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Numerical study of the thermodynamics of clinoatacamite

Ehsan Khatami,1 Joel S. Helton,2 and Marcos Rigol1
1Department of Physics, Georgetown University, Washington, DC 20057, USA

2NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
(Received 3 February 2011; revised manuscript received 20 June 2011; published 1 February 2012)

We study the thermodynamic properties of the clinoatacamite compound, Cu2(OH)3Cl, by considering several
approximate models. They include the Heisenberg model on (i) the uniform pyrochlore lattice, (ii) a very
anisotropic pyrochlore lattice, and (iii) a kagome lattice weakly coupled to spins that sit on a triangular lattice.
We utilize the exact diagonalization of small clusters with periodic boundary conditions and implement a
numerical linked-cluster expansion approach for quantum lattice models with reduced symmetries, which allows
us to solve model (iii) in the thermodynamic limit. We find a very good agreement between the experimental
uniform susceptibility and the numerical results for models (ii) and (iii), which suggests a weak ferromagnetic
coupling between the kagome and triangular layers in clinoatacamite. We also study thermodynamic properties
in a geometrical transition between a planar pyrochlore lattice and the kagome lattice.
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I. INTRODUCTION

The kagome and pyrochlore lattices are among the
archetype systems for highly frustrated magnetism, with both
lattices displaying corner-sharing frustrated plaquettes (trian-
gles for the two-dimensional kagome lattice and tetrahedra
for the three-dimensional pyrochlore lattice). There is also
a geometric connection between the two lattices, as the
pyrochlore lattice is composed of alternating kagome and
triangular lattice planes stacked on top of each other (along
the 〈111〉 body diagonal in typical cubic spinels that display
a pyrochlore lattice). This leads to the possibility of structural
pyrochlore lattices where magnetic interactions differ within
kagome planes and between the kagome and triangular planes.

Several three-dimensional (3D) pyrochlore lattice materials
have been shown to decouple into kagome planes ordered
antiferromagnetically1,2 or ferromagnetically3,4 that are fairly
well isolated from the neighboring triangular plane spins.
The Zn-paratacamite mineral family, ZnxCu4−x(OH)6Cl2,
with x � 0.3 features spin- 1

2 Cu2+ ions arranged on an
antiferromagnetically coupled kagome lattice alternating with
triangular lattice layers occupied by either Cu or nonmagnetic
Zn ions. The x = 1 end member of this family, herbert-
smithite, has attracted interest as a strong candidate to display
a spin-liquid ground state on almost perfectly decoupled
two-dimensional (2D) kagome layers.5–7 However, the best
available samples are likely not stoichiometric,8 with a small
fraction of Cu ions on the triangular lattice planes weakly (of
the order of 1 K) coupled to the kagome planes.9 Materials such
as YBaCo4O7 (Ref. 10) and Y0.5Ca0.5BaCo4O7 (Ref. 11) also
feature alternating kagome and triangular layers, but with a
stacking that is structurally distinct from the pyrochlore lattice.

Here, we are interested in the properties of the mineral
clinoatacamite,12 a monoclinic polymorph of Cu2(OH)3Cl that
crystallizes in the P 21/n space group and features spin- 1

2 Cu2+
ions decorated on a distorted pyrochlore lattice. The mineral is
the extension of the Zn-paratacamite family to x = 0, with the
monoclinic distortion that occurs for x < 0.3. Clinoatacamite
has drawn attention in recent years,13–18 in part due to its unique
pyrochlore structure and in part due to the still unexplained
nature of successive phase transitions. Some studies15,18 have

described the lattice as consisting of distorted kagome layers
coupled weakly through triangular layers of out-of-plane spins.
Others have suggested a pyrochlore structure with significant
couplings of all Cu spins.13,17 Susceptibility and specific-heat
measurements display two transitions upon cooling, at Tc2 =
18 K and Tc1 ≈ 6.4 K. Long-range magnetic order16,19 and a
weak ferromagnetic moment are present below Tc1. For tem-
peratures Tc1 < T < Tc2, muon oscillations are observed14

suggesting a static local moment, which was originally
attributed to Néel order, while neutron diffraction experiments
find no sign of ordering in this temperature range, and the spe-
cific heat anomaly at Tc2 is too small for the entropy change ex-
pected at an ordering transition. Further analysis of this unusual
phase between 6.4 and 18 K would be aided by a complete
knowledge of the local bond strengths in this distorted lattice.

In this work, we study the thermodynamic properties of
the clinoatacamite compound by considering, as approximate
descriptions, the antiferromagnetic Heisenberg model on (i) a
uniform pyrochlore lattice, (ii) a very anisotropic pyrochlore
lattice, which can be seen as a quasi-two-dimensional model,
and (iii) a kagome lattice with weak ferromagnetic coupling
to (otherwise disconnected) spins sitting on a triangular
lattice, i.e., a two-dimensional model. We calculate the spin
susceptibility, specific heat, and entropy for these models
using the exact diagonalization (ED) of small clusters with
periodic boundary conditions and, only for model (iii), by
means of an implementation of the numerical linked-cluster
expansions (NLCEs)20,21 on an anisotropic checkerboard
lattice that displays the required geometry. NLCEs yield exact
results in the thermodynamic limit and, therefore, enable
more accurate comparisons with experiments, while also
helping us gauge finite-size effects in the exact diagonalization
calculations. Using this method, we compare the experimental
spin susceptibility from magnetization measurements with the
numerical results and find very good agreement in a wide range
of temperatures. Using ED, we also examine models (i) and (ii)
and find that results from (i) are inconsistent with experimental
data for the susceptibility.

Furthermore, we apply the NLCE method to a more general
anisotropic-checkerboard-lattice Heisenberg model, and tune
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the ratio of certain exchange constants to capture the evolution
of thermodynamic quantities in a transition from the planar
pyrochlore lattice to the kagome lattice. These results provide
further insight on the nature of the spin interactions in the
clinoatacamite material and on the effect of frustration in the
kagome and pyrochlore lattices.

The paper is organized as follows: In Sec. II, we introduce
the different models utilized to describe the clinoatacamite
compound. Section II A presents the pyrochlore lattice and
its very anisotropic, quasi-two-dimensional version, which
we use to model clinoatacamite. Section II B is devoted
to the two-dimensional model used. We show how it can
be seen as a Heisenberg model on an anisotropic checker-
board lattice, and discuss its relationship to the uniform
kagome lattice and the planar pyrochlore lattice. We also
describe how NLCEs can be generalized to solve quantum
lattice models with reduced symmetries, and in particular
to solve our two-dimensional model for clinoatacamite. In
Sec. III, we report the uniform susceptibility of clinoatacamite
as measured experimentally and our numerical results for
the uniform susceptibility, specific heat, and entropy obtained
within the different theoretical models by means of ED and/or
NLCE. Finally, our results are summarized in Sec. IV.

II. APPROXIMATE MODELS FOR CLINOATACAMITE

A. The isotropic and quasi-two-dimensional pyrochlore lattices

Clinoatacamite contains three crystallographically distinct
Cu sites, such that the crystal structure consists of kagome
planes of Cu2 and Cu3 sites alternating with triangular planes
of Cu1 sites.13 These sites are distinguished primarily through
the Cu-O-Cu bond angle, with an average angle of about 96◦
for bonds involving a Cu1 site and an average angle of about
118◦ for bonds within the Cu2-Cu3 distorted kagome plane.
(While the distorted lattice structure leads to some further
variation within these averages, the differences are small
compared to the difference in average angles for the in-plane
and between-plane cases.) On the basis of these differences, it
has been suggested that clinoatacamite should be thought of
as a very-anisotropic pyrochlore (quasi-2D)-lattice Heisenberg
model with antiferromagnetic kagome planes weakly coupled
to triangular planes.15 Within this scenario, and based on bond
angle considerations, the exchange interaction between layers
is likely ferromagnetic and about one order of magnitude
smaller than the antiferromagnetic in-plane one.

Other works have emphasized the μ3-OH bridging geom-
etry of clinoatacamite, and suggested that the material is best
thought of as a distorted pyrochlore magnet with exchange
interactions that are comparable in the kagome planes as well
as between the kagome and triangular planes.13,17 In Fig. 1,
we show the 16-site periodic cluster of the pyrochlore lattice
that we will use in the ED.

B. The two-dimensional model

The study of the thermodynamic properties of the 3D sys-
tems in Sec. II A in the thermodynamic limit is very demanding
using linked-cluster expansions. Hence, we will also model
this material using a two-dimensional geometry consisting
of a two-layer system of kagome and triangular planes, as

FIG. 1. The 16-site periodic cluster of the pyrochlore lattice.

depicted in Fig. 2. For such a model, we can straightforwardly
implement a numerical linked-cluster expansion, as explained
below. We will show that this simple approximation leads
to a very good agreement between the experimental uniform
susceptibility and the theoretical results.

In order to perform a NLCE study of such a two-
dimensional model, we start with the Heisenberg Hamiltonian
on the checkerboard lattice,

H =
∑

i,j

Jij Ŝi · Ŝj , (1)

where Ŝi is the spin- 1
2 vector at site i, and Jij is the strength of

the exchange interaction on each bond that connects sites i and
j . Throughout the paper, the largest exchange interaction in
each case study sets the unit of energy. We consider three
different types of bonds on the lattice, as seen in Fig. 3.
There, the red (shaded) areas make apparent the presence of an
embedded kagome lattice in the checkerboard lattice. One can
immediately see that by tuning the strength of the blue (thick)
bonds, J ′, and black (thin) bonds, J ′′, to zero, one captures a
kagome lattice plus extra decoupled sites. Moreover, if we set
J ′′ to zero and choose J ′ ( �= J ) to be nonzero, then the structure
will be that of the kagome lattice coupled to sites sitting on a
triangular lattice, as depicted in Fig. 2. Finally, if J = J ′ = J ′′,
then one has the planar pyrochlore lattice. Because of the
anisotropies in the Hamiltonian of Eq. (1), the usual NLCEs for
the isotropic case23 cannot be used here. Therefore, in the fol-
lowing, we implement a NLCE that properly deals with the
model presented here, in which some of the symmetries of the
lattice are broken.

The numerical linked-cluster expansion

In linked-cluster expansions,22 an extensive property of
the model per lattice site in the thermodynamic limit (P ) is

FIG. 2. (Color online) The 16-site periodic cluster of the kagome
lattice with extra sites inside down triangles. Pink (thin) bonds
represent the coupling between the kagome layer and the sites sitting
on a triangular layer in a 2D model for clinoatacamite.
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FIG. 3. (Color online) The anisotropic checkerboard lattice (left)
and the eight realizations of the building block used in the square
expansion NLCE (right). The shaded area represents the kagome
lattice in the limit where the red bonds (sides of the shaded triangles)
have the same strength, J , and all other bonds are zero. If the strength
of the blue (thick) bonds, J ′, is nonzero, and the interaction on
the black (thin) bonds, J ′′, is zero, then the resulting structure can
represent a kagome lattice coupled to sites sitting on a triangular
lattice.

expressed in terms of contributions from all of the clusters, up
to a certain size, that can be embedded in the lattice:

P =
∑

c

L(c)wp(c). (2)

The contribution from each cluster (c) in Eq. (2) is proportional
to the weight of the cluster for that property (wp), and to
its multiplicity (L). The weight is defined recursively as the
property for each cluster (P), minus the weights of all of its
subclusters,

wp(c) = P(c) −
∑

s⊂c

wp(s), (3)

and the multiplicity is defined as the number of ways that
particular cluster can be embedded in the infinite lattice, per
site. Symmetries of the lattice are often used in identifying
topologically distinct clusters and in computing their multi-
plicities. This results in major simplifications of the algorithm
and usually allows for access to larger clusters in the series.
Here, we implement NLCEs, where P(c) is computed by
means of full exact diagonalization,20,21 for lattice models that
break some of the point-group and/or translational symmetries
of the underlying lattice. In what follows, we discuss how
essentially the same expansion as for the symmetric case can
be used for the latter cases.

As an example, let us consider the uniform checkerboard
lattice. In the first order of the square expansion, a single
crossed square has a multiplicity of 1/2 (Refs. 21 and 23)
since the number of ways it can be embedded in the lattice is
half the number of sites. In the second order, the only distinct
cluster consists of two corner-sharing crossed squares. This
cluster has a multiplicity of 2 × 1/2, where the extra factor
of two comes from the two possibilities for its orientation
on the lattice (related by a 90◦ rotation), and so on.23 Now,
consider the anisotropic lattice of Fig. 3 where, in general,
J ′′ �= J ′ �= J . In this case, the translational symmetries are
reduced by a factor of two, and the point-group symmetries
are reduced by a factor of four, from those of the isotropic

checkerboard lattice. So, the square expansion basis used for
the isotropic case cannot be used for this lattice anymore,
since the topological clusters and the multiplicities have
changed.

The goal is to rearrange the terms in the series to be
able to use the square expansion basis of the isotropic lattice
without having to redefine the topological clusters and their
subclusters. Examining the problem more carefully reveals
that the new lattice can still be tiled by considering two
different building blocks, as opposed to one crossed square
for the uniform lattice, which is a direct consequence of the
factor-of-two reduction in translational symmetries. These two
blocks are numbered 2 and 5 in Fig. 3. So, in the first order, one
has two distinct clusters in the sum, each with a multiplicity
that is half of that of the single block in the first order of
the isotropic case. This trend continues in higher orders as, for
example, in the second order there will be four distinct clusters,
as opposed to one in the isotropic case, with subclusters that
are the two blocks in the first order. But, just like in the first
order, the multiplicities for each cluster are reduced by a factor
proportional to the increasing factor in the number of clusters
(four for the second order). Moreover, the pool of subclusters
of these four clusters contains the same number of clusters of
each type in the first order, namely, four from each of the two
building blocks.

The above argument implies that in the expansion for the
less symmetric checkerboard lattice, we will have different
realizations of clusters that existed in the expansion for the
symmetric lattice, and that the latter expansion is applicable to
the anisotropic case if the weight of each cluster is replaced by
the average weight of those realizations. It is easy to see that
the maximum number of topologically distinct realizations of
clusters in the isotropic square expansion for the lattice of
Fig. 3 will be eight. This number is the same factor by which
the point-group and translational symmetries are reduced from
that of the isotropic checkerboard lattice. In Fig. 3, we have
generated the eight realizations in the first order (among which
only two are topologically distinct). Each of these building
blocks can serve as the starting block in the same algorithm
that generates all of the clusters in the expansion for the
isotropic case. In fact, this guarantees the generation of the
eight realizations for every cluster in the expansion.

The applications of this averaging scheme in NLCEs are not
limited to the example described here. In principle, this method
can be used in any other expansion (e.g., site expansion,
triangle expansion, etc.), and for any other model with a
Hamiltonian that breaks some symmetries of the underlying
lattice. In the following section, we use this implementation
of the NLCE method to calculate the properties of the lattice
in Fig. 3 for values of the exchange constant that transform its
symmetry from a uniform planar pyrochlore lattice to near a
kagome lattice, believed to be the appropriate model for the
clinoatacamite compound.

III. RESULTS

A. Thermodynamics of clinoatacamite

We calculate the thermodynamic properties, such as the
specific heat, entropy, and uniform spin susceptibility for the
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Hamiltonian (1) on the lattice in Fig. 3, when J ′ = −0.1J

and J ′′ = 0, to represent clinoatacamite. A 16-site periodic
cluster of the resulting lattice is depicted in Fig. 2 with thick
(thin) bonds representing J (J ′). Note, however, that NLCE
computes these properties directly for the infinite system
and does not have any statistical or systematic errors (such
as finite-size effects) within its region of convergence in
temperature. We carry out the NLCE calculations to the sixth
order (six building blocks with maximum 19 sites) of the
square expansion.

In Fig. 4, we show the spin susceptibility per site from
the last two orders of NLCE for this system. There, we have
also included the experimental data for this material. The
magnetic susceptibility of a polycrystalline clinoatacamite
sample was measured with a SQUID magnetometer under
an applied field of 500 Oe. The susceptibility was measured
while warming from 2 to 400 K after field cooling. Consistent
with previously published susceptibility results,13 a weak
ferromagnetic moment is observed below Tc1 ≈ 6.4 K (not
shown) and a subtle kink is observed in the susceptibility
at Tc2 = 18 K. We will focus on the susceptibility above
10 K, where the experimental data can be compared with
the numerical results. The experimental molar susceptibility
in cgs units is related to the numerical one by χexp = Cχ ,
where the constant C = NAg2μ2

B/kJ = 0.3752g2/J . We use
J = 193 K from the Curie-Weiss formula, and take g = 2.14
so that the numerical and experimental susceptibilities match
at the highest temperature available experimentally (T ∼ 2.1).
There is a remarkable agreement between the experiment
and this approximate model for all of the temperatures
above the convergence temperature of the NLCE (∼0.2,
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FIG. 4. (Color online) Uniform susceptibility per site for clinoat-
acamite. The empty circles are the experimental results. The thick
solid line is the last order of the NLCE for the system of Fig. 3
with J ′ = −0.1 and J ′′ = 0 after the Wynn sum with two cycles of
improvement.21 The thick dashed line shows the NLCE results for the
triangular expansion of the kagome-lattice Heisenberg model (from
Ref. 20). Thin solid lines are the next-to-last orders of the NLCE
sums. In the ED for the kagome lattice, we use a 12-site cluster. For
the case with finite J ′, we use the corresponding 16-site cluster shown
in Fig. 2. For the pyrochlore lattice, we use the 16-site cluster shown
in Fig. 1. The arrow marks approximately the point where results
from the last two orders of NLCE start deviating from each other.

indicated by the arrow in Fig. 4). To have a better idea about
the effect of the extra sites of the triangular layer on the
susceptibility of the kagome lattice, we also show results from
a triangle-based NLCE on the kagome lattice with up to eight
triangles.20,21

It is clear that the extra sites with weak ferromagnetic
couplings are responsible for the enhancement of the uniform
susceptibility at low temperatures. To understand this, we
consider the limiting case where the sites on the triangular
layer are completely decoupled from the ones on the kagome
layer (J ′ = 0). In the thermodynamic limit, since the kagome
layer contains only 3/4 of the sites, any property per site can
be written as P = 1

4P0 + 3
4Pkgm, where P0 is the property

for a single site and Pkgm is the property per site for the
kagome lattice. Therefore, in the case of susceptibility, a zero-
temperature divergence will emerge from the susceptibility
of an isolated spin, χ0 = 1

4T
. In fact, if we take χkgm to

be the NLCE results for the kagome lattice and calculate
χ = 1

4χ0 + 3
4χkgm, then the resulting curve lies very close,

but slightly below, that of the NLCE with J ′ = −0.1 (see
Fig. 6), i.e., the divergence in the uniform susceptibility of
clinoatacamite is mostly due to the nearly isolated interlayer
spins. However, a small negative J ′ presumably produces a
finite-temperature ordering transition in the three-dimensional
material, which is observed in the experiments at ∼6 K.

The results from ED on finite clusters with periodic
boundary condition further support these findings. In Fig. 4, we
show the spin susceptibility for the 16-site cluster of Fig. 2, and
the quasi-2D model, with J ′ = −0.1. They both agree with the
experimental results very well in the entire temperature range.
We also show the ED results for the corresponding 12-site
cluster on the kagome lattice [which is the same cluster as in
Fig. 2, but without the extra sites inside down triangles] and the
uniform pyrochlore lattice of Fig. 1. The latter largely disagrees
with the experimental results, invalidating the proposals that
clinoatacamite has such uniformity in exchange constants.13,17

At this time, the lack of a nonmagnetic isostructural
compound has made it impossible to accurately determine the
lattice contribution to the specific heat over the temperature
range where NLCEs are valid. Therefore, we cannot currently
compare the magnetic specific heat of clinoatacamite with the
results of numerical calculations the way we have with the
susceptibility. Nevertheless, in Fig. 5, we show the numerical
results for the entropy and the specific heat for the models of
clinoatacamite and the other systems discussed above, which
could be used to compare with future experiments. Since
the specific heat for an isolated spin is zero, the values for
the J ′ = −0.1 case in Fig. 5(a) are roughly 3

4 of those for
the kagome lattice, at least for T � |J ′| [see also the inset
of Fig. 5(a)]. The position of one of the peaks, captured
in the ED calculations both for the pure kagome and the
model for clinoatacamite at T ∼ 0.1, approximately coincides
with the 18 K peak observed in the experiments, considering
J ∼ 193 K.13,14,18 The existence of such a peak in the specific
heat of the kagome-lattice Heisenberg model has been a topic
of discussion for a long time,21,24–26 and the experiments with
the clinoatacamite compound may have provided a proof
of its existence. On the other hand, the only peak of the
specific heat for the finite-size pyrochlore lattice from ED is at
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FIG. 5. (Color online) NLCE and ED results for (a) the specific
heat and (b) the entropy per site of the Heisenberg model for
clinoatacamite as well as on the kagome and pyrochlore lattices.
Lines are the same as in Fig. 4. The inset of (a) shows the ED
results on a logarithmic temperature grid. We have multiplied the
kagome-lattice results by 3

4 to establish a fair comparison with the
results for the lattice of Fig. 2, and have included those for the 16-site
pyrochlore-lattice Heisenberg model, where the coupling between
kagome layers is set to J ′ = −0.1. The inset in (b) is the same as the
inset in (a) for the entropy, except that the entropy of an isolated spin
is also properly added to that of the kagome lattice (see text).

T ∼ 0.3. This is inconsistent with the experimental results for
clinoatacamite and is yet another evidence that this material
is not well described by the uniform (or nearly uniform)
pyrochlore Heisenberg model.

In the inset of Fig. 5(a), we show the specific heat from ED
on a logarithmic temperature scale and down to T = 0.001.
The specific heat of the kagome or the pyrochlore lattice
vanishes below T ∼ 0.01, whereas a third peak emerges at T <

0.001 for the 2D model of clinoatacamite [the cluster of Fig. 2].
A similar feature also exists in the corresponding quasi-2D
model with J ′ = −0.1. The peak moves to higher temperatures
by increasing |J ′|. Although finite-size effects often prevent
ED from predicting, even qualitatively, the correct features of
such models with long-range order at low temperatures, the
appearance of this low-temperature peak due to the finite J ′
may signal a possible very-low-temperature phase transition
in the thermodynamic limit, perhaps associated with the one
observed experimentally for clinoatacamite at T ∼ 6 K.

The entropies per site for the 2D and quasi-2D models of
clinoatacamite, the kagome-lattice and the pyrochlore-lattice
Heisenberg models, are shown in Fig. 5(b). Just like for the
specific heat, we show, in the inset of Fig. 5(b), the low-
temperature entropy of different models from the ED, which
give us an idea of what may happen at lower temperatures.
There, we have multiplied the entropy of the 12-site kagome
lattice by 3

4 and added the contribution from the isolated spins
( ln 2

4 ) to be able to properly compare it to the entropy of the
16-site clusters. We note that above T = 0.01, all entropies
but the one for the pyrochlore lattice agree with each other.
Also, as inferred from the specific-heat plots, a finite J ′ seems
to bring about a phase transition at a very low temperature,
after which the entropy drops to zero.

B. Transition between planar pyrochlore and kagome lattices

To gain further insights about how thermodynamic proper-
ties change in transitions between different frustrated models,
and its implications for the research on future materials, we
study here the uniform susceptibility, and the specific heat in
the transition between the planar pyrochlore lattice and the
kagome lattice, using the implementation of NLCE described
in Sec. II B. We start with the former lattice (J ′′ = J ′ = J ).
To approach the kagome lattice, we simultaneously decrease
J ′ and J ′′ from 1 to 0. As discussed above, the latter limit
represents the kagome-lattice Heisenberg model plus an extra
isolated spin for every three spins in the kagome lattice, which
is closely related to the 2D model for clinoatacamite.

As can be seen in Fig. 6, the spin susceptibility of the planar
pyrochlore lattice can even provide a good estimate for that of
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FIG. 6. (Color online) NLCE results for the uniform susceptibil-
ity per site of the Heisenberg model in the transition between the
planar pyrochlore lattice (J ′′ = J ′ = J in the lattice of Fig. 3) and
the kagome lattice with extra decoupled sites (J ′′ = J ′ = 0). The
thin dashed (dotted-dashed) line is the ED result for the 2D model
of clinoatacamite (uniform pyrochlore lattice). For J ′ = 0 and 0.25,
black (thin) solid lines and color (thick) lines are the fifth and sixth
orders of the bare sums in the expansion, respectively. For all other
values of J ′, we have used Wynn extrapolation with one cycle of
improvement,21 for which the thin solid and thick lines are the last
two orders. The inset compares the uniform susceptibility per site for
the planar pyrochlore lattice and the kagome lattice.
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FIG. 7. (Color online) NLCE results for the specific heat and
entropy per site of the Heisenberg model on the anisotropic checker-
board lattice of Fig. 3, with 0 � J ′′ = J ′ � J . The inset compares
the specific heat and the entropy per site of the planar pyrochlore and
the kagome lattices. The lines are the same as in Fig. 6

the 3D pyrochlore lattice (from ED), as the difference between
the two remains relatively small for temperatures accessible
to NLCE (T > 0.3). To show the proximity of the results on
the other side of the transition to the model for clinoatacamite
(J ′ = −0.1 and J ′′ = 0), we plot in Fig. 6 results from the lat-
ter from ED. As the spins on the triangular layer decouple from
those on the kagome layer by decreasing J ′, the 1

T
divergent

signature of the susceptibility of isolated spins, similar to what
has been seen in the experiments on clinoatacamite, becomes
apparent.

It is now interesting to compare the uniform susceptibility
for the planar pyrochlore lattice and the pure kagome lattice.
Within the present NLCE calculation, the latter can be obtained
by subtracting the contribution of isolated spins in the J ′′ =
J ′ = 0 case. The results are shown in the inset of Fig. 6.
One can clearly see there that the kagome lattice has a higher
uniform susceptibility than the planar pyrochlore lattice for all
temperatures accessible within our NLCE.

The planar pyrochlore lattice and the pure kagome lattice
are two of the most frustrated lattices known. In Fig. 7, we
show how the specific heat evolves in the transition between
them for the same parameters depicted in Fig. 6. Unlike for
the case of the spin susceptibilities, the specific heat of the

planar pyrochlore lattice is different from the pyrochlore lattice
at high temperatures. In the two-dimensional model, as J ′
and J ′′ decrease, the high-temperature peak is suppressed.
However, this is largely due to the fact that one-fourth of the
spins in the system are decoupled from the lattice in the limit
of J ′′ = J ′ = 0 and, therefore, have vanishing specific heat.
Consequently, if one compares the entropy and specific heat
per site of the planar-pyrochlore-lattice and the kagome-lattice
Heisenberg models (inset in Fig. 7), one sees that their values
are in fact very close for all of the temperatures calculated
here. Interestingly, this shows that both lattices have a very
similar degree of frustration.

IV. CONCLUSIONS

We have presented a numerical study of the thermodynamic
properties for models of the clinoatacamite compound. In
particular, we computed the spin susceptibility, entropy, and
specific heat, using the ED of finite periodic clusters and an
implementation of the NLCEs that properly deals with the
breaking of lattice symmetries introduced by the particular
model Hamiltonian of interest. We find an excellent agreement
between the experimental uniform susceptibility of clinoat-
acamite from magnetic measurements and our numerical
results for the Heisenberg model on a lattice that consists
of a kagome layer, coupled weakly to a triangular layer.
Together with a study of the entropy and the specific heat
of the kagome and pyrochlore lattices, we provide strong
evidence that clinoatacamite has a pyrochlore structure with
only weak ferromagnetic coupling between its kagome layers.
Employing our generalized NLCE, we also studied the above
thermodynamic quantities in a transition between the planar
pyrochlore lattice, which has a uniform susceptibility similar
to that of the pyrochlore lattice, and the kagome lattice
plus isolated spins, closely related to the model for the
clinoatacamite compound.
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