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Abstract—In this paper, efficient deployment algorithms are ~ work to improve network coverage: Maxmin-curve, Minmax-
proposed for a mobile sensor network to improve coverage. The curve and Curtex. The main characteristic of these algosth
proposed algorithms calculate the position of the sensors iter- 5 that the sensor movement is performed iteratively. Once

atively based on the existing coverage holes in the target field. L .
The multiplicatively weighted Voronoi diagram (MW-Voronoi each destination is computed, new local coverage area of

diagram) is used to discover the coverage holes corresponding to the COVTESPQndiUQ sensor (in the_ previously constructed MW
different sensors with different sensing ranges. The algorithms \Voronoi region) is compared to its preceding local coverage
proposed in this paper consider the distances of each sensor and area. If the new local coverage area is larger than the
the points inside its corresponding MW-Voronoi region from the preceding one, the sensor moves to the new destination;

boundary curves of the region. Under the proposed algorithms, . . S .
the sensors move in such a way that the coverage holes in the otherwise, it remains in its current position. If, on theeth

target field are reduced. Simulations confirm the effectiveness hand, the local coverage area of every sensor in an iteration

of the deployment algorithms proposed in this paper. is not increased by a certain threshold, the algorithm is
terminated (to ensure a finite number of iterations).
l. INTRODUCTION The rest of the paper is organized as follows. In Sec-

Wireless sensor networks have received a great deal &n I, some preliminaries as well as important notions and
attention in recent years, due to their increasing capiasili definitions are provided. Section Il presents three déffeer
in a wide range of applications. Such applications includtechniques for efficient network coverage, as the main contr
environmental monitoring, military surveillance and aute bution of the paper. Simulation results are given in Sedon
space exploration, to name only a few [1], [2], [3], [4]. Theto demonstrate the effectiveness of the proposed apprsache
main challenge in the design of efficient sensor networks &nd finally the concluding remarks are summarized in Sec-
to optimize coverage and resource allocation [5], [6]. G thtion V.
other hand, there are some practical constraints that need
to be taken into account in developing sensor deployment ll. BACKGROUND
strategies. For example, due to the distributed natureef th Let S be a set ofn distinct weighted nodes in the plane
network, it is often desired to design a decentralized nesou denoted by(S1, w1), (Sa, ws), ..., (Sn,w,), wherew; > 0
allocation protocol [6]. Furthermore, in many applicason is the weighting factor associated wiffy, for anyi € n :=
the initial positions of the sensors are not knaavpriori [7].  {1,2,...,n}. Partition the plane inta regions such that:

In [8], location services (which are concerned with ob- , Each region contains only one node, and
taining the location information of the destination) formo , the nearest node, in the sense of weighted distance, to
bile ad-hoc networks are reviewed. A new coverage model any point inside a region is the node assigned to that
(namely, surface coverage) is proposed in [9], and two  region.
pertinent problems concerning (i) expected coverage ratitpn

with stochastic deployment , and (ii) optimal deployment ey themultiplicatively weighted Voronoi diagrarfMw-

s_trategy I;Nithh planned geployment are 'subsvlequgﬂtly stin\’.e%ronoi diagram) [16]. Analogous to conventional Voronoi
tigated. Furthermore, three approximation algorithm W'tdiagram, the mathematical characterization of each region

provable approximation rati_os are introduced _in [9]. S_at’erobtained by the above partitioning is as follows:
sensor deployment strategies are proposed in the literatur

for mobile sensors to provide sufficient coverage in thell; = {Q € R?| w;d(Q, S;) < w;d(Q,S;),Vj € n — {i}}

field [6], [10], [11], [12], [13], [14]. In these works, it is Q)

mainly assumed that all sensors have the same sensing rarfge.any i € n, where d(Q, S;) is the Euclidean distance

However, this is not a realistic assumption in many realbetweenQ andS;.

world applications. According to (1), any point) in the i-th MW-Voronoi
In this work, a number of distributed sensor deploymentegionII; has the following property:

strategies are introduced for a network of mobile sensors

with different sensing ranges. The multiplicatively wetiegh Q. 5) < Wi

Voronoi (MW-Voronoi) is used to divide the region into a d(Q,S;) ~ w;

number of cells, where the weight assigned to each sensgggiition 1. Similar to conventional Voronoi diagram, the
is proportional to its sensing radius [15], [16], [17]. ThenodesSi ands; (i, j € n,i % j) in an MW-Voronoi diagram

resultant diagram is subsequently used to find the coverage, lied neighbors il NTT, # . The set of all neighbors
holes in the network. Three algorithms are proposed in thig "o =" g denotedl b;Nj» and is formulated below:

e diagram obtained by the partitioning described above is

, Vien, Vjen-—{i} (2)
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area w.r.t. the location of the sens§r is called thelocal Assumption 2. The sensors are supposed to be capable of
coverage areaf that sensor. localizing themselves with sufficient accuracy in the field

Definition 3. The Apollonian circle of the segmentAB, (using, for instance, the methods proposed in [1], [21]).

denoted byQap , is the locus of all pointsE such that Assumption 3. The communication range of the sensors is
% =k [18]. bounded (and not necessarily the same for all sensors). This
] ] ] is a limiting factor for the sensors, potentially prevegtin

To construct the-th MW-Voronoi region, first the Apol- them from reaching their neighbors, which can result in

lonian circles of the neighboring partitions are found foe t jncorrect Voronoi regions around some of the sensors. Gonse

i-th sensor. In other words, the Apollonian circleg 5.« quently, such a limitation can negatively affect the detect

are found for allS; € N;. The smallest region (created by of coverage holes.

the above circles) containing theth node is, in fact, the

i-th MW-Voronoi region (e.g., see Fig. 1). An example of a

MW-Voronoi diagram with 15 sensors is sketched in Fig. 2.

Fig. 2.  An example of the MW-Voronoi diagram for a group of 15
nonidentical sensors in a network.

IIl. DEPLOYMENT PROTOCOLS

In this section, three different protocols are developed fo
a distributed sensor network. The proposed algorithms are
Fig. 1. The MW-Voronoi region for a sensd; with four neighbors iterative, where in each iteration every sensor first braatic
525+, 5. its sensing radius and location to other sensors, and then

constructs its MW-Voronoi region based on the received

The MW-Voronoi diagram is the main tool for sensorinformation. It checks the region subsequently to detect
deployment in this paper. Each sensor has a sensing athe possible coverage holes. If any coverage hole exists,
which is a circle whose size can be different for distincthe sensor calculates its target location (but does not move
sensors. Let each sensor in the field be denoted by a natiere) in such a way that by moving there the coverage
with a weight equal to its sensing radius, and sketch the MWiole would be eliminated, or at least its size would be
Voronoi region for each sensor. From the characterizatfon eeduced by a certain threshold. Once the new target location
the MW-Voronoi regions provided in (1), it is straightforda  is calculated, the coverage area w.r.t. this location (& th
to show that if a sensor cannot detect a phenomenon in jseviously constructed MW-Voronoi region) is obtained. If
corresponding region, no other sensor can detect it eithéhis coverage area is greater than the current one, thersenso
This means that in order to find the "so-called” coveragenoves to the new location; otherwise, it remains in its auirre
holes (i.e., the undetectable points in the network), it ou position. In order to terminate the algorithm in finite time,
suffice to compare the MW-Voronoi region of each node witta proper coverage improvement threshelé defined such
its local coverage area. that if the increase in the local coverage area by each sensor
is not sufficiently large (as specified kY, there is no need
to continue the iterations.

Notation 1. Consider a circle of radiug centered atO,
denoted byQ(O,r) hereafter, and a poinit” in the plane.
The intersections of) and the extension o O from O is Notation 3. In the remainder of this papel; represents
denoted byTg‘{(O’r). The other intersection point 6¢(O,r) an MW-Voronoi diagram withn regions (each one corre-
and VO (or its extension) is denoted B§Y, , .. sponding to a node). Furthermore, the number of vertices
2(0;r) and boundary curves of thieth region are denoted by,
Notation 2. As mentioned before, the boundary curves ofnde;, respectively. It is easy to verify that; = e;, for the
an MW-Voronoi region are the segments of some Apollonianase when the corresponding region has at least two vertices
circles. The set of all such Apollonian circles for ti¢h
MW-Voronoi region is denoted bf2;. The sets2; and Q;
are then defined as follows:

Definition 4. The corner points of the-th MW-Voronoi
region (i.e., the intersection points of its boundary csjve
are denoted bW, = {V;1,Via,...,V;}. These points are
5 called the MW-Voronoi vertices for theth region. It is to be
= {Qe s €0} noted that in any MW-Voronoi region, the farthest point from
B the node associated with that region lies on its boundary.
A. Minmax-Curve Strategy

Assumption 1. In this paper, it is assumed that there is no The idea behind the Minmax-curve technique is that
obstacle in the field. Therefore, the sensors can move to angrmally for optimal coverage, each sensor should not be
desired location without obstacle avoidance concernsgusimtoo far from any of the boundary curves in its MW-Voronoi
existing techniques, e.g. [11], [12], [19], [20]. region. The Minmax-curve strategy selects the targetiocat



for each sensor as a point inside the corresponding MWW.emma 4. If a Minmax-curve circle is tangent to two
Voronoi region whose distance from the farthest curve iparallel curves, then generically there are other Minmax-
minimized. This point will be referred to as tidinmax- curve circles, all of which are tangent to these parallel
curve centroigland will be denoted by, for thei-th region, curves, as well.

1 € n. Furthermore, the distance between this point and t
farthest curve from it will be represented By The Minmax-
curve circle is defined next.

kEgemark 1. Consider an MW-Voronoi region with at least
three boundary curves, two of which are parallel. If one of
the Minmax-curve circles is tangent to these parallel cairve
Definition 5. The Minmax-curve circle of an MW-Voronoi then genericly all Minmax-curve circles are also tangent to
region is the smallest circle centered inside or on the bounthese two curves. At least one of these circles is tangent to
ary of that region, intersecting or touching the regionks alsome other boundary curves too, and one of such circles is
boundary curves (or their extensions). This circle is, ict,fa arbitrarily chosen as the Minmax-curve circle in this case.

C (0, 1), for thei-th region. It will be shown later that the

Minmax-curve circle is not necessarily unique. Definition 9. For convenience of notation, the circle touch-

ing two curves:, ande;, of MW-Voronoi region:, centered at
Notation 4. The set of all boundary curves of theth the intersection of the bisectey ande;, and the curvey, is
MW-Voronoi region will hereafter be denoted ly. In the denoted byQ’g“’h, foranyk,g,h € e; :== {1,...,¢e;}. Also,
present subsection (i.e. IlI-A), intersecting/touchtaggent the circle touching two curves, and e, of MW-Voronoi
to a boundary curve; means intersecting/touching/tangentregion 7, centered at the pointl € \I/Z”? is denoted by
to ¢; or its extension. It is to be noted that the extension ogfzfvsmin, for anyr, s € e;.

the boundary curve; belongs to the same Apollonian circle "~ ) _
ase;. Theorem 1. Suppose the-th MW-Voronoi region has at

. , ) ) least three boundary curves. LB, and D, be the sets of
Definition 6. The bisector of two curves ande; is defined || circles Qkh Vk, g, h € e;, and Q4™ Vs € e;, A €
g’ ) ) 9 e 1 ) b 9

as the loci of any poinE whose distance frory, is equal to oy

hat f he bi f1h des is d d \Ifg’”? such that: (i) their centers lie inside the region or on
that frome,. The bisector of the curves ande; is denoted s houndaries, and (ji) they intersect with or are tangent t

by T'e; e, all of the boundary curves of the region. Let alBg be the
Definition 7. Let ¢; andes be the circular arcs of circles;  set of all circles such that: (i) they are tangent to at least
andC,, respectively. The curves ande, are called parallel three boundary curves of theth MW-Voronoi region (or
if circles C; and C, are concentric. their extensions); (ii) their centers lie inside the regionon
its boundaries, and (iii) they intersect with or are tangémt
A number of lemmas and theorems are presented next g of the boundary curves of the MW-Voronoi region (or their
the main results of the paper. The proofs of some |emm%'§<tensions). Defin®, := D, UD, UD,: then the Minmax-

?ng] omitted due to space restrictions, and may be found ®yrve circle belongs td;, and is the smallest circle in this
. set.

Lemma 1. Consider two points4, B and a circleQ2(O, r)
(which in particular case can be a straight line). Let the
distance betweerl and (O, r) be denoted by, and that
betweenB and this circle byp. Let also the distance betweenRemark 2. If an MW-Voronoi region has exactly one

Proof: The proof follows directly from Lemmas 3
and 4, Remark 1, and Definitions 5 and 9. |

A and B be denoted by. Then: boundary curve, then this curve is a circle and it is congider
as the Minmax-curve circle. If, on the other hand, it has
o—§<psat§ (4) exactly two boundary curves, then according to Lemma 2

) ) the Minmax-curve circle is tangent to both curves.
Lemma 2. If an MW-Voronoi region has more than one

boundary curve, then the corresponding Minmax-curveeircl Using the result of Theorem 1 and discussions in Re-
is tangent to at least two of the boundary curves. marks 1 and 2, one can develop a procedure with a complex-
_— mae ity Of order O(e?) to calculate the Minmax-curve centroid
Definition 8. For any two curves; ande,, the setsVil’ iy the jth MW-Voronoi region. Since typically a MW-
and W¢le, are defined as follows: Voronoi region does not have "too many” boundary curves,
gmin _ (XE€To o350 Vel .|V —X|<é the computational complexity for calculating the Minmax-

€1,€2 curve centroid is normally not very high.
= d(X,e1) <d(Y,e1)} (5)

B. Maxmin-Curve Strategy
Ut ={X €l ,|30>0: VY el .|V —X|<d

€1,€2

The main idea behind this strategy is that normally for
= d(X,e) 2 d(Y,e1)} (6) optimal coverage, each sensor should not be too close to

Lemma 3. Consider an MW-Voronoi diagraM, and assume any of its Vorono_| curves. The Maxmin-curve strategy .SGIECt
the target location for each sensor as a point inside the

that the i-th region has at least three boundary curves. . ; . :

Then the Minmax-curve circle of this region is tangent t¢°/fesPonding MW-Voronoi region whose distance from the

at least two boundary curves. Furthermore, if the Minmaxhearest curve is maximized. This point will be referred to
. ' theMaxmin-curve centroidand will be denoted by);

curve circle is tangent to exactly two boundary curves, s . .
9 y y or thei-th region,i € n. Furthermore, the distance between

‘.1 and é;9, then at least one of the following conditions, . : Lo
ﬁéld' €z 9 this point and the nearest curve from it will be represented

i) ¢, and ¢, are parallel; by 7;. The Maxmin-curve circle is defined next.

i) O; € win, . or Definition 10. The Maxmin-curve circle of an MW-Voronoi
iii) O; is the intersection of the bisector éf;, ¢;; and one region is the largest circle inside the MW-Voronoi region.
boundary curve of the region. This circle is, in fact,C(O;,#;), for the i-th region.



Lemma 5. If an MW-Voronoi region has more than onelt results from (11) and the relation8 — § > 7; + 6 > 7;
boundary curve, then the corresponding Maxmin-curve eircland d(O, €;1) = d(O, &;2) > 7;, that:
is tangent to at least two of the curves. .

min {d(o, e)} > 12)

Proof: Let ¢;; be the nearest boundary curve to the €€
Maxmin-curve centroid of thé-th MW-Voronoi region. This
means that’; is equal to the distance betweén and ¢,
also denoted byi(O;, ¢;1); thus,C(O;,7;) is tangent tcg;;.
Define:

which contradicts the initial assumption thal; is the
Maxmin-curve centroid. This completes the proof. W

W= min {d(éi,e)} @)
ecei—{&1}

Suppose that the Maxmin-curve circle is not tangent to any

other boundary curve, and henge= (w — 7;)/2 is strictly

positive. LetM be a point on¢;; such thatMO; 1¢;,. Let

also O be a pointv on the extension dffO, such that the

distance betweeiw; and O is equal to an arbitrary value

0 € (0,6%] (see, e.g. Fig. 3). According to Lemma 1:

d(O,€) > d(Os,€) —6 > 1w —0, Yee e —{én}  (8)

Fig. 4. An illustrative figure used in the proof of Lemma 6.

From (8) and the relationsy — 6 > # + 4§ > # and

d(0,é:1) > d(0;, &), one can conclude that: Definition 11. For convenience of notation, the circle tangent
_ . 5 to two curvest, ande, of MW-Voronoi regioni, centered at
min {d(07 6)} > 7 (9)  the pointd € ¥, is denoted by, for anyr, s € ;.

which contradicts the initial assumption that; is the Lemma 7. If a Maxmin-curve circle is tangent to two
Maxmin-curve centroid. This completes the proof. B haraiiel curves, then generically there are other Maxmin-
curve circles, all of which are tangent to these parallel
curves.

Remark 3. Consider an MW-Voronoi region with at least
three boundary curves, two of which are parallel. If one of
the Maxmin-curve circles is tangent to these parallel csirve
then genericly all Maxmin-curve circles are also tangent to
these two curves. At least one of these circles is tangent to
some other boundary curves too, and one of such circles is
arbitrarily chosen as the Maxmin-curve circle in this case.

Theorem 2. Consider an MW-Voronoi diagran), and
suppose that thei-th MW-Voronoi region has at least
three boundary curves. LeZ; be the set of all circles
QAmar Vr s € e;, A € UM that are inside the region.
Let alsoZ; be the set of all circles which: (i) are tangent
to at least three curves of region and (ii) are inside the

Lemma 6. Consider an MW-Voronoi diagran, and sup- egion. DefineZ; := Z; U Z;; then the Maxmin-curve circle
pose that thei-th MW-Voronoi region has at least three Pelongs toZ;, and also it is the largest circle in this set.
boqnda_ry curves. Then the Maxmin-curve circle of this  proof: The proof follows directly from Lemmas 6
region is tangent to at least thrge bc_)undary curves. Furang 7, Definitions 10 and 11, and Remark 3. ™
thermore, if the Maxmin-curve circle is tangent to exactly

two boundary curves, say;, ¢;», then these two curves are Remark 4. If the MW-Voronoi region has exactly one

Fig. 3. Anillustrative figure used in the proof of Lemma 5.

either parallel orQ; € w7z boundary curve, then this curve is a circle as pointed out
e before, and it is, in fact, the Maxmin-curve circle.
Proof: Suppose the Maxmin-curve circle of thieh . ) o
these two curves are not parallel. Define: and 4, one can develop a procedure with a complexity of
order O(e) (which is typically not very high) to calculate
%=  min {d(O“% 6)} (10) the Maxmin-curve centroid for theth MW-Voronoi region,
e€ei—{&i1,€2} 1 € n.

Since C(0;, #;) is tangent to exactly two boundary curvesC. Curtex Strategy

henced* = (w — 7)/2 is strictly positive. IfO; ¢ wpes By properly combining the strategies introduced in the

then one can choose a point inside thth MW-Voronoi  previous subsection and existing techniques, one can come

region and on the bisector @f; and¢;», say O, such that up with more efficient algorithms for coverage. This im-

d(0,&1) = d(0,¢&2) > %, and0;0 = ¢, for somed € provement, however, comes at the expense of more involved

(0,6*] (e.g., see Fig. 4). According to Lemma 1: computation for the destination point. The Curtex method
introduced here is a combination of the Maxmin-curve strat-

d(0,€) > d(O;,€) — 6 > w — 0, Ve € ¢ — {é1,é2} (11) egy proposed in this paper, and the Minmax-vertex strategy



introduced in [22]. In this method, every sensor finds twahanges in the number of identical sensors in the new setups
points in each round as its new location: one point accordirige proportional to the changes in the total number of sensors
to the Maxmin-curve strategy, and another one according fe.g., for the case of=18 there will be 10 sensors with a
the Minmax-vertex strategy. One of the two points whicltsensing radius of 6m, 4 with a sensing radius of 5m, 2 with
provides better coverage is subsequently selected as theensing radius of 7m, and 2 with a sensing radius of 9m).
target location of the sensor. Simulation results in thet neX¥ig. 6 provides the coverage results for different number of
section demonstrate that this algorithm outperforms therot sensors. It can be seen from this figure that the target field
strategies in terms of coverage. coverage in Curtex algorithm is larger than that in other two

Remark 5. In some special cases, even if the sensor movéasIgorithms for different number of sensors.
: P ' Another important factor in the performance evaluation

toward its target location (according to any of the algerih f different algorithms is how fast the desired coverage

introduced above), the local coverage might not be improve . : > .
This happens when the target location is too far from itEevel is achieved. Notice that the sensor deployment time

present location. To overcome this problem, one can adopt'tré gg%hpar?eurt]ﬁeIstzjearllrggrsﬁeﬁ?us?)le;%r ﬁllsﬁﬁggéhgsthiECteﬁe

ﬁfdhngﬂnﬂeofgn;iaré?nihg e(t)vr\]/(; epnrot\r/]'gi%:?eﬁzﬂégz;?oﬁhgﬁjﬁgﬁgumber of rounds it takes for the sensors to provide a
P P prescribed coverage level. It is shown in Fig. 7 that in all

e eI of s e lgorfms the rumber of ounds (required to mee
point), it stops there a certain termination condition) increases by increashwg t
' : number of sensors up to a certain value, and then starts to
Remark 6. In order to prevent the sensors from oscillatorydecrease by adding more sensors. This is due mainly to the
movements, a proper scheme can be used to let each serfaot that when there are a small number of sensors in the
move toward the target location only if the direction of itstarget field, the MW-Voronoi regions are large in comparison
move is consistent with its move in the preceding round, agith the corresponding sensing circles. Hence, there id go
proposed in [12]. chance that each sensor’s local coverage area is completely
IV. SIMULATION RESULTS inside its MW-Voronoi regi_on, which means that_ the sensor
: does not need to move in order to increase its coverage

In this section, the three algorithms proposed in Sectibn lirea. On the other hand, when there are a large number of
are applied to a flat space of sizém x 50m. It is to be noted sensors in the target field, there is a good chance that each
that the results presented in this section for field coveraggnsor covers its MW-Voronoi region, which implies that the
are all the average values obtained by using 20 randof@rmination condition will be satisfied in a short period of
initial deployments for the sensors. Furthermore, while thiime. It is also to be noted that the number of rounds in
horizontal axis in all figures in this section represents ghe Minmax-curve algorithm is relatively low, making it a
discrete parameter, the graphs are displayed as continugjod candidate for field coverage as far as deployment time
curves for clarity. is concerned.

Assume first there are 36 sensors: 20 with a sensing radius
of 6m, 8 with a sensing radius of 5m, 4 with a sensing
radius of 7m, and 4 with a sensing radius of 9m. Moreover,
the communication range of each sensor is assumed to be
10/3 times greater than its sensing range. The coverage
factor (defined as the ratio of the covered area to the overall
area) of the sensors in each round is depicted in Fig. 5 for
the algorithms proposed in this paper. It can be seen from
this figure that all three algorithms result in a satisfactor
coverage level of the target field in the first few rounds. ft ca o5k
also be observed that for this example the Curtex algorithm
performs better than the other algorithms as far as coverage
is concerned. *%% 7 % e

Number of sensors

Coverage

— Initial
—&— Minmax-curve
—S— Maxmin-curve
—% Curtex

1

Fig. 6. Network coverage for different number of sensors gidime
proposed algorithms.

36)

—&— Minmax-curve
20k —S— Maxmin—curve
—> Curtex

Coverage (n:

—&— Minmax-curve| |
—S— Maxmin-curve
— Curtex

Stopping round
=
IS

0.75 . . . . .
[ 5 10 15 20 25 30
Round

Fig. 5. Network coverage per round for 36 sensors.

It is desired now to compare the performance of the g a 45
proposed algorithms in terms of the number of deployed
sensorsn. To this end, consider three more set-upsil8, Fig. 7. The number of rounds required to reach the terminationiitions
27, and 45, in addition to the set-up discussed above. Let tfpe different number of sensors using the proposed algorithms



Another important means of assessing the performance @W-Voronoi) diagram is then employed to develop three
sensor deployment algorithms is the energy consumption dfstributed deployment algorithms accordingly. Understhe
the sensors. Sensors’ energy consumption highly dependsaigorithms, the sensors move iteratively to minimize cov-
the traveling distance of sensors, and the number of timesage holes in the network. The algorithms are based on
they stop before arriving at the destination (the latterie d some known facts about the general characteristics of an
to static friction). Thus, to compare the proposed methods ideal sensor configuration (e.g., each sensor should not be
terms of energy consumption, the traveling distance and theo far or too close to any of the boundary curves of its
number of movements should be taken into considerationorresponding MW-Voronoi region). Simulation results are
Fig. 8 depicts the average moving distance for differerretested to compare the proposed approaches for different
number of sensors. This figure shows that by increasingumber of sensors in the network in terms of coverage factor
the number of sensors, the average moving distance of thad energy consumption (which is assumed to be mainly a

sensors is decreased in all scenarios. This is due to the faehction of number of stops as well as moving distance).

that in all algorithms when the number of sensors increases,
the MW-Voronoi regions become smaller. As a result, the
distance between each sensor and its destination poinein tH!]
corresponding MW-Voronoi region decreases, which leads
to a decrease in the average moving distance. It can be seen
from Fig. 8 that the average moving distance of all threel?]
algorithms are more or less the same when there are largg
number of sensors in the field. The number of movements
versus the number of sensors is depicted in Fig. 9. It can bgl
observed from this figure that when the number of sensor:
is more than a certain level (whose value varies for differen
algorithms), the number of movements decreases. This is dL[%
to the fact that for large number of sensors the MW-Voronoi
regions become smaller, and hence the sensors will likely
cover their MW-Voronoi regions. As a result, the coverage
holes will be covered in a shorter period of time, decreasingg)
the number of movements.
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Fig. 8. The average distance each sensor travels for diffenember of

sensors using the proposed algorithms. [13]
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Fig. 9. The number of movements required for different numbeengsrs

using the proposed algorithms. [21]

V. CONCLUSIONS [22]

This paper presents efficient deployment algorithms for
field coverage in a network of mobile sensors with dif-
ferent sensing ranges. A multiplicatively weighted Vorbno
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