi − x̃)2

p− 1
. (21)

It is based on the so-called external consistency estimator of the variance
(Dietrich, 1991). When p = 2, (20) and (21) coincide both having the
half-width t1−α/2(1)

√
ω̃1ω̃2 |x1 − x2|.

Kenward and Roger (1997) proposed to use the Satterthwaite approxima-

tion for the pivotal quantity (x̃−µ)/

√
Ṽ ar(x̃). In our case it means the Stu-

dent distribution t(m) whose degrees of freedom m are to be estimated from
the data. However, the estimator suggested by these authors always exceeds
4, and does not provide a good approximation for small p. Also the assump-
tion of independence between x̃ and Ṽ ar(x̃) used by these authors according

to (4) leads to the formula, E(x̃ − µ)2/Ṽ ar(x̃) = E(x̃ − µ)2E[Ṽ ar(x̃)]−1 ≈
(tr(WΛ)+ Φ)/(2tr(WΛ)+ Φ) < 1, which cannot be equal to the variance of
a t(m).

4 Numerical Results

We report here some results of the numerical comparison of the REML esti-
mator based confidence interval (18) with the intervals (19), (20) and (21).
In our Monte Carlo simulation study for p = 2, 3, 5, 9, we used randomly
chosen sample sizes ni with the uniform distribution over integers from 2
to 12 The error variances σ2

i were taken to have a scaled χ2-distribution, so
that Eσ2

i = 1. Figures 2-5 display the coverage probability of these intervals
with a nominal confidence coefficient of 95% which is reported as a function
of σ2 = 0 : 0.2 : 5. Both intervals (20) and (21) have lower than stated
confidence level. The confidence intervals based on the DerSimonian-Laird
estimator (not shown here) sustain the nominal confidence coefficient much
better. The interval (21) outperformed (20) in our simulations. For p ≥ 3,
the interval (19) is not adequate when σ2, is large, when it is small the inter-
val (18) is too wide and too conservative as is seen from these Figures. For
larger values of p(p = 10, 15, 20, 30, 50), the behavior of (21) was studied in
Sidik and Jonkman (2002) and the two intervals (20) and (21) are compared
by Sidik and Jonkman (2006) who describe (20) as robust and recommend
it.

The REML estimator was computed via its R-language implementation
(through the lme function from the nlme library). The intervals function
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with fixed effects also provides approximate confidence interval for µ which
is too short for small/moderate p, but which can be adjusted by changing
the normal quantile to that of a t(p−1)-distribution as in (19). The param-
eter estimates provided in the summary of lme are ratios τ2

2 /τ
2
1 , . . . , τ

2
p /τ

2
1 ,

with the values τ2
1 and σ2 provided by VarCorr function. For multimodal

or flat restricted likelihood functions convergence of the lme algorithm is
problematic. Additional difficulty is caused by its non-convergence in cases
where σ̃2 ≈ 0, in particular when for some i, s2i is very small. In the latter
case σ̃2

i ≈ 0, and σ̃2 = 0, so that Φ̃ ≈ 0, and all intervals (19), (20) and (21)
shrink towards x̃. For these reasons the results were cross-checked by the
iterative algorithm in Rukhin (2011).

Figure 5 depicts a quite nonlinnear q − q plot of pivotal quantity (x̃ −
µ)/

√
Ṽ ar(x̃) against t(p−1) when p = 7 and σ2 = 0.2 obtained from 50, 000

runs. Simulations also show that tr
(
ṼΛ̃
)

overestimates E(x̃ − µ̃)2 so that

numerical accuracy of (4) is questionable.
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Figure 2: Plot of coverage probabilities of the confidence intervals (18) (dot-
ted line), (19) (line marked by +), and (20), (21) (continuous line), when
p = 2.

5 Conclusions

All simulation results suggest that in the heterogeneous setting of random
effects meta-analysis the approximation (7) for p ≤ 10 does not lead to good
confidence intervals. Indeed one of its features is that since Υ̃ is positive,
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Figure 3: Plot of coverage probabilities of four confidence intervals with (21)
marked by ∗, and (20) (continuous line), when p = 3 (other intervals have
designations of lines are the same as in Figure 2).

two correction terms in (7) are of different signs, and both of them can
be substantial with possibly negative sum. When σ2 is small, these terms
tend to cancel one another. When σ2 is large, they are small and can be
neglected. However, omitting them altogether as in (19) results in poor
coverage probability for large σ2 Intuitively, the biased estimator σ̃2 has
a patently non-normal distribution with a large mean squared error. See
Figure 6 which shows the histogram of the distribution of σ̃2/σ2 when p =
5, σ2 = 2.5 under scenario of section 4. Therefore for small/medium p,
the higher order terms in Taylor’s formula (7) cannot be discarded, and
its accuracy is poor. The interval (21) based on the external consistency
estimator of the variance performed the best in our simulations although
(20) was always close.

6 Appendix

6.1 Covariance matrix for restricted maximum likelihood pro-

cedure

Since
E(xi − µ̃)(xj − µ̃) = δij(σ

2 + σ2
i ) − Φ, (22)

µ̃′0 =
∂

∂σ2
µ̃ = −

∑

i

ω2
i (xi − µ̃)

Φ
, (23)
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and

µ̃′i =
∂

∂σ2
i

µ̃ = −ω
2
i (xi − µ̃)

Φ
, (24)

one has
E(xi − µ̃)µ̃′0 = −ωi + S2,

and
E(xj − µ̃)µ̃′i = −δijωi + ω2

i .

By differentiating RL one gets,

∂

∂σ2
RL =

1

2Φ2

[
∑

i

ω2
i (xi − µ̃)2 − 1 + S2

]
,

− ∂2

∂σ4
RL =

1

Φ2

[
∑

i

ω2
i (xi − µ̃)µ̃′0 +

∑

i

ω3
i (xi − µ̃)2

Φ
− 1

2
S2 + S3 −

S2
2

2

]
,

and

− ∂2

∂σ2∂σ2
i

RL =
1

Φ2


∑

j

ω2
j (xj − µ̃)µ̃′i +

ω2
i (xi − µ̃)2

Φ
− ω2

i

2
+
ω3

i

Φ
− ω2

i S2

2


 ,

so that

J00 = −E ∂2

∂σ4
RL =

S2 − 2S3 + S2
2

2
,

J0i = −E ∂2

∂σ2∂σ2
i

RL =
ω2

i

2Φ2
(1 + S2 − 2ωi) .

Similarly,

− ∂

∂σ2
i

RL =
1

2

[
−ω

2
i (xi − µ̃)2

Φ2
+
ωi(1 − ωi)

Φ
+ νi

(
1

σ2
i

− s2i
σ4

i

)]
,

− ∂2

∂σ4
i

RL =
ω2

i (xi − µ̃)µ̃′i
Φ2

+
ω2

i (xi − µ̃)2

Φ3
− ω2

i (1 − ωi)
2

2Φ2
− νi

(
1

2σ4
i

− s2i
σ6

i

)
,

and for i 6= j

− ∂2

∂σ2
i ∂σ

2
j

RL = −ωiωj(xi − µ̃)(xj − µ̃)

Φ3
−
ω2

i ω
2
j

2Φ2
.

It follows that

Jii = −E ∂2

∂σ4
i

RL =
νi

2σ4
i

+
ω2

i (1 − ωi)
2

2Φ2
,
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Jij = −E ∂2

∂σ2
i ∂σ

2
j

RL =
ω2

i ω
2
j

2Φ2
,

if 1 ≤ i 6= j ≤ p. The representation (9) of the information matrix J follows,
and the form of its inverse (14) can be derived from standard formulas (e.g.
Theorem 18.2.8 in Harville, 1997).

To find the matrix Q−1 = (D + bbT − a−1
00 aa

T )−1 in (14), we put c =
D−1/2b, d = D−1/2a/

√
a00, so that

Q = D1/2(I + ccT − ddT )D1/2.

Thus,

D1/2Q−1D1/2 = (I + ccT − ddT )−1 =

[
I + (c, d)

(
1 0
0 −1

)(
cT

dT

)]
−1

= I − 1

∆

[
(dT d− 1)ccT − (cT d)(dcT + cdT ) + (cT c+ 1)ddT

]
,

where ∆ = (cT c+ 1)(dT d− 1) − (cT d)2 is the determinant of the matrix

(
1 0
0 −1

)
+

(
1 0
0 −1

)(
cT

dT

)
(c, d)

(
1 0
0 −1

)
=

(
cT c+ 1 −cTd
−cTd dTd− 1

)
.

Therefore,

Q−1 = D−1 − 1

a00∆

[
(aTD−1a− a00)D

−1bbTD−1 (25)

−(bTD−1a)D−1(abT + baT )D−1 + (bTD−1b+ 1)D−1aaTD−1
]
,

aTQ−1a = aTD−1a+
(aTD−1a)2(bTD−1b+ 1) − (bTD−1a)2(aTD−1a+ a00)

a00|∆|

=
aTD−1a+ (aTD−1a)(bTD−1b) − (bTD−1a)2

|∆| ,

as ∆ = (bTD−1b+ 1)(aTD−1a/a00 − 1) − (bTD−1a)2/a00 < 0. Indeed since
dii > ai, a

TD−1a =
∑
a2

i d
−1
ii ≤∑ ai = (S2 − 2S3 + S2

2)Φ−2 = a00.
For large σ2,

v00 =
a00 + aQ−1aT

a2
00

=
2σ4p(p− 1) + 4σ2(p− 1)

∑
σ2

i − 6(p − 2)
∑
σ4

i + 2(4 − 7p−1)(
∑
σ2

i )
2

p(p− 1)2
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+
∑

i

2σ4
i

p2νi
+O

(
1

σ2

)
,

and

vi = −2σ4
i

pνi
+O

(
1

σ2

)
.

These formulas suggest the following approximations in distribution,

σ̃2
RL ∼

∑
(σ2 + σ2

i )χ
2
p−1

p(p− 1)
−
∑
σ̃2

i

p
, σ̃2

i ∼ σ2
i

χ2(νi)

νi
, (26)

which are used in section 6.3 to derive formulas for Eσ̃2, Eσ̃2(σ̃2
i −σ2

i ), and
E(σ̃2 − σ2)2 assuming approximate independence of σ̃2

i .
The correction term in (16) has the asymptotic expansion of the form

tr(VΛ) =
(p − 1)

p3σ2

[
p
∑

σ4
i −

(∑
σ2

i

)2
+
∑ 2σ4

i

νi

]
+O

(
1

σ4

)
,

so that

V ar(x̃) =
σ2

p

[
1 +

1

pσ2

∑
σ2

i

+
(2p− 3)

p2σ4

(
p
∑

σ4
i − (

∑
σ2

i )
2
)

+
4(p − 1)

p2σ4

∑ σ4
i

νi

]
+O

(
1

σ4

)
.

6.2 Covariance matrix of µ̃
′

Formulas (22), (23) and (24) can be used to find the elements of matrix Λ.
Indeed

E(µ̃′0)
2 =

1

Φ2

∑

i,j

Eωiωj(xi − µ̃)(xj − µ̃).

Similarly,

Eµ̃′0µ̃
′

i = −ω
2
iEµ̃

′

0(xj − µ̃)

Φ
.

Derivation of other elements of matrix Λ is straightforward, and the form
(15) follows. The rank of this matrix is p − 1, as µ̃′0 =

∑
µ̃′i, and

∑
(σ2 +

σ2
i )µ̃

′

i = 0.
By differentiating Φ = Φ(σ2, σ2

1 , . . . , σ
2
p) twice, we see that its Hessian

H coincides with −Λ/2. This means that the function Φ is concave, but it
is not strictly concave as rank (H) = rank(Λ) = p− 1 < p+ 1.

13



6.3 Estimated covariance matrix

According to the approximation (26), the expected value of σ̃2 has the form
with z2 = (p − 1)(

∑
σ̃2

i )/[2
∑

(σ2 + σ2
i )],

Eσ̃2 =
2
∑

(σ2 + σ2
i )

p(p− 1)Γ((p − 1)/2)
E

∫
∞

z2

(u− z2)u(p−1)/2−1e−u du.

For example, if p− 1 = 2k, k ≥ 1, is an even integer,

Eσ̃2 =
2
∑

(σ2 + σ2
i )

p(p− 1)

k−1∑

j=0

(k − j)

j!
Ez2je−z2

. (27)

For any non-negative integer j

Ez2je−z2

= (−1)j
dj

dtj
Ee−tz2 |t=1,

and for any positive t,

Ee−tz2

=
∏

i

(
1 +

t(p− 1)σ2
i

νi
∑

(σ2 + σ2
i )

)−νi/2

,

so that the expected values in (27) can be readily evaluated. Similarly, in
this case

Eσ̃4 =
[2
∑

(σ2 + σ2
i )]

2

[p(p− 1)]2Γ((p − 1)/2)
E

∫
∞

z2

(u− z2)2e−uu(p−1)/2−1 du

=
[2
∑

(σ2 + σ2
i )]

2

[p(p− 1)]2

k−1∑

j=0

(k + 1 − j)(k − j)

j!
Ez2je−z2

.

Somewhat more complicated formulas exist for any p. When (p−1)/2 =
ℓ+ 1/2 with an integer ℓ ≥ 0, the identity,

e−u

√
u

=
1

Γ(1/2)

∫
∞

1

e−tu dt√
t− 1

,

can be used to express the mean squared error of the estimator σ̃2 as a
linear combination of integrals involving terms Ez2je−tz2

, j = 0, 1, . . . , ℓ.
For example,

Eσ̃2 =
2
∑

(σ2 + σ2
i )

p(p− 1)Γ((p − 1)/2)
E

∫
∞

z2

(u− z2)uℓu−1/2e−u du

14



=
2
∑

(σ2 + σ2
i )

p(p− 1)Γ((p − 1)/2)Γ(1/2)
E

∫
∞

1

∫
∞

z2

(u− z2)uℓe−tu du dt√
t− 1

=

∑
(σ2 + σ2

i )Γ(ℓ+ 1)

pΓ((p+ 1)/2)Γ(1/2)

ℓ∑

j=0

(ℓ+ 1 − j)

j!

∫
∞

1

tj−ℓ−2 dt√
t− 1

Ez2je−tz2

, (28)

Eσ̃2(σ̃2
k − σ2

k)

=

∑
(σ2 + σ2

i )Γ(ℓ+ 1)

pΓ((p+ 1)/2)Γ(1/2)

ℓ∑

j=0

(ℓ+ 1 − j)

j!

∫
∞

1

tj−ℓ−2 dt√
t− 1

Ez2j(σ̃2
k − σ2

k)e
−tz2

,

(29)
and

Eσ̃4 =
2[
∑

(σ2 + σ2
i )]

2Γ(ℓ+ 1)

p2(p − 1)Γ((p + 1)/2)Γ(1/2)
(30)

×
ℓ∑

j=0

(ℓ+ 2 − j)(ℓ + 1 − j)

j!

∫
∞

1

tj−ℓ−3 dt√
t− 1

Ez2je−tz2

.

These integrals are easy to evaluate by standard numerical integration for-
mulas, e.g., via the trapezoid method. There is a quadrature formula
(Harper, 1962) which can be used after a transformation of variables t =
1+y2. Similar integrals appear as the posterior distribution in the Bayesian
setting of the Behrens-Fisher problem.

For large σ2,

Υ ≈ E(
∑
σ̃2

i )
(p+1)/2

Γ((p + 3)/2)[2
∑

(σ2 + σ2
i )/(p − 1)](p−1)/2

,

and

v00 − E(σ̃2 − σ2)2 ≈ 2σ2Υ = O

(
1

[
∑

(σ2 + σ2
i )]

(p−3)/2

)
.
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Figure 4: Plot of coverage probabilities of four confidence intervals when
p = 5 (designations of lines are the same as in Figure 3).
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Figure 5: Plot of coverage probabilities of four confidence intervals when
p = 9.
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Figure 6: The q-q plot of (x̃− µ)/

√
Ṽ ar(x̃) when p = 5, σ2 = 2.5.
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Figure 7: Histogram of σ̃2/σ2 when p = 5, σ2 = 2.5.
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