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Abstract

In this paper, we compare the results of five 3D interest point detection techniques to the interest points marked
by human subjects. This comparison is used to quantitatively evaluate the interest point detection algorithms. We
asked human subjects to look at a number of 3D models, and mark interest points on the models via a web-based
interface. We propose a voting-based method to construct ground truth out of humans’ selections of interest points.
Evaluation measures, namely False Positive and False Negative Errors, are then defined based on the geodesic
distance between the interest points detected by a particular algorithm and the human-generated ground truth.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Interest points, also referred to as feature points, salient
points, or keypoints, are those points which are distinctive
in their locality, and are present and stable at all instances
of an object, or of its category of objects. Interest point de-
tection is an important processing step involved in various
3D vision algorithms, such as 3D face recognition, registra-
tion in medical imaging, tracking, and stereoscopic vision.
In the areas of shape characterization, recognition, and re-
trieval, using salient points is a popular approach since these
salient points provide local features that are invariant to ro-
tation, scaling, noise, deformation and many other transfor-
mations of 3D objects.

We aimed to develop an experimental setup by which
the performance of interest point detection algorithms can
be compared quantitatively. A widely used evaluation crite-
rion is "repeatability", which measures the stability of the
detected points on a particular object with respect to vari-
ous transformations that object undergoes, such as deforma-
tion, change in resolution, and addition of noise. Our mo-
tivation, on the other hand, is to measure the detection and
localization success of the algorithms with respect to human-
generated ground truth.

Most of the 3D interest point detection algorithms devel-
oped in the last decade defined functions summarizing the
geometrical content of localities on a 3D model in multiple
scales, and selected local extrema of those functions as inter-

Figure 1: User interface for marking interest points.

est points. This approach is in accordance with the fact that
humans respond more to significant local changes on the sur-
face. However, humans also tend to see interest points within
"meaningful" parts that are geometrically homogeneous; and
they tend to ignore geometrical features that do not charac-
terize the underlying class of the object.

Contrasting computational approaches for salient point
detection to the humans’ perception of interest points may
lead to new directions of research, especially for object clas-
sification. With this motivation, we designed experiments to
measure how close the points detected by an algorithm are
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to those considered as interest points marked by human sub-
jects. We developed a web-based application where human
subjects were asked to mark the interest points of a model.
We collected data from nine subjects for 51 models. We
compared five different interest point detection techniques
based on "false negative" and "false positive" errors, employ-
ing the data provided by human subjects as ground truth.

2. Related work

2.1. Interest point detection techniques

There is considerable work on interest point detection ap-
plied to 2D image vision, 3D medical imaging, and range
vision. In this paper, we confine our discussion to the in-
terest point techniques that are designed to work on 3D
mesh models. Although other higher-level local structures,
such as larger regions of interest [GCO06], line-like fea-
tures [PKG03], and edges are of great importance for shape
characterization, we concentrate on techniques that detect
isolated points of interest on a 3D mesh model.

In [GMGP05], an invariant descriptor called the integral
volume descriptor is calculated at each vertex of the model.
It corresponds to the volume of the intersection of the inte-
rior of the model with a ball centered at the vertex. This de-
scriptor is closely related to the mean curvature at that point.
A histogram of the descriptor is formed and points that cor-
respond to the least populated bins are selected as candidate
interest points. By operating on balls with varying radii, the
authors employ a multi-scale approach. The points that have
persistently rare values at different radii are marked as inter-
est points.

Lee [LVJ05] also proposes a multi-scale approach based
on mesh saliency. Mesh saliency is defined at each vertex
as a function of the differences of Gaussian-weighted curva-
tures at successive scales. High saliency points are marked as
interest points. Liu et al. [LLKR07] combine mesh saliency
with Morse theory, while Castellani et al. [CCFM08] de-
fine another saliency measure. They apply Gaussian filter-
ing directly on the vertex positions rather than the curva-
ture values. Difference-of-Gaussians (DoG) are calculated
at various scales, and vertices that are highly displaced af-
ter the filtering are marked as interest point candidates. The
DoG approach is also used in [ZHDQ08] and [ZBVH09].
In [WNK06], the mesh is filtered with a set of Laplacians
of Gaussian (LoG) to construct a pyramid. Points with local
minima in both spatial and scale dimensions are declared as
interest points.

Walter et al. [WAL08] extend the 2D SUSAN operator to
3D meshes to compute the saliency degree on the vertices.
Sipiran and Bustos [SB10] use a 3D extension of the 2D Har-
ris operator, which is based on the local autocorrelation of an
image. They detect the local maxima of the Harris response
as candidate interest points and then reduce the set either by
thresholding or clustering.

Mian et al. [MBO10], define a local, thus invariant co-
ordinate system around a point using the cropped surface
surrounding it. They calculate the covariance matrix of the
points on the cropped surface and use this covariance matrix
to calculate the ratio between the first two principal axes of
the surface. Novatnack and Nishino [NN07] parametrize a
3D mesh model onto a 2D plane, and construct a dense sur-
face normal map. They build a scale-space by convolving the
normal map with a set of Gaussian filters, and detect corners
on each scale separately.

Hu and Hua [HH09] operate on Laplace-Beltrami spectral
domain instead of spatial domain. They define the geometry
energy on the vertices as a function of eigenfunctions and
eigenvalues of the spectrum. A point is selected as an in-
terest point if it remains as a local maximum of the geom-
etry energy function within several successive frequencies.
Thus the distinctiveness of an interest point is required to
be stable within a portion of the spectrum. As another ap-
proach related to Laplace-Beltrami spectral analysis, Sun et
al. [SOG09] use heat kernel function of the mesh. A point
is chosen as an interest point where this function is a local
maximum.

Shilane and Funkhouser [SF06] adopt a very different ap-
proach. The interest points are not detected independently
for a single 3D object; they are rather picked in comparison
with a large dataset of classified objects. The authors aim at
determining those points which are specific to the object’s
category and which lead high retrieval performance. Thus,
distinctive interest points are detected via a learning proce-
dure supervised by class information of the models.

Atmosukarto and Shapiro [AS08] also use a learn-
ing scheme to determine interest points. They calculate
curvature-based descriptors on each vertex of the mesh and
use Support Vector Machines (SVM) to train a classifier that
distinguishes between salient and non-salient points. The
training data consist of manually marked salient and non-
salient points on a set of models.

In this paper, we analyze the results of five of these al-
gorithms with respect to the human-generated ground truth:
Mesh saliency [LVJ05], salient points defined by Castellani
et al. [CCFM08], 3D-Harris [SB10], 3D-SIFT [GW11], and
scale-dependent corners [NN07]. We give detailed descrip-
tions of these methods in Section 3.

2.2. Evaluation methods

There are a number of ways authors have used to demon-
strate the success of their interest point detection algorithms:
1) Visualization of detected points on sample 3D mesh mod-
els; 2) End results of the ultimate task to which the detec-
tion algorithm serves, such as recognition or retrieval per-
formance, or accuracy of registration; 3) Repeatability rate.

Repeatability rate is defined as the percentage of the de-
tected points that are common in two different instances of
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a scene or an object ( [SL03], [BBB∗10]). Usually, two de-
tected points on the two instances are considered to be com-
mon if one falls within a neighborhood of the other, and the
size of the neighborhood is denoted by ε. The repeatability
is then referred as ε-repeatability.

SHREC’10 robust feature detection and description
benchmark [BBB∗10] evaluates and compares 3D salient
point detection algorithms. The evaluation is based on the re-
peatability of the detected points under a variety of transfor-
mations. The dataset consists of three models (human, dog,
horse) and their transformed versions. Each model has gone
under 45 different transformations, such as changes in topol-
ogy, sampling, scale, and addition of noise and holes. Three
feature detection approaches are compared at [BBB∗10]:
Heat kernel-based signatures [SOG09], Salient points of
Castellani et al. [CCFM08], and 3D Harris Features [SB10].

Our schema of evaluation is complementary to the analy-
sis in [BBB∗10]. We gather ground truth from human sub-
jects, and base our analysis on humans’ judgments about the
interest/salient points on generic 3D models.

3. Interest point detection techniques evaluated in this
work

3.1. Mesh saliency

Mesh saliency [LVJ05] is based on the local curvature over
the surface. The mean curvature at each vertex is weighted
by two Gaussian filters, one with scale twice the other. The
absolute difference between the weighted curvatures at two
scales corresponds to the mesh saliency at that scale pair.
The procedure is repeated for a number of different scale
pairs, then the total mesh saliency at a vertex is calculated as
the sum of mesh saliency values at these scale pairs.

Candidate interest points are picked from the local max-
ima of the total mesh saliency function. A vertex is marked
as a local maximum if its total mesh saliency is higher than
all its neighboring vertices. Then the candidate points with a
saliency measure higher than a threshold are selected as fi-
nal interest points. We set the threshold as the average of the
total mesh saliency over the local maxima.

3.2. Salient points

Castellani et al. [CCFM08] also adopted a multi-resolution
approach and defined another measure of saliency on the
3D mesh model. In their approach, instead of filtering the
curvature values, they filter the 3D locations of the vertices
via Gaussians, and they base their saliency measure on the
amount of displacement of the vertices from those of the
original mesh.

For each scale, two Gaussian filters, one with twice the
scale of the other, are applied on the mesh vertices. The dif-
ference between the two filtered models corresponds to the

DoG map (Fs) at that particular scale. Fs at each vertex is a
3D vector measuring the displacement of that vertex within
twice the scale s. Fs is projected onto the normal of the ver-
tex to obtain a scalar quantity, which is then referred to as
"scale-map".

The scale-map is normalized to a fixed range of values,
and an inhibition process is applied to enhance the peaks of
the map. Then, a non-maximum suppression step is imple-
mented to detect interest points. A local maximum with an
inhibited saliency value higher than the 30% of the global
maximum is assigned as an interest point.

We refer to this method as "Salient points" to be consis-
tent with the terminology in [CCFM08] and [BBB∗10]. In
this study, we used the "Mesh Tool" program available at the
authors’ web site [Mes].

3.3. 3D-Harris

Sipiran and Bustos [SB10] extended the 2D corner detection
method of Harris and Stephens [HS88] to 3D mesh models.
We used the code provided by the authors, and here, we give
a brief description of their method.

First, a neighborhood of k rings around each vertex x is
selected, and this set of points is translated so that its cen-
troid coincides with the origin of the local coordinate frame.
Then, a plane is fit to the point set using PCA. The eigen-
vector with the lowest eigenvalue corresponds to the normal
of the fitting plane. The point set is rotated so that the nor-
mal coincides with the z-axis of the local coordinate system.
A quadratic surface is fit to the transformed surface patch,
and its derivatives are calculated to construct a 2× 2 matrix
E, elements of which involve the integration of Gaussian-
weighted derivatives in two directions. This matrix contains
local geometric information, and it indicates a significant
change within the surface patch if both of its eigenvalues are
high. The Harris operator value at the vertex is calculated as
H(x) = det(E)− 0.04(tr(E))2. Then, a constant fraction of
the total number of vertices with the highest Harris response
are selected as final interest points.

Since, setting a constant number of rings k will vary the
actual neighborhood size significantly depending on the tes-
sellation around a vertex, the authors use an adaptive scheme
to determine k for each vertex. They limited the minimum
distance from a vertex to the boundary of its neighborhood
with a fraction of the diagonal of the object bounding rect-
angle, and set k for that vertex accordingly.

3.4. 3D-SIFT

The 3D-SIFT technique [GW11] described here operates on
3D voxel space; therefore it involves a voxelization step. Af-
ter voxelization, in parallel to the SIFT approach in [Low04],
a scale space is constructed by applying 3D Gaussian filters
with increasingly large scales to the voxelized model. If the
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voxelized model is denoted by a binary function M(x,y,z),
then each layer of the scale space is represented by its con-
volution with a 3D Gaussian function. Then, the Difference
of Gaussian (DoG) for each level is computed by subtracting
the original model from the scaled model at the correspond-
ing level.

The extrema points are detected by searching the DoG
space in both spatial and scale dimensions. The extrema
points which are located on the surface are declared as inter-
est points. Notice that these interest points are located on a
voxel grid. Their locations are mapped back to the 3D space
where the original mesh was defined, and the closest vertices
are marked as final interest points.

3.5. Scale-dependent corners

Novatnack and Nishino [NN07] also built a scale-space rep-
resentation of the model; however they analyzed the scales
independent of each other to detect scale-dependent corners.
We will refer to their method as "SD-corners" method.

As the first step, the vertices of a mesh model are un-
wrapped onto a 2D plane through embedding. Out of the 2D
embedding, a "distortion map" is computed. The distortion
map encodes the relative change in the model edge lengths
after they have been mapped from the 3D surface onto the
2D plane. Then, the surface normals at the embedded ver-
tices are interpolated to obtain a dense and regular "nor-
mal map" over the 2D plane. This 2D vector field (normal
map) is filtered with Gaussians of varying scales to obtain
a scale-space representation. The Gaussian kernels are mod-
ified using the distortion map so that the distance between
two points on 2D can be corrected to match the geodesic dis-
tance on 3D. Then, first and second order partial derivatives
of the normal map are calculated at each scale.

The authors define two types of geometric corners: Points
that have high curvature isotropically, and points that have
high curvature in at least two distinct tangential directions.
They compute the Gram Matrix of first order partial deriva-
tives of the normal map at each point. If the maximum eigen-
value of the Gram Matrix is high at a point then the point is
considered to have a high corner response. Some of these
candidate corners may reside on edges rather than on cor-
ners, so they are eliminated using second order derivatives
of the normal map.

The corners are separately detected at each scale, and then
corners at different scales are unified into a single set. Fi-
nally, these corners detected in 2D domain are mapped back
onto the surface of the 3D model.

4. Subjective experiments

4.1. The 3D dataset

The 3D object dataset used in our experiments consists of 51
triangular meshes. Some models are standard models that

are widely used in 3D shape research, such as Armadillo,
David’s head, Utah teapot, Bunny. We chose some of the
models from The Stanford 3D Scanning Repository [Sta]
and some others from the SHREC2007 watertight model
database [Wat].

4.2. User interface for collecting ground truth

We created a web-page where users can login using an alias
and participate in the experiments [Int]. Figure 1 shows a
snapshot of the user interface. The user is shown the 51 3D
models, one at a time. The user is free to rotate the object
in 3D. She is asked to mark the interest points on the 3D
model, then to click on the submit button to proceed to the
next model.

Up to now, 11 participants have marked interest points on
all of the 51 models. With a quick inspection, we discarded
data from two users since they seemed to arbitrarily mark the
interest points. We constructed the ground truth and evalu-
ated interest point detection techniques based on the points
marked by these nine subjects.

5. Ground truth

Human judgment of interest points is subjective by nature.
Figure 2 shows two models marked by three different sub-
jects. Some people tend to elaborately mark points on the
smallest details (subject a in Figure 2), while others choose
far less points (subject b in Figure 2). There are also different
choices in locating the interest points; for example, subjects
don’t mark interest points on the same exact location around
the smooth corners of the chair in Figure 2.

(a) (b) (c)

Figure 2: Models marked by three different subjects.

We look for some consensus among the users in order to
merge all the marked points into a final set of ground truth in-
terest points. It is also necessary to reject outliers and incor-
rectly marked points, and discard small variations of local-
ization. We have two criteria while constructing the ground
truth: The radius of an interest region, and the number of
users n that marked a point within that interest region.
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We set the radius of interest region as σdM , where dM
stands for the model diameter; i.e. the largest Euclidean dis-
tance between all pairs of vertices of model M. We group
all the interest points (marked by distinct subjects) whose
geodesic distances to each other are less than 2σdM . If the
number of points in the group is less than n we discard
that group. Otherwise, we select a representative among the
group, and set it as a ground truth interest point. The point
with the minimum sum of geodesic distances to the other
points in the group is selected as the representative. Notice
that, two groups can be overlapping, i.e. can have vertices
in common. If the distance between two representatives turn
out to be less than 2σdM , the representative with the smaller
number of group points is discarded from the ground truth
interest point set.

Figure 3 shows a model with the interest points gathered
from nine subjects (on the left), and the final ground truth
points (on the right). We zoomed two sample groups, and
circled their corresponding representatives on the right fig-
ure.

We will denote the set of ground truth points obtained
with the parameters n and σ as GM(n,σ) for a particular
model M. These two parameters highly determine the final
set of ground truth interest points. With high n, we have less
number of ground truth points, since not all users choose
small details as interest points (Figure 2). As σ increases,
we expect to have more ground truth points, since we ac-
cept more variation on localization of the points marked by
the subjects. However as σ further increases the region it
defines tend to include distinct interest regions, thus close
interest points marked on distinct structures start to merge.
In Section 7, we give the average number of ground truth
points on our dataset with varying n and σ.

Figure 3: Ground truth generation. On the left, different
markers correspond to the points selected by different users.
On the right, resulting ground truth interest points are indi-
cated with red dots (n = 4, σ = 0.03)

6. Evaluation method

Previous evaluation methods for 3D salient point detectors
measured the repeatability rate according to varying fac-
tors, such as deformation of the model, scale change, dif-
ferent modalities, noise, and topological changes [LSKW05,
BBB∗10]. We perform our evaluation on a single instance of

a model with respect to human generated ground truth, and
use false positive and false negative errors as performance
measures.

Figure 4: The red dots indicate ground truth interest points.
Yellow dots are the points marked by an interest point de-
tection algorithm. The paired interest points are enclosed
by blue circles. The red dot not enclosed by a blue circle
is a false negative. The unenclosed yellow dots are false
positives. The black regions correspond to the points with
geodesic distance to a ground truth point, less than r

For simplicity, let us denote the set of ground truth points
GM(n,σ) as G, and the set of interest points detected by an
algorithm on model M as A. For an interest point g in set G
we define a geodesic neighborhood of radius r:

Cr(g) = {p ∈M|d(g, p)≤ r}
where d(g, p) corresponds to the geodesic distance between
points g and p. The parameter r controls the localization er-
ror tolerance. A point g is considered to be "correctly de-
tected" if there exists a detected point a ∈ A in Cr(g), and
that a is not closer to any other points in G. Denoting the
number of correctly detected points in G as NC, we define
the false negative error rate at localization error tolerance r
as:

FNE(r) = 1− NC
NG

, (1)

where NG is the number of points in G.

The rate of false positives of an interest point detection al-
gorithm is another measure of its relevancy to human percep-
tion of interest points. The algorithm is not supposed to find
points on regions that are not of interest to humans. To calcu-
late the false positive error rate we proceed as follows: Each
correctly detected point in g ∈ G corresponds to a unique a,
the closest point to g among the points in A. All points in
A without a correspondence in G are declared as false posi-
tives. Then, the number of false positives, denoted as NF is
equal to

NF = NA−NC, (2)

where NA is the number of detected interest points by the
algorithm. The false positive error rate at localization error
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tolerance r is then,

FPE(r) =
NF

NA
. (3)

Note that our definition of false positive error rate is dif-
ferent than the conventional one, where the number of false
positives is normalized by the number of all true negatives;
i.e. the number of vertices that are not true interest points.
Since this number depends on the tessellation of the mesh
model, we prefer to normalize the number of false positives
with the number of interest points the algorithm produces.

Figure 4 demonstrates sample false negatives and posi-
tives at the tail of an airplane model. The red dots indi-
cate ground truth interest points. Yellow dots are the points
marked by an interest point detection algorithm. Corre-
sponding pairs of ground truth points and algorithm-detected
points are enclosed by blue circles (correct detection). The
red dot not enclosed by a blue circle is a false negative. The
unenclosed yellow dots are false positives. The black regions
correspond to the points with geodesic distance to a ground
truth point, less than r

7. Results

As mentioned in Section 4, we collected data from nine
subjects via our web-based interface, and constructed the
ground truth as described in Section 5. The number of sub-
jects may be increased to achieve a more reliable ground
truth, however marking interest points is an intensive, time-
consuming task.

The first and second columns of Figure 5 show interest
points marked by all the nine subjects (with different mark-
ers) and the ground truth points (red dots), respectively. In
the figure, the ground truth points correspond to the case
σ = 0.03 and n = 2. The last five columns show the points
from the five interest point detection algorithms. We can list
some of our observations on Figure 5 as follows:

• Marking interest points, especially on detailed objects, is
an intensive task. For example, for the Armadillo model in
Figure 5-b, some subjects marked only one of two sym-
metrical interest points. Yet, some subjects fail to well-
localize the interest points, for example at the corners of
the chair model. These errors are resolved by the ground-
truth building process to some extent.

• Some subjects marked points on flat or smooth regions,
just to define the object. An example is the green dot on
the center of the seat of the chair.

• The algorithms tend to mark more interest points then the
human users, especially the mesh saliency and SD-corners
methods. The number can be reduced via adjusting the pa-
rameters of the algorithms, however that adjustment may
cause missing of important interest points.

• All subjects seem to respond to the extremities, regardless
of the scale of the local perturbation. Back of the camel

and tip of the cactus correspond to a larger scale, while the
toes and fingers of the Armadillo model are of fine scale.
This necessitates an interest point algorithm to be able to
operate on a wide range of scales. The 3D-SIFT algorithm
detected an interest point on large scales (shoulder of the
head model, back of the camel, tip of the cactus), due to
its coarse voxelization strategy. However, it didn’t well-
localize the finer interest points as the other three algo-
rithms did (ear tips and fingers of the Armadillo model).

• While other algorithms select points that remain salient
across scales, SD-corners method gathers interest points
from all the scales. The result is a large number of interest
points representing both small (facial features of the girl
model) and large details (tip of the cactus).

• Most of the subjects marked the facial features of the head
model in detail, while putting just one or two representa-
tive points on the more detailed hair. The ground truth
points of the head model includes very few points from
the hair. On the other hand, the interest points generated
by the algorithms populate on the hair.

• The algorithms find interest points along the edges of the
chair model due to the high curvature in one direction,
while there are no ground truth points along those edges.

Figure 6: Average number of ground truth interest points
per model with varying σ and n.

Figure 6 shows the average number of ground truth in-
terest points on a model with varying σ and n. The aver-
age is taken over the 51 models we have in our dataset. The
case with n = 1 creates unreliable ground truth, so we ex-
clude that case from our analysis. With increasing n, i.e. the
number of subjects that vote for an interest point, we have
less ground truth points. As the localization tolerance, σ, in-
creases to 0.05 we have an increase in the number of ground
truth points; then it decreases due to the merging of nearby
groups of marked interest points. This effect is especially
strong for n = 2.

We have calculated False Negative and False Positive er-
rors of the algorithms using ground truth point sets generated
with various σ and n. However, here, we only report results
with σ = 0.03 and n = 2. Since we have few subjects, there
is a small chance that two users will accidentally mark an
uninteresting point on the 3D surface. Figure 7 shows the
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(a) Armadillo

(b) Camel

(c) Head

(d) Chair

(e) Cactus

Figure 5: Interest points marked by all nine human subjects (first column), ground truth obtained by setting σ = 0.03 and
n = 2 (second column), interest points detected by the algorithms: Mesh saliency (third column), Salient points (fourth column),
3D-Harris (fifth column), 3D-SIFT (sixth column), and SD-corners (seventh column).

False Negative and False Positive errors of the five inter-
est point detection algorithms with respect to r. The errors
are averaged over all the models in the dataset. The False
Negative error drops more quickly with the Mesh saliency
method and it gives the least error for all values of r. The SD-
corners method catches the low False Negative Error levels
of Mesh saliency method at about r = 0.07, which indicates
a high detection rate with a low localization accuracy. We
guess, the reason behind the low localization of SD-corners
method is due to the unwrapping of 3D model onto a 2D
plane. 3D-SIFT doesn’t perform as well as other algorithms,
since the coarse voxel structure doesn’t allow good local-
ization of interest points on the mesh model. Mesh saliency
method well localizes the interest points with a cost of a high

False Positive error compared to the Salient points and 3D-
Harris methods. The SD-corners also have a large False Pos-
itive error due to the large number of points it detected.

8. Conclusion

We designed experiments to compare automatic salient point
detection algorithms with humans’ selections of interest
points. We developed a web-based application where hu-
man subjects marked interest points on 3D models. We com-
pared five different interest point detection techniques based
on False Negative and False Positive errors, employing the
human-provided data as ground truth. The 3D model dataset,
the ground truth data, and the evaluation code are available
at our website [Ben].
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(a) Average False Negative Error

(b) Average False Positive Error

Figure 7: Evaluation of five algorithms. Ground truth ob-
tained with σ = 0.03 and n = 2.
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