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Abstract: We describe an operating regime for passively mode-locked 
quantum dot diode laser where the output consists of a train of dark pulses, 
i.e., intensity dips on a continuous background. We show that a dark pulse 
train is a solution to the master equation for mode-locked lasers. Using 
simulations, we study stability of the dark pulses and show they are 
consistent with the experimental results. 
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1. Introduction 

Mode-locked lasers generate trains of ultrashort optical pulses over a wide range of durations, 
from tens of picoseconds down to a few femtoseconds and with repetition rates that range 
from a few megahertz to tens of gigahertz [1, 2]. Mode-locked lasers have traditionally been 
used in applications based on the time resolution provided by the ultrashort pulses they 
generate. Examples of such applications include the time-domain spectroscopy of molecules 
[3], semiconductors [4] or in high speed measurements for optical telecommunications [5]. 
However, the development of femtosecond comb techniques has expanded the use of mode-
locked lasers into optical frequency metrology, enabled optical atomic clocks [6] and has been 
essential to the breakthrough to the attosecond regime [7]. 

In addition producing bright pulses, a mode-locked laser can produce dark pulses, 
although this operating regime is rare. A dark pulse is a brief decrease in intensity on a stable 
continuous wave. A close analogy to a dark pulse in a mode-locked laser is a dark optical 
soliton. Optical dark solitons are solutions to the nonlinear Schrödinger equation (NLSE) that 
have been the subject of much theoretical investigation [8]. The NLSE describes propagation 
in nonlinear media such as optical fiber, but it does not contain dissipative terms such as gain, 
loss and their saturation, which are present in a mode-locked laser. Optical dark solitons are 
predicted to have many properties of practical importance such as existence in the normal 
dispersion regime, lack of a threshold and resistance to Gordon-Haus jitter. Experimental 
work on dark solitons has been limited because they have been difficult to generate. Different 
techniques have been proposed and demonstrated to generate a single dark pulse or dark pulse 
train; most of them are based on external manipulation of laser light using pulse-shaping 
techniques. Methods include intensity modulation of a CW laser beam by an electro-optic 
modulator [9], nonlinear conversion of a beat frequency signal in a normal dispersion 
decreasing fiber [10], electro-optic phase modulation in a linear loop mirror [11], and passive 
filtering of a mode-locked bright pulse train with a spatial mask [12, 13], with a fiber Bragg 
grating [14], or with an active FM mode locking technique [15]. Also, dark pulse generation 
has previously been observed in semiconductor amplifiers after injection of a bright pulse 
[16,17], however the pulse train was not stable and eventually decays. Recently, the 
generation of dark pulses in a mode-locked fiber laser was reported when the cavity 
dispersion was normal and the non-linear polarization rotation was adjusted to give reverse 
saturable absorption [18]. 

Here, we demonstrate the generation of a dark pulse train using a passively mode-locked 
semiconductor quantum-dot diode laser. We show that a dark pulse is a straightforward 
solution to the linearized version of the equation that describes the operation of a passively 
mode-locked laser [19]. While having similarities to dark solitons, we do not believe that 
these pulses are dark solitons as they are not transform limited. To determine if the dark-pulse 
solution is stable, and over what range of parameters, we perform simulations for the full (not 
linearized) equation. We show that the parameters of our laser fall in the range predicted to 
have stable dark pulses. 

2. Experiment 

We demonstrate dark pulses using an external cavity semiconductor diode laser (Fig. 1). The 
gain section is a 5 mm long single-mode semiconductor ridge waveguide with InGaAs self-
assembled quantum dots (QDs) buried in the core. QDs feature complex gain dynamics that 
provide the necessary flexibility to operate where dark pulses are stable [20, 21]. Light 
amplified by the quantum dot active region is collimated, filtered by a Fabry-Perot etalon and 
focused on a saturable absorber to initiate mode-locking. The saturable absorbing medium, a 
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few intentionally damaged semiconductor wells [22], was grown in an integrated resonant 
structure to increase the electric field intensity and lower the saturation fluence. The saturable 
absorber structure also acts as an end mirror for the laser cavity. Spectral filtering to tune and 
restrict the lasing bandwidth is provided by a Fabry-Perot etalon with a transmission 
bandwidth of 10 nm. The flat facet of the semiconductor diode is used as the output coupler 
with a reflectivity of approximately 35%. When the laser cavity is well aligned, lasing action 
occurs with 60 mA of current injected into the gain medium. 

 

Fig. 1. Schematic of external cavity diode laser (R-SBR: resonant saturable Bragg reflector). 

Subthreshold electroluminescence from the QD gain region is shown in Fig. 2(a). A fit to 
the spectrum at low current gives a ground state peak at 1169 nm and a full width at half 
maximum of 56 nm. As the injection level increases, clear state filling, typical of QDs, is 
observed as emission from an excited state becomes appreciable. 

 

Fig. 2. Optical characteristics of the laser. (a) Electroluminescence from the QDs gain. (b) 
Light-current characteristics. 

The threshold current for this device is approximately 60 mA after careful alignment of 
the external cavity. A representative optical power versus injected current trace is shown in 
Fig. 2(b). Output power saturation does not occur until the pump current is above 200 mA. 

The resonant saturable Bragg reflector (R-SBR) was grown by molecular beam epitaxy 
(MBE) on a GaAs substrate. The saturable absorber in the SBR is an InGaAs:Be,Er doped 
multi-quantum well. To achieve high modulation depth and low saturation fluence, a resonant 
structure is used. The quantum well stack is positioned in the center of a GaAs cavity layer. 
The top and bottom mirrors were formed by an alternating stack of λ/4 AlAs and GaAs layers. 
The bottom mirror had 22.5 pairs and the top mirror had 2 pairs. The low intensity reflectance 
spectrum for this device is shown in Fig. 3(a). The resonant wavelength is 1168 nm and the 
bandwidth is 10 nm. 

We characterized the saturation of the absorber by focusing a pulsed laser tightly on the 
surface of the R-SBR and measuring the reflectivity as a function of power. The pulse width 
of the laser was approximately 100 fs and the repetition rate was 82 MHz. The center 
wavelength matched the resonant condition of the R-SBR. Since the pulse width was much 
shorter than the recovery time of the InGaAs:Be,Er QWs, no appreciable relaxation occurs 
during the excitation process, and it is appropriate to report the reflectivity as a function of the 
integrated energy in the pulse. These data are shown in Fig. 3(b). A simple fit to this curve 
using a standard model for saturation [23] yields the saturation fluence, F, of 4 µJ/cm

2
 

(focused spot area is about 8 µm
2
). Figure 3(b) also shows that even at very high fluence the 
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reflectivity does not recover to 100%. This nonsaturable loss is due to defects in the QW 
material or scattering loss from the layers of the resonant structure. 

 

Fig. 3. Characterization of the saturable Bragg reflector. (a) Low intensity reflection spectrum, 
(b) reflectivity vs. fluence., (c) temporal response, the black curve is a 10 ps single exponential 
decay fit to the measured data. 

We characterized the temporal response of the absorber with a standard time-resolved 
pump-probe technique [24]. We employed 100 fs pulses resonant with the cavity of the R-
SBR. The temporal response is shown in Fig. 3(c). A single exponential fit yields a time 
constant, Tr, of 10 ps. We used this time, along with the saturation data above, to estimate the 
saturation properties of the absorber under CW conditions. We balanced the rate of decay with 

the rate of absorption using ( / )
q r

I F T A= . This leads to a CW absorber saturation power, Iq, 

of 8 mW if the spot size, A, is 2 µm
2
. 

We monitored the output of the laser using a fast photodetector and recorded the output on 
a high-speed oscilloscope (Fig. 4). A dark pulse train is clearly observed for currents above 
110 mA.. The width of the pulses is measured to be 90 ps (a fit is shown in red in Fig. 4), and 
the modulation depth is approximately 70% (the ratio of the minimum power of the dark pulse 
to continuous wave (CW) level). We carefully calibrated the measurement system with a 
source of ultrafast bright pulses and determined the time resolution to be about 60 ps, mostly 
limited by the sampling oscilloscope. This calibration also confirms that the signal is due to 
dark pulses and not artifacts in the detection system. A simple deconvolution of the instrument 
response function yields a true pulse width of 70 ps. The excursion above the CW level 
preceding each dark pulse is due to ringing in the electronics, which is also evident when 
measuring bright pulses. Measurements using time-correlated single photon counting confirm 
that the train consists only of dark pulses. Based on the calibration, we conclude that the 
pulses are not “black” pulses, i.e., going to zero intensity, but rather “gray” pulses. 

 

Fig. 4. Output train of dark pulses detected by a photodiode. Red dashed line shows fit to a 
single pulse for pulsewidth determination . 

The stability of the pulse train was confirmed by the clear comb with narrow lines in the 
radio frequency spectrum of the photodiode output (shown in Fig. 5). The peak at 400 MHz 
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matches the cavity-round trip time and tracks exactly any length changes of the extended 
cavity. 

 

Fig. 5. RF power spectrum of photodiode output at a 110 mA bias current for a wide span (left) 
and zooming in the on the fundamental (right, resolution bandwidth is 2kHz). 

The optical spectrum is centered at 1167 nm, which corresponds to laser emission from the 
QD ground state, and the bandwidth is about 0.5 nm (0.2 THz) as shown in Fig. 6. 

 

Fig. 6. Optical spectrum at bias current of 110 mA. Bandwidth is about 0.5 nm (resolution 
bandwidth is 0.07 nm). 

We recorded the dark pulse train as a function of lasing wavelength by tuning the laser 
from 1162 nm to 1178 nm using the intracavity Fabry-Perot etalon. The dark pulse width and 
modulation depth changed with wavelength as shown in Fig. 7. Over this range, the shortest 
measured pulse width was 90 ps at 1168 nm (red dots in Fig. 7). The modulation depth varied 
between 70% and 80% in the lasing range (blue triangles in Fig. 7). The lasing wavelength of 
1168 nm is matched with the R-SBR resonant wavelength. As we move away from this 
wavelength the pulse shaping due to the R-SBR is reduced, resulting in an increase of the dark 
pulse width. 

 

Fig. 7. Dark pulse width and modulation depth variation with lasing wavelength. 
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3. Simulations 

The theoretical understanding of mode-locked lasers typically starts from the “master 
equation” model developed by Haus [25]. In steady-state, the pulse must reproduce itself 
every round-trip. Considering only fast saturable gain, fast saturable absorption and spectral 
filtering, yields the steady state condition 

 
2 2

0 0

2 2 2 2 2 2

1 1
1 0

1 1
o

g fq g

q g d d
l u

dt dtu / I u / I ω ω

  
 + − + − =   + +   

 (1) 

where u is the pulse amplitude, q0 (g0) is the small-signal absorption (gain) coefficient, l0 is 
the non-saturable loss in the cavity, Ia (Ig) is the saturation power for to absorption (gain), ωg 
is the gain bandwidth and ωf is the filter bandwidth. Neglecting nonlinear and dispersion 
effects is justified by the low peak power and moderate pulse bandwidth. Equation (1) cannot 
be solved analytically, so we start by linearizing the gain and absorption saturation terms, also 
with the assumption that ωf is smaller than ωg, giving 

 

2 2
2

0 0 0 2 2

1
1 1 0.

q g f

u u d
l q g u

I I dtω

    
    + − − − − =

        
 (2) 

A bright pulse of the form ( )0 sech pu u t τ=  is a solution to this equation, however it is not 

self starting [19]. Another solution has the form of ( )0 tan h pu u t τ= , which is a dark pulse. 

This solution corresponds to a CW wave of amplitude u0 with a dip at t = 0 that has a width τp. 
The CW wave before the dip has π phase shift compared to that after the dip. While this 
analysis shows that a dark pulse is a solution, it does not show that it is stable against 
perturbations, which is also a requirement for it to exist in a physical system such a laser. 
Stability arises from the interplay of saturation and spectral filtering. To study stability, we 
numerically simulate Eq. (1). Specifically we start with an initial condition and evolve it 
according to 

 
2

0

02 2.( , ) ( , )
1 /

R

A

g f

q
T u T t g D l u T t

T t u P

∂ ∂
= + − −

∂ ∂ +

 
 
 

 (3) 

where T is slow time, i.e., corresponding to round trips in the cavity.The operator 

2 2

1
gf

g f

g
D

ω ω
= + describes the finite bandwith of the gain and other spectral filtering effects in the 

cavity. 
In a numerical simulation, additional terms, such as the biexponential gain recovery of 

QDs, can be added to more accurately model the real laser. We attribute the biexponential 
decay to intra-dot relaxation and to refilling of the dots from the wetting layer [20,21]. The 
relaxation times for both of these effects are fast compared to the measured width of the dark 
pulse, thus the approximation of fast dynamics is valid. The model can better account for this 
behavior if the fast gain saturation includes two components with differing saturation powers. 
We include a time dependent gain due to saturation 

 
2 2

( )
1 / 1 / 1 /

n l h

g gl gh

g g g
g t

P I u I u I
= + +

+ + +
  (4) 

including two fast gain saturation powers as Igl and Igh, and the fast small signal gain also 
separates into two parts gl and gh. Furthermore the gain will show very slow saturation 
determined by the carrier injection rate, which means a slow gain saturation part should be 
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included in the gain simulation model. We define the slow gain saturation power as Igs and the 
corresponding slow small signal gain gn. We model this effect by including a term that 
saturates based on the total energy in the cavity, rather than the instantaneous power. A split-
step algorithm simulates each round trip through the laser cavity, calculating the saturation 
terms in the time-domain and the spectral filtering in the frequency domain. Given an 
arbitrary input condition, usually a pulse, we track the evolution through many round trips 
until the change between successive round-trips is negligible. To test that the simulation is 
working properly, we verified that it did produce stable bright pulses with pulse parameters in 
agreement with previously published results [26]. 

We find that the simulation produces stable dark pulses when we include the two-
component fast gain saturation and the slow gain saturation. The parameters for the simulation 
are based on our best estimate of the operating conditions of the laser, as described in Section 
4 and given in Table 1. Examining how the gain and absorption saturate, as is often done 
when discussing the stability of bright pulses in a mode-locked laser, gives insight into why 
the two-component saturation results in stable dark pulses. To provide an intuitive explanation 
ignoring spectral filtering, we plot the gain and absorption as a function of intensity for (a) 
single component gain saturation and (b) two-component fast gain saturation in Fig. 8. The 
net gain is plotted in the lower panel for each case. In both cases, the loss is given by the first 
two terms in Eq. (1) and the intensity is normalized to Iq. Figure 8(a) shows the saturation 
curves for the situation where the absorber has lower saturation intensity than the gain, but the 
unsaturated absorption is higher than the unsaturated gain. For this situation, there are two 
intensities at which the gain and loss cross. To the left of the lower point, denoted by “L” in 
Fig. 2(a), there is net loss, so intensities in this range will decay to zero. To the right of L, but 
to the left of the upper crossing point, denoted by “U”, there is net gain, so intensities in this 
range will grow to intensity U. To the right of U, the again there is net loss, so the intensity 
will decay back to point U. It is easy to see that an initial bright pulse, or fluctuation, that 
exceeds intensity L will grow until its peak intensity reaches U. This simple picture yields a 
threshold behavior, which produces a rectangular bright pulse. Including a spectral filter limits 
the rise and fall times of the pulse, resulting in a smooth pulse with a minimum duration 
determined by the bandwidth of the spectral filter. 

 

Fig. 8. Saturation of the absorption and (a) single component gain and (b) two component gain. 
The power is in units of the absorber’s saturation power, Iq. and the gain and loss are in units of 
the nonsaturable loss, l0. The lower panel in (a) and (b) show the net gain (gain minus loss). 
The points where the net gain is zero are stationary and labeled. 

By similar reasoning, it initially appears that these conditions would also support a dark 
pulse. Consider CW operation at power U, which is stable, with a fluctuation that drops below 
the intensity corresponding to point L. Again the threshold will drive the fluctuation to zero 
intensity, resulting in a rectangular dark pulse when the spectral filter is omitted. However, in 
contrast to the bright pulse, simulations show that the inclusion of the spectral filter actually 
destabilizes the dark pulse, causing it to evolve into a bright pulse. 
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Stable dark pulses appear in the simulation when we include two-component fast gain 
saturation and slow gain saturation in the model. Figure 8(b) shows the saturation curves for 
conditions that give a stable dark pulse. A third crossing point, denoted by “M” in Fig. 8(b), 
occurs with net loss below it and net gain above. CW lasing at an intensity above that 
corresponding to M will evolve to intensity U. If an intensity fluctuation occurs that crosses to 
the left M, it will evolve towards L. Again, if the spectral filter is omitted, a rectangular dark 
(gray) pulse will result. However, the inclusion of the spectral filter results in a stable smooth 
dark pulse. The evolution of an initial bright pulse into a stable dark (actually gray) pulse is 
shown in Fig. 9. The evolution is also shown in Fig. 10 as an animation. Since the simulation 
does not include phase, the solution could be a chirped pulse. 

 

Fig. 9. Evolution of initial bright pulse seed into a steady state solution showing a gray pulse, 
the stable dark pulse width is 36 ps and the modulation depth is 84%. 

 

Fig. 10. (Media 1) Animation of the evolution shown in Fig. 9. 

We systematically explored parameter space to determine if the formation of dark pulses is 
a robust phenomenon. For each parameter set, we run the simulation until a steady state 
evolves. We then categorize the steady state as being (i) CW, defined as having an intensity 
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modulation less than 10%, (ii) a dark pulse, defined as a dip in the intensity of greater than 
10% with dark duration that is less than 40% of the round trip time, (iii) a bright pulse, 
defined as a positive going excursion in the intensity of greater than 10% with bright duration 
that is less than 40% of the round trip time, or (iv) a pulsation, which is a modulation of 
greater than 10% that does not fulfill the criteria for a bright or dark pulse. Note that our 
definition of a dark pulse allows for a gray pulse and the definition of a bright pulse allows it 
to ride on a CW background. In Fig. 11, we plot “phase space” diagrams for the laser showing 
what type of output it gives as we vary the two fast gain saturation parameters (high fast gain 
saturation power Igh and low fast gain saturation power Igl, both are normalized to the absorber 
saturation power Iq). As Igh increases, the laser goes from CW to dark pulses to pulsations and 
finally to bright pulses. This sequence remains the same as Igl is varied, although the transition 
between the regimes varies as Igl is increased. We have also varied other parameters and find 
that the basic structure of this map does not change. The shading in the dark pulse region 
denotes the modulation depth of the stable dark pulses. The darker the region, the closer the 
modulation is to 100% (black pulse). The dark pulse modulation depth increases (the dark 
pulses change from gray pulses to black pulses) when Igh or Igl is increased. 

 

Fig. 11. Phase space maps showing stable solution as a function of low, Igl, and high, Igh, 
saturation powers for the gain, normalized to the absorption saturation power, Iq. The gray scale 
bar indicates the modulation depth of the dark pulse. In (a), the star indicates the best estimate 
of the operating point (parameters listed in Table 1) for the experimental conditions when the 
laser produces dark pulses. The experimental conditions, an increase of slow gain by 4%, 
where the laser produces CW output is shown in (b), again the star indicates the estimated 
operating point. 

4. Estimation of operating conditions 

To compare our experimental results to the simulation, we have made our best estimate of the 
operating parameters corresponding to the experimental observation of dark pulses. 

From the QDs’ cross section and gain dynamics, we estimate the saturation power of the 

QDs gain. The saturation power is 
1

satI A
T

ω
σ

=
ℏ

, where ћω is the photon energy, T1 is the 

recovery time of the absorber, σ is the absorption cross section and A is the mode area. The 

absorption cross section is 
2

2

rad

g

γλ
σ

π ω
=  [23]. The spontaneous emission time, 1/γrad, for a 

quantum dot is around 500 ps [27], and a single quantum dot’s emission bandwidth, ωg, is 
around 10 nm with a Lorentzian lineshape, yielding an absorption cross section of 
approximately 4x10

13
 cm

2
 at a wavelength, λ, of 1170 nm. The QD gain has multiple recovery 

times [20,21]. In Fig. 12, a pump-probe measurement of the QD recovery time in the 
waveguide under 50 mA current injection is plotted. The two components of the fast recovery 
have time constants T1h = 100 fs and T1l = 2.5 ps corresponding to fast saturation powers 
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around 100 mW (Igh) to 4 mW (Igl) for 2 µm
2
 mode area. The slow recovery time is several 

hundred picoseconds. The slow gain saturation power, Ig, is about 3 mW. 

 

Fig. 12. Pump-probe measurement showing the recovery of the QD amplifier gain. 

We measure the total small signal gain (gn + gl + gh) to be approximately 12 cm
−1

. Thus 
for a 5 mm long laser bar, the total normalized gain is 6. However, it is difficult to accurately 
calculate the small signal gains for different gain saturation powers. We estimate the ratio of 
the two fast recovery gain parts, gl and gh, from the double exponential curve fit coefficients 
in Fig. 12, the coefficient of the ~100 fs part is 5 times bigger than that of the 2.5 ps part. Thus 
we use this ratio for small signal gain values. 

The total cavity loss is high in the diode laser. The output facet reflection, R1, is 35%, and 
the reflectivity of the Bragg reflector, R2, is 50% (low-intensity) to 70% (saturation), plus the 

coupling efficiency, η, is 80%, so the normalized loss term, 
1 2

ln( )R Rα η= − ∗ ∗ , varies from 

1.9 (low-intensity) to 1.6 (saturation). Thus the cavity loss, lo, is 1.6, and the small signal 
absorber loss (q0) is 0.3. 

Based on these estimates, we use the parameters listed in Table 1 in the simulation to 
model the behavior of the laser. 

 

Table 1. Parameter estimates for operating conditions of laser 

Symbol Parameter Description Units Value source 

gn slow small signal gain - 5 M, E 

Ig slow gain saturation power mW 3 C, M, Refs 

gl gain for low fast saturation power - 0.15 M, E 

Igl low fast gain saturation power mW 4 C, M, Refs 

gh gain for high fast saturation power - 0.75 M, E 

Igh high fast gain saturation power mW 100 C, M, Refs 

lo cavity loss - 1.6 C 

q0 absorber small signal loss - 0.3 C 

Iq absorber saturation power mW 8 M, C 

ωg Gain bandwidth THz 10 E 

ωf 
filter effect bandwidth (from lens coupling and 

F-P filter) 
THz 0.7 E 

E: Estimated; C: Calculated; M: Measured; Refs [20,21,27]: 
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We mark the position corresponding to our best estimates of the lasers operating 
conditions wit stars in Fig. 11. For experimental conditions that produce dark pulses, 
corresponding to Fig. 11(a) and the parameter values give in Table 1, the operating conditions 
fall well with the region where the simulation produces dark pulses, and indeed the 
modulation depth is similar to what we observe. Experimentally, systematic variation of the 
operating parameters is difficult. We did increase the injection current and find that a 
transition from dark pulses to CW operation occurs. A higher injection current means a larger 
slow gain, gn. In Fig. 11(b), we show the phase space diagram for a larger slow gain, gn = 5.2, 
where CW operation occurs and find that our best estimate of the operating point falls within 
the region predicted for CW operation. 

5. Summary 

Our results experimentally demonstrate a new operating regime for mode-locked diode lasers, 
namely the generation of a train of dark pulses. The theoretical analysis shows that dark 
pulses are solutions to the master equation describing mode-locked lasers and simulations 
show that dark pulses are stable. The complex dynamics of the QD active region stabilize the 
dark pulse train. Having net normal dispersion was essential in prior demonstrations of dark 
pulse generation in mode-locked fiber lasers [18,28], which means that the interplay between 
nonlinearity and dispersion dominated the pulse shaping. In contrast, the simulations suggest 
that shaping due to the saturable absorber dominates in our experiments. 
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