
A COMPONENT-BASED APPROACH FOR MANUFACTURING SIMULATION

Keywords: Manufacturing, component-based architecture,
reference architecture

Abstract
Manufacturing systems can be very complex and are often
costly to develop and operate. Simulation technology has
been shown to be an effective tool for optimizing
manufacturing system design, operations, and maintenance
procedures. However, each manufacturing simulation is
usually developed to address a specific set of industrial
issues, and may only apply to a small portion of a complex
manufacturing system. To enable manufacturers to more
easily use simulation technology to solve complex
manufacturing issues, this paper defines a reference
architecture for component-based simulation (RACS). With
the architecture, complex manufacturing systems are
functionally partitioned into smaller interacting subsystems,
and simulations of those subsystems are combined to form a
federated simulation of the overall manufacturing system.
This enables the simultaneous analysis of different aspects
of each of the simulated subsystems and the overall
manufacturing system.

1 INTRODUCTION

To confront the challenges of today’s global, ultra-
competitive marketplace, many manufacturers have
embraced the concepts of agile manufacturing [1]. Agile
manufacturing is a philosophy or approach where
companies seek to organize and carry out their operations in
a manner in which they are able to cope with and possibly
benefit from today’s complex, every changing, global
manufacturing environment. Much has been written about
agile manufacturing, and although there is no consensus on
what technologies are necessary to implement an agile
manufacturing program, tools that support rapid prototyping
and integrated product/process development have repeatedly
been mentioned [2-3].

Simulation technologies have been employed to solve
problems in manufacturing and to enable manufacturers to

be more agile. Many simulation technologies enable the
creation of virtual representations of factory facilities,
machines, material handling systems, support applications,
robots, and production processes. Once created, virtual
factory representations can be used to analyze different
aspects of current factory operations, and to plan for and
analyze prospective changes to the factory environment.
This virtual product and process prototyping capability
enables the analysis of product and production system
changes without the need for expensive full-up product
mockups or physical changes to the production facilities.

A problem impeding the ability of manufacturers to use
simulation technologies is that simulation applications
exhibit a low level of interoperability, both between
simulation applications and with other manufacturing
applications. Manufacturing simulation applications are
usually monolithic and provide few avenues for integrating
with other applications. Often when outward facing
interfaces for integration are provided, they are
undocumented and/or proprietary. In addition, the
underlying technologies used to create simulation
applications are often different. Simulation applications
might be based on the discrete-event simulation approach,
be made up of a collection of interacting software agents,
operate based on the effect of the physical properties of the
simulated parts and machines with the simulated
environment, or be constructed based on a heterogeneous
collection of these and other approaches. Even though
manufacturing enterprises can save time and money by
analyzing simulated representations of the production
facilities and processes, interoperability issues make
creating and using simulations costly and time consuming.
This one issue is a serious obstacle that manufacturers must
overcome in their quest to become more agile.

To enable manufacturers to more easily use simulation
technology to solve complex manufacturing issues and to be
more agile, in this paper a reference architecture for
component-based simulation (RACS) is proposed. The
architecture is based on prior research at the National

Frank Riddick
Deogratis Kibira

Y. Tina Lee

Manufacturing Systems Integration Division
National Institute of Standards and Technology

100 Bureau Drive
Gaithersburg, MD 20899, USA

Frank.Riddick@nist.gov

Stephen Balakirsky

Intelligent Systems Division
National Institute of Standards and Technology

100 Bureau Drive
Gaithersburg, MD 20899, USA
Stephen.Balakirsky@nist.gov

mailto:Frank.riddick@nist.gov�
mailto:Stephen.Balakirsky@nist.gov�

Institute of Standards and Technology (NIST) in simulation
integration [4]. In this component-based architecture, the
aspects of a manufacturing system that are to be analyzed
are functionally partitioned into subsystems. The
subsystems together define the operation of the complete
system by exchanging messages that are a part of a shared
message protocol. Software components that are
simulations of each of the subsystems can then be created
for each of the subsystems. By using an integrating
infrastructure to enable message exchange and time
coordination, the individual components can be made to
function together as a combined “federated simulation” that
simulates the operation of the complete manufacturing
system.

The rest of the paper is as follows. Section 2 provides an
overview of the architecture. In section 3, a case study in
which a federated simulation will be created is presented.
Descriptions of the manufacturing system that is to be
simulated, how it is partitioned into subsystems, the
function of each subsystem, alternatives for the components
that will simulate each subsystem, and the requirements for
the integration infrastructure are also presented. The paper
concludes with section 4, where a summary and description
of future work is presented.

2 A REFERENCE ARCHITECTURE FOR
COMPONENT-BASED SIMULATION

2.1 Overview

The reference architecture for component-based simulation
(RACS) provides a blueprint for creating software
applications that enable the simultaneous analysis of
multiple aspects of a complex manufacturing system. The
applications created based on the architecture are made up
of several individual simulation components that each
individually simulates some aspect of the manufacturing
system. The simulation components coordinate their
advancement through time and exchange information as
messages so that their aggregate behavior simulates the
behavior of the complete manufacturing system being
studied. With this approach, each simulation can be
constructed to perform a more detailed analysis of some
aspect of the manufacturing system while simultaneously
contributing to and supporting the simulation and analysis
of the behavior of the complex manufacturing system as a
whole. Applications constructed as conglomerations of
interacting simulation components are frequently referred to
as federated simulations. Figure 1 depicts the architecture
and many kinds of simulation components that might be
constructed to run on it.

Applying the architecture to create a federated simulation
application that is able to analyze a complex manufacturing
problem involves several steps:

1. Manufacturing System Definition and Analysis

In this step, the overall function of the manufacturing
system to be studied is defined. The form and level of
detail of the definition need only be specific enough to
support the definition of the simulation components that
will be used to create the federated simulation. Also
during this step, any data that must be produced by an
individual simulation component because it is required
to support an analysis of the manufacturing system as a
whole should be specified.

2. Manufacturing Subsystem Definition

This step involves functionally partitioning the
manufacturing system into subsystems. The data and
behavior associated with each subsystem should be
identified. Information that needs to be shared
between the subsystems should be minimized. Each
subsystem should be able to operate semi-
independently, with as few information and functional
dependencies on the other subsystems as possible.
Also, when considering how best to partition the system
into subsystems, the kinds of analysis that a simulation
component might perform for each subsystem should
be taken into account.

3. Message Protocol Definition

In this step, the information that needs to be exchanged
between subsystems so that they can replicate the
required behavior of the overall system is defined.
This is accomplished by defining messages that can be
sent from each subsystem to the other subsystems, the
content of those messages, and the conditions that
stimulate each message to be sent. The message
protocol and subsystem definitions from step 2, when
taken together, form a detailed definition of the overall
system behavior described in step 1.

4. Simulation Integration Infrastructure Design and
Implementation

At this point, the infrastructure that will support the
federated simulation of the manufacturing system must
be defined. The infrastructure must be able to allow
the simulation components to exchange messages and
to coordinate their advancement through time during
simulation execution. There are a multitude of
approaches that can be taken in designing the
infrastructure, including: designing and creating the
infrastructure from scratch using basic computer
language tools; modifying general purpose distributed
computing middleware products; and, using

middleware specifically designed for creating federated
simulations. A detailed discussion of some of these
options is provided in section 3.3.

An optional component of the simulation integration
infrastructure is the Federated Simulation Management
component. Depending on how the infrastructure is
defined, there may be a need for some common low-
level support tasks to be performed that are outside of
the responsibilities of the simulation components that
will represent the manufacturing subsystems in the
federated simulation. The tasks most commonly
implemented are simulation execution start/pause/stop
and data logging. Sometimes, one of the simulation
components can be implemented to cover the required
services.

5. Simulation Component Design and Implementation

For each subsystem, create a new or adapt an existing
simulation that: (1) implements the functional
responsibilities defined for that subsystem; and, (2)
performs an analysis of some aspect of the subsystem.
The functional responsibilities involve mainly
implementing the message protocol and coordinating
time advance with the other simulation components
through the simulation integration infrastructure.

After all of the components and the infrastructure have
been designed and implemented, they can be run together to
create a federated simulation that enables analysis of the
complex manufacturing system that was described in step 1
of the development process.

There are several advantages for constructing applications in
this way.

Divide and conquer

Analysis of a complex manufacturing system can be
accomplished by partitioning the problem into
implementable components.

Scaling

Since some infrastructures support the distribution of the
simulation components over different computers, the
analysis of larger problems can be done.

Conceptual analysis of the manufacturing system

The initial analysis of the manufacturing system and its
functional partitioning into subsystems often provides
insight into the behavior of the system before any
simulation components are created.

Simultaneous analysis

Since each simulation component is created to support the

Figure 1 - The Reference Architecture for Component-Based Simulation (RACS)

overall system analysis and the component can be created to
perform some analysis on the subsystem it represents,
multiple analyses of the manufacturing system can be done
simultaneously.

Simulation component reuse

While in aggregate the simulation components implement
the overall behavior of the main manufacturing system, the
internal design and behavior of the components can be very
different. This allows multiple components to be designed
that adhere to the same message protocol, but do different
kinds of analyses for the subsystem being simulated.

2.2 Elements of the architecture

While the architecture facilitates the definition on many
different federated simulation applications, it has only three
architectural elements: simulation components, the
simulation integration infrastructure, and the federated
simulation manager.

Simulation Components

A simulation component is a software application that
simulates the behavior of some subset of a manufacturing
system or subsystem. It may be constructed from a number
of technologies, including general computer languages (e.g.,
C#, C++, and Java), commercial discrete-event simulation
creation packages, software agent systems, and scientific
computing tools (e.g., MatLab and Modelica based tools).

The kinds of analysis that a component may do is limited
only by the skill of the implementers. The only
requirement for a simulation component to be a part of a
federated simulation is that it implements the messages
defined in the message protocol and it coordinates with the
other simulation components using the simulation
integration infrastructure.

Simulation Integration Infrastructure

The simulation integration infrastructure is a software
application that enables simulation components to exchange
information as messages and to coordinate the advancement
of time. The infrastructure may be created from a number
of technologies, some providing only minimal
communication services and others providing a rich set of
implementation possibilities. Often this architectural
element is created based on existing distributed computing
middleware (e.g., Sun Jini [5] or the Common Object
Request Broker Architecture (CORBA) [6]) or middleware
designed to support federated simulation development (e.g.,
High Level Architecture (HLA) [7] or the Synchronous
Parallel Environment for Emulation and Discrete-Event
Simulation (SPEEDES) [8]).

Federated Simulation Manager

The Federated Simulation Manager is an optional
component that can be used for basic support services
during federated simulation execution. These services
usually involve initial simulation synchronization,
simulation starting and stopping, error collection, and data
logging. Depending on the simulation integration
infrastructure chosen, some of these services may already be
provided or may be implemented as a part of one of the
simulation components.

3 APPLYING THE REFERENCE
ARCHITECTURE

In this section, an example describing how to apply the first
steps of the reference architecture is presented. A complex
manufacturing system is described, a functional partitioning
of the system into three subsystems is presented, and a
message protocol is described. For each subsystem,
descriptions for one or more simulation components that
could represent that subcomponent’s functionality in a
federated simulation of the manufacturing system are
presented. In the descriptions of the simulation
components, alternatives for how they might be constructed
and what kinds of analyses they could perform on the
simulated manufacturing subsystem are presented.
Alternatives for how the simulation integration
infrastructure might be designed and implemented are also
presented. The actual implementation of the components
and infrastructure is not presented, but is expected to be the
object of future work.

3.1 Manufacturing System Conceptual Overview

The manufacturing system that is to be modeled is a discrete
parts production environment. The system should be
modeled in such a way that studies can be undertaken that
examine the effect on system performance of changes to
product mix, automated guided vehicle (AGV) delivery
schedules, and consumable part palletizing.

To avoid the problems that would be caused by attempting
to model this system as one complex monolithic entity, the
functionality of the system will be partitioned into three
functional subsystems. The Production subsystem will
model the workstations that perform the manufacturing
operations that transform workpieces from one state to
another until they are finished products. Material handling
to transport workpieces will also be modeled by the
Production subsystem. The Inventory Management
subsystem will model the process by which requests for
consumable parts by workstations in the Production
subsystem get turned into organized pallets of parts ready
for delivery to the requesting workstations. The AGV
Management subsystem will model AGVs, their dispatching

to pick up and deliver parts, and their movement through the
production environment.

In Figure 2 a Unified Modeling Language (UML)
interaction diagram is presented that shows each subsystem
of the manufacturing system being studied and the
interactions between those subsystems. In the sections
below, a description of the behavior of each subsystem and
its interactions with other subsystems is presented.

3.1.1 Production subsystem

The Production subsystem is a representation of a discrete
parts production facility that allows the exploration of
manufacturing issues related to inventory management and
workstation material replenishment. This system is made

up of a number of workstations connected by fixed material
handling systems. The material handling systems are used
to transfer workpieces from workstation to workstation.
Workpieces are partially finished parts and subcomponents
that will eventually be transformed into the finished
products.

The facility can produce a small number of different
finished products, and many of the products share common
subcomponents. Each of the products that can be produced
by the facility has a process plan that defines the sequence
of steps necessary to produce that product. Each step in a
process plan defines:

• The type and amount of each workpiece involved
• The consumable materials/subcomponents introduced

into the manufacturing process

Figure 2 - Message exchange between subsystems for part pickup and delivery

Subsystem A

Production

Subsystem B

AGV Management

Subsystem C

Inventory Management

Order for parts to be delivered to a workstation

Pickup pallet P at location S0 and deliver to location S1

AGV X has arrived to pickup pallet P at location S0

Pallet P at location S0 has been loaded on AGV X

AGV X has arrived at location S1 to unload pallet P

 AGV X has been unloaded

Pickup pallet P at location S1 and deliver to
location S2

AGV Y has arrived to pickup pallet P at location S1

Pallet P at location S1 has been loaded on AGV Y

AGV Y has arrived at location S2 to unload pallet P

 Pallet P has been unloaded from AGV Y

• The type and amount of workpieces produced as output
• The production operation that will be executed
• The workstation on which this step will be executed

Each workstation is configured with the process plan
information for each operation that can be performed at that
workstation. This information allows each workstation to
automatically choose and execute the appropriate processing
step when presented with workpieces by the material
handling system. This approach allows each step in the
product’s process plan to be executed in sequence to
produce the final product without requiring direction from a
central controller.

While workpiece movement is handled by the material
handling system, the management of consumable parts at
each workstation is not. At each workstation, storage bins
are provided for each consumable part that can be involved
in a production operation at that workstation. A reorder
level amount is set for each consumable. When during the
course of production the amount of a consumable goes
below the reorder level for that consumable, a request for
replenishment of that consumable is sent to the Inventory
Management subsystem. The Production subsystem will
continue performing its production activities as long as it
has enough consumables available.

At some point after the request for replenishment, an AGV
will arrive with the consumables requested by the
workstation. The Production subsystem will coordinate
with the AGV to unload the consumables, store them in the
appropriate bins, update the amount on hand for each
consumable, and indicate to the AGV when it is finished
unloading.

3.1.2 AGV Management

The AGV Management subsystem represents both the
automated guided vehicles (AGVs) that pick up parts from
inventory and deliver them to production workstations, and
the management application that monitors and directs the
AGVs. The management application:

• Accepts requests from the Inventory Management
subsystem to pick up parts that are loaded onto
pallets for delivery to production workstations

• Dispatches AGVs to pick up pallets and deliver
them to specific production workstation locations

• Monitors the performance of each AGV on its
assigned task

• Coordinates with the Inventory Management
subsystem and the Production subsystem to
accomplish AGV loading and unloading

The AGV Management subsystem may employ different
AGV dispatching strategies depending on the number of

AGVs under its control, whether the AGVs follow fixed or
ad-hoc delivery routes, the overall production goals, and
other factors.

3.1.3 Inventory Management

The Inventory Management subsystem provides two main
functions for the manufacturing facility. It monitors and
maintains appropriate levels of inventory items that are the
consumable parts needed for production. In addition, when
requested it retrieves from storage the inventory items
needed to keep production operations running and packages
them for efficient delivery to the production workstations
that need the items. Items for delivery are packaged on
equally sized pallets, and the Inventory Management
subsystem coordinates with the AGV Management
subsystem for pickup and delivery of the pallets and for
return of empty pallets.

Of particular importance to Inventory Management
subsystem performance is how inventory items are
packaged for delivery, referred to as the palletizing process.
An effective palletizing process can greatly affect overall
production performance by minimizing production delays
due to late delivery of parts. Also, wear and tear on
transportation equipment can be minimized by not creating
loaded pallets with too much weight and by avoiding
unnecessary delivery trips caused by poor packing of items.

3.2 Simulation Component Design Alternatives

In the previous sections, high-level descriptions of three key
subsystems of a complex manufacturing system, and the
interactions and interrelationships of those subsystems, were
presented. By partitioning the functionality of the
manufacturing system in this way, simulation components
dedicated to the examination of the detailed behavior of
each subsystem can be more easily constructed.
Furthermore, with the addition of an integrating
infrastructure, the individual simulation components can be
made to operate together as a federated simulation.

To enable the component simulations to be able to operate
as a federated simulation, each simulation must implement
and adhere to a specific message protocol. The message
protocol defines the content of and conditions under which
messages are sent between components. The requirements
for the message protocol that will be used in this study were
described in Section 3.1 and its subsections. Later, in
section 3.3, design alternatives for implementing an
infrastructure to support the message protocol are presented.

In sections 3.2.1 to 3.2.4, descriptions of designs for the
components that will simulate the functionality of each of
the manufacturing subsystems are presented. For the AGV
Management subsystem, multiple descriptions for

simulation components that might implement the
subsystem’s functionality are given.

A key feature of the component-based simulation approach
is that as long as a simulation component adheres to the
agreed upon interaction protocol, how that component is
implemented internally should not fundamentally change
the overall functional behavior of a federated simulation
involving that component. Items such as how long it takes
to run and what hardware and support software are needed
may be affected, but any data produced by or the types of
analysis that can be performed by the federated simulation
should not change. This feature of the component based
simulation approach facilitates the development of
simulation components that are created using vastly
different simulation technologies and methodologies [9].
When multiple implementations of simulation components
of a manufacturing subsystem are available, they can be
used and reused to create different federated simulations
focused on analyzing different aspects of the manufacturing
system being simulated.

3.2.1 Production – Discrete Event Simulation
Component

The production simulation component is a visual model of
resources, coordination, and control of the activities that
take place on the manufacturing floor. The purpose of such
a model is to enable the analyst to investigate and optimize
shop floor operations, and send and receive messages to the
other simulation components in the federation for smooth
operation of the simulated shop. The simulation application
to be used should model the Production subsystem
elements, i.e., automated machine tools, inspection
equipment, material handling systems, storage buffers, and
transfer robots. It should represent entities, i.e., the parts that
get assembled to produce the product, control elements as
well as tools such as, cutters, hand tools, jigs and fixtures. In
addition, the model should be able to maintain a list of AGV
calls, show status of resources, and have integration
mechanisms with other simulations, processes, and
databases. There are a number commercial off-the-shelf
(COTS) discrete-event simulation applications for
manufacturing systems from which a suitable candidate
could be selected.

3.2.2 AGV Management – Physics-based
Component

A physics-based AGV Management component will
combine a high-level multi-vehicle control system with a
physics-based vehicle simulator [10]. The high-level
controller will not be simulated. It will be a real-time
commercial or research grade multi-vehicle controller that
will receive requests for goods and services (e.g., delivery

of pallets or removal of empties and defects) and will
determine vehicle loading, routes and schedules for its fleet
of vehicles. It must be able to handle various priorities of
requests, traffic management, and a dynamic factory floor
that has a constantly changing topology. This controller will
send commands and receive status from a fleet of AGVs
that are physics-based simulated entities over the same
channels and with the same format as it would use for real
vehicles.

The simulated AGVs will operate in real-time and will
travel over the commanded routes provided by the high-
level controller. The models will include sensor and
mobility platform models so as to realistically simulate low-
level vehicle performance while traversing the commanded
routes. The simulation environment will provide dynamics,
which the vehicles must be capable of responding to (e.g.,
moving avatars or non-robotic vehicles).

3.2.3 AGV Management – Process-oriented
Component

A process-oriented AGV Management component might be
developed when the kinds of analyses to be done in the
federated simulation do not depend on virtual
representations of the physical characteristics of the AGVs.
In this approach, a dispatching application uses a set of rules
to determine which AGVs are assigned to pick up and
deliver pallets of parts and stochastic variables are used to
determine simulated AGV delivery times. In such a
scenario, the component could be designed to focus on
issues such as determining the optimum number of AGVs
required to handle the expected delivery workload, or how
should the dispatching rules be changed if several AGVs
need to be taken out of service for maintenance. A
component such as this would be unable to explore some
issues, such as determining optimum AGV path finding and
collision avoidance strategies.

3.2.4 Inventory Management and Palletization –
Physics-based Component

A physics-based inventory management and palletizing
component will be a combination of inventory control,
pallet planning, and pallet building subsystems. The
inventory control and pallet planning subsystems will utilize
commercial or research grade systems that are capable of
receiving and fulfilling orders. Orders will be received from
individual machine stations in a standardized XML format.
The inventory control system will determine the part's
availability and create an XML formatted packing list that
will be sent to the pallet planning subsystem. The pallet
planning subsystem will then create plans for one or more
mixed pallets of goods that include pallet build schematics
and ordering information for parts to be placed on the

conveyor systems. This information will be utilized by the
physics-based robotic system to simulate the construction of
the actual pallets for transport by the AGVs. By simulating
the construction of the pallets, the stability of the pallets
may be evaluated and the overall quality of the packaging
solution may be evaluated.

3.3 Infrastructure Design Alternatives

Determining the best approach for designing and
implementing the integrating infrastructure can be a
complicated undertaking. The basic requirements are rather
straightforward: (1) providing a means for simulation
components to exchange data, and; (2) providing a means
for the simulation components to coordinate the
advancement of time with each other. These capabilities
must be provided for the component simulations to be
combined to form a federated simulation.

To enable the system to better support the agile
manufacturing paradigm, several additional requirements
should be met, including: (3) allowing different collections
of simulation components that support the same message
protocol to be a part of a federated simulation; (4) enabling
the implementation of simulations best-fitted to analyze
different aspects of their associated subsystems or of the
overall system, and; (5) allowing simulation components to
be created with different technologies. Although somewhat
high level, this list of requirements defines an achievable
target for infrastructure functionality.

Given the list of desired functionality for an infrastructure,
what technology or technologies can be used for
infrastructure implementation? One approach is to use
middleware specifically designed for distributed simulation
creation, such as the HLA Run-Time Infrastructure (RTI).
Another approach is to design the infrastructure from the
bottom up using general-purpose computer languages, and
using sockets and pipes for communication. Alternatively,
implementing the infrastructure can be accomplished using
general-purpose distributed computing technologies, such as
the Neutral Message language (NML) [11] or CORBA.

4 SUMMARY

The component-based simulation framework described in
this paper fosters agility by enabling the description and
study of complex, dynamic manufacturing systems. A
scenario was presented that showed how the RACS
approach could be used to describe a discrete parts
production environment and several of the subsystems that
compose this environment. Component simulations of these
subsystems can be implemented using different commonly
available technologies.

DISCLAIMER

Company names and products may have been identified in
the context of this paper. This does not imply a
recommendation or endorsement of the software products
by the authors or NIST, nor does it imply that such software
products are necessarily the best available for the purpose.

5 REFERENCES

[1] L. Goldman, R.L. Nagel and K Preiss, “Agile
Competitors and Virtual Organizations - Strategies for
Enriching the Customer,” Van Nostrand Reinhold, New
York, NY, 1995.

[2] A. Gunasekaran, “Agile manufacturing: enablers and an
implementation framework,” international journal of
production research, vol. 36, no. 5, 1223 – 1247, 1998.

[3] S. Jain, “Virtual Factory Framework: A Key Enabler for
Agile Manufacturing,” in Proceedings of 1995 INRIA/IEEE
Symposium on Emerging Technologies and Factory
Automation, Paris, vol. 1, p. 247-258, 1995.

[4] C. McLean, S. Jain, F. Riddick, and Y. T. Lee. “A
Simulation Architecture for Manufacturing Interoperability
Testing,” in Proceedings of the 2007 Summer Computer
Simulation Conference, May 1, 2007.

[5] J. Waldo, “The Jini Specification,” Addison-Wesley,
Boston, MA, 1999.

[6] Object Management Group, “Common Object Request
Broker Architecture,” Object Management Group,
Framingham, MA, 1995.

[7] F. Kuhl , R. Weatherly, and J. Dahmann, “Creating
Computer Simulation Systems: An Introduction to the High
Level Architecture,” Prentice Hall PTR, Upper Saddle
River, NJ, 1999.

[8] J. Steinman, "SPEEDES: Synchronous Parallel
Environment for Emulation and Discrete Event Simulation,"
in Proceeding of the SCS Western Simulation
Multiconference, Anaheim CA, 1991.

[9] A.W. Brown and K.C. Wallnau, “The Current State of
CBSE,” IEEE Software, September/October 1998.

[10] S. Balakirsky, C. Scrapper, and E. Messina, “Mobility
Open Architecture Simulation and Tools Environment,”
Proceedings of the 2005 Knowledge Intensive Multi-Agent
Systems (KIMAS) Conference, Waltham, MA, April 18-21,
2005.

[11] W. Shackleford, F. Proctor, and J. Michaloski, “The
Neutral Message Language: A Model and Method for
Message passing in Heterogeneous Environments,” in
Proceedings of the World Automation Conference, 2000.

	1 INTRODUCTION
	2 A REFERENCE ARCHITECTURE FOR COMPONENT-BASED SIMULATION
	2.1 Overview
	2.2 Elements of the architecture

	3 APPLYING THE REFERENCE ARCHITECTURE
	3.1 Manufacturing System Conceptual Overview
	3.1.1 Production subsystem
	3.1.2 AGV Management
	3.1.3 Inventory Management

	3.2 Simulation Component Design Alternatives
	3.2.1 Production – Discrete Event Simulation Component
	3.2.2 AGV Management – Physics-based Component
	3.2.3 AGV Management – Process-oriented Component
	3.2.4 Inventory Management and Palletization – Physics-based Component

	3.3 Infrastructure Design Alternatives

	4 SUMMARY
	5 REFERENCES

