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Abstract— In this paper, efficient deployment algorithms are
proposed for a mobile sensor network to improve coverage. The
proposed algorithms calculate the position of the sensors iter-
atively based on the existing coverage holes in the target field.
The multiplicatively weighted Voronoi diagram (MW-Voronoi
diagram) is used to discover the coverage holes corresponding to
different sensors with different sensing ranges. The algorithms
proposed in this paper consider the distances of each sensor and
the points inside its corresponding MW-Voronoi region from the
boundary curves of the region. Under the proposed algorithms,
the sensors move in such a way that the coverage holes in the
target field are reduced. Simulations confirm the effectiveness
of the deployment algorithms proposed in this paper.

I. I NTRODUCTION

Wireless sensor networks have received a great deal of
attention in recent years, due to their increasing capabilities
in a wide range of applications. Such applications include
environmental monitoring, military surveillance and outer
space exploration, to name only a few [1], [2], [3], [4]. The
main challenge in the design of efficient sensor networks is
to optimize coverage and resource allocation [5], [6]. On the
other hand, there are some practical constraints that need
to be taken into account in developing sensor deployment
strategies. For example, due to the distributed nature of the
network, it is often desired to design a decentralized resource
allocation protocol [6]. Furthermore, in many applications
the initial positions of the sensors are not knowna priori [7].

In [8], location services (which are concerned with ob-
taining the location information of the destination) for mo-
bile ad-hoc networks are reviewed. A new coverage model
(namely, surface coverage) is proposed in [9], and two
pertinent problems concerning (i) expected coverage ratio
with stochastic deployment , and (ii) optimal deployment
strategy with planned deployment are subsequently inves-
tigated. Furthermore, three approximation algorithms with
provable approximation ratios are introduced in [9]. Several
sensor deployment strategies are proposed in the literature
for mobile sensors to provide sufficient coverage in the
field [6], [10], [11], [12], [13], [14]. In these works, it is
mainly assumed that all sensors have the same sensing range.
However, this is not a realistic assumption in many real-
world applications.

In this work, a number of distributed sensor deployment
strategies are introduced for a network of mobile sensors
with different sensing ranges. The multiplicatively weighted
Voronoi (MW-Voronoi) is used to divide the region into a
number of cells, where the weight assigned to each sensor
is proportional to its sensing radius [15], [16], [17]. The
resultant diagram is subsequently used to find the coverage
holes in the network. Three algorithms are proposed in this
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work to improve network coverage: Maxmin-curve, Minmax-
curve and Curtex. The main characteristic of these algorithms
is that the sensor movement is performed iteratively. Once
each destination is computed, new local coverage area of
the corresponding sensor (in the previously constructed MW-
Voronoi region) is compared to its preceding local coverage
area. If the new local coverage area is larger than the
preceding one, the sensor moves to the new destination;
otherwise, it remains in its current position. If, on the other
hand, the local coverage area of every sensor in an iteration
is not increased by a certain threshold, the algorithm is
terminated (to ensure a finite number of iterations).

The rest of the paper is organized as follows. In Sec-
tion II, some preliminaries as well as important notions and
definitions are provided. Section III presents three different
techniques for efficient network coverage, as the main contri-
bution of the paper. Simulation results are given in SectionIV
to demonstrate the effectiveness of the proposed approaches,
and finally the concluding remarks are summarized in Sec-
tion V.

II. BACKGROUND

Let S be a set ofn distinct weighted nodes in the plane
denoted by(S1, w1), (S2, w2), . . . , (Sn, wn), wherewi > 0
is the weighting factor associated withSi, for any i ∈ n :=
{1, 2, . . . , n}. Partition the plane inton regions such that:

• Each region contains only one node, and
• the nearest node, in the sense of weighted distance, to

any point inside a region is the node assigned to that
region.

The diagram obtained by the partitioning described above is
called themultiplicatively weighted Voronoi diagram(MW-
Voronoi diagram) [16]. Analogous to conventional Voronoi
diagram, the mathematical characterization of each region
obtained by the above partitioning is as follows:

Π̄i =
{

Q ∈ R
2 | wjd(Q,Si) ≤ wid(Q,Sj), ∀j ∈ n− {i}

}

(1)
for any i ∈ n, where d(Q,Si) is the Euclidean distance
betweenQ andSi.

According to (1), any pointQ in the i-th MW-Voronoi
region Π̄i has the following property:

d(Q,Si)

d(Q,Sj)
≤

wi

wj

, ∀i ∈ n, ∀j ∈ n− {i} (2)

Definition 1. Similar to conventional Voronoi diagram, the
nodesSi andSj (i, j ∈ n, i 6= j) in an MW-Voronoi diagram
are called neighbors if̄Πi∩ Π̄j 6= ∅. The set of all neighbors
of Si, i ∈ n, is denoted byNi and is formulated below:

Ni =
{

Sj ∈ S | Π̄i ∩ Π̄j 6= ∅, ∀j ∈ n
}

(3)

Definition 2. Consider a sensorSi with the sensing radius
ri and the corresponding MW-Voronoi region̄Πi, i ∈ n, and
let Q be an arbitrary point insidēΠi. The intersection of the
regionΠ̄i and a circle of radiusri centered atQ is referred to
as thecoverage area with respect to (w.r.t.) Q. The coverage



area w.r.t. the location of the sensorSi is called thelocal
coverage areaof that sensor.

Definition 3. The Apollonian circle of the segmentAB,
denoted byΩAB,k, is the locus of all pointsE such that
AE
BE

= k [18].

To construct thei-th MW-Voronoi region, first the Apol-
lonian circles of the neighboring partitions are found for the
i-th sensor. In other words, the Apollonian circlesΩSiSj ,

wi
wj

are found for allSj ∈ Ni. The smallest region (created by
the above circles) containing thei-th node is, in fact, the
i-th MW-Voronoi region (e.g., see Fig. 1). An example of a
MW-Voronoi diagram with 15 sensors is sketched in Fig. 2.
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Fig. 1. The MW-Voronoi region for a sensorS1 with four neighbors
S2, . . . , S5.

The MW-Voronoi diagram is the main tool for sensor
deployment in this paper. Each sensor has a sensing area
which is a circle whose size can be different for distinct
sensors. Let each sensor in the field be denoted by a node
with a weight equal to its sensing radius, and sketch the MW-
Voronoi region for each sensor. From the characterization of
the MW-Voronoi regions provided in (1), it is straightforward
to show that if a sensor cannot detect a phenomenon in its
corresponding region, no other sensor can detect it either.
This means that in order to find the ”so-called” coverage
holes (i.e., the undetectable points in the network), it would
suffice to compare the MW-Voronoi region of each node with
its local coverage area.

Notation 1. Consider a circle of radiusr centered atO,
denoted byΩ(O, r) hereafter, and a pointV in the plane.
The intersections ofΩ and the extension ofV O from O is
denoted byTV

Ω(O,r). The other intersection point ofΩ(O, r)

andV O (or its extension) is denoted bȳTV
Ω(O,r).

Notation 2. As mentioned before, the boundary curves of
an MW-Voronoi region are the segments of some Apollonian
circles. The set of all such Apollonian circles for thei-th
MW-Voronoi region is denoted byΩi. The setsΩ̄i and Ω̃i

are then defined as follows:

Ω̄i = {Ω ∈ Ωi|Si ∈ Ω}

Ω̃i = {Ω ∈ Ωi|Si /∈ Ω}

Assumption 1. In this paper, it is assumed that there is no
obstacle in the field. Therefore, the sensors can move to any
desired location without obstacle avoidance concerns using
existing techniques, e.g. [11], [12], [19], [20].

Assumption 2. The sensors are supposed to be capable of
localizing themselves with sufficient accuracy in the field
(using, for instance, the methods proposed in [1], [21]).

Assumption 3. The communication range of the sensors is
bounded (and not necessarily the same for all sensors). This
is a limiting factor for the sensors, potentially preventing
them from reaching their neighbors, which can result in
incorrect Voronoi regions around some of the sensors. Conse-
quently, such a limitation can negatively affect the detection
of coverage holes.
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Fig. 2. An example of the MW-Voronoi diagram for a group of 15
nonidentical sensors in a network.

III. D EPLOYMENT PROTOCOLS

In this section, three different protocols are developed for
a distributed sensor network. The proposed algorithms are
iterative, where in each iteration every sensor first broadcasts
its sensing radius and location to other sensors, and then
constructs its MW-Voronoi region based on the received
information. It checks the region subsequently to detect
the possible coverage holes. If any coverage hole exists,
the sensor calculates its target location (but does not move
there) in such a way that by moving there the coverage
hole would be eliminated, or at least its size would be
reduced by a certain threshold. Once the new target location
is calculated, the coverage area w.r.t. this location (in the
previously constructed MW-Voronoi region) is obtained. If
this coverage area is greater than the current one, the sensor
moves to the new location; otherwise, it remains in its current
position. In order to terminate the algorithm in finite time,
a proper coverage improvement thresholdǫ is defined such
that if the increase in the local coverage area by each sensor
is not sufficiently large (as specified byǫ), there is no need
to continue the iterations.

Notation 3. In the remainder of this paper,V represents
an MW-Voronoi diagram withn regions (each one corre-
sponding to a node). Furthermore, the number of vertices
and boundary curves of thei-th region are denoted bymi,
andei, respectively. It is easy to verify thatmi = ei, for the
case when the corresponding region has at least two vertices.

Definition 4. The corner points of thei-th MW-Voronoi
region (i.e., the intersection points of its boundary curves)
are denoted byVi = {Vi1, Vi2, . . . , Vil}. These points are
called the MW-Voronoi vertices for thei-th region. It is to be
noted that in any MW-Voronoi region, the farthest point from
the node associated with that region lies on its boundary.

A. Minmax-Curve Strategy

The idea behind the Minmax-curve technique is that
normally for optimal coverage, each sensor should not be
too far from any of the boundary curves in its MW-Voronoi
region. The Minmax-curve strategy selects the target location



for each sensor as a point inside the corresponding MW-
Voronoi region whose distance from the farthest curve is
minimized. This point will be referred to as theMinmax-
curve centroid, and will be denoted býOi for thei-th region,
i ∈ n. Furthermore, the distance between this point and the
farthest curve from it will be represented byŕi. The Minmax-
curve circle is defined next.

Definition 5. The Minmax-curve circle of an MW-Voronoi
region is the smallest circle centered inside or on the bound-
ary of that region, intersecting or touching the region’s all
boundary curves (or their extensions). This circle is, in fact,
C(Ói, ŕi), for the i-th region. It will be shown later that the
Minmax-curve circle is not necessarily unique.

Notation 4. The set of all boundary curves of thei-th
MW-Voronoi region will hereafter be denoted byǫi. In the
present subsection (i.e. III-A), intersecting/touching/tangent
to a boundary curveǫi means intersecting/touching/tangent
to ǫi or its extension. It is to be noted that the extension of
the boundary curveǫi belongs to the same Apollonian circle
as ǫi.

Definition 6. The bisector of two curvesǫ1 andǫ2 is defined
as the loci of any pointE whose distance fromǫ1 is equal to
that fromǫ2. The bisector of the curvesǫ1 andǫ2 is denoted
by Γǫ1,ǫ2 .

Definition 7. Let ǫ1 andǫ2 be the circular arcs of circlesC1

andC2, respectively. The curvesǫ1 andǫ2 are called parallel
if circles C1 andC2 are concentric.

A number of lemmas and theorems are presented next as
the main results of the paper. The proofs of some lemmas
are omitted due to space restrictions, and may be found in
[22].

Lemma 1. Consider two pointsA, B and a circleΩ(O, r)
(which in particular case can be a straight line). Let the
distance betweenA andΩ(O, r) be denoted byσ, and that
betweenB and this circle byρ. Let also the distance between
A andB be denoted byξ. Then:

σ − ξ ≤ ρ ≤ σ + ξ (4)

Lemma 2. If an MW-Voronoi region has more than one
boundary curve, then the corresponding Minmax-curve circle
is tangent to at least two of the boundary curves.

Definition 8. For any two curvesǫ1 and ǫ2, the setsΨmax
ǫ1,ǫ2

andΨmin
ǫ1,ǫ2

are defined as follows:

Ψmin
ǫ1,ǫ2

= {X ∈ Γǫ1,ǫ2 |∃δ > 0 : ∀Y ∈ Γǫ1,ǫ2 , |Y −X| ≤ δ

⇒ d(X, ǫ1) ≤ d(Y, ǫ1)} (5)

Ψmax
ǫ1,ǫ2

= {X ∈ Γǫ1,ǫ2 |∃δ > 0 : ∀Y ∈ Γǫ1,ǫ2 , |Y −X| ≤ δ

⇒ d(X, ǫ1) ≥ d(Y, ǫ1)} (6)

Lemma 3. Consider an MW-Voronoi diagramV, and assume
that the i-th region has at least three boundary curves.
Then the Minmax-curve circle of this region is tangent to
at least two boundary curves. Furthermore, if the Minmax-
curve circle is tangent to exactly two boundary curves, say
ǫ́i1 and ǫ́i2, then at least one of the following conditions
hold:
i) ǫ́i1 and ǫ́i2 are parallel;
ii) Ói ∈ Ψmin

ǫ́i1,ǫ́i2
, or

iii) Ói is the intersection of the bisector ofǫ́i1, ǫ́i2 and one
boundary curve of the region.

Lemma 4. If a Minmax-curve circle is tangent to two
parallel curves, then generically there are other Minmax-
curve circles, all of which are tangent to these parallel
curves, as well.

Remark 1. Consider an MW-Voronoi region with at least
three boundary curves, two of which are parallel. If one of
the Minmax-curve circles is tangent to these parallel curves,
then genericly all Minmax-curve circles are also tangent to
these two curves. At least one of these circles is tangent to
some other boundary curves too, and one of such circles is
arbitrarily chosen as the Minmax-curve circle in this case.

Definition 9. For convenience of notation, the circle touch-
ing two curvesǫg andǫh of MW-Voronoi regioni, centered at
the intersection of the bisectorǫg andǫh and the curveǫk, is
denoted byΩk

g,h, for any k, g, h ∈ ei := {1, . . . , ei}. Also,
the circle touching two curvesǫr and ǫs of MW-Voronoi
region i, centered at the pointA ∈ Ψmin

ǫr,ǫs
, is denoted by

ΩA,min
r,s , for any r, s ∈ ei.

Theorem 1. Suppose thei-th MW-Voronoi region has at
least three boundary curves. Let̂Di and D̀i be the sets of
all circles Ωk

g,h, ∀k, g, h ∈ ei, and ΩA,min
r,s , ∀r, s ∈ ei, A ∈

Ψmin
ǫr,ǫs

such that: (i) their centers lie inside the region or on
its boundaries, and (ii) they intersect with or are tangent to
all of the boundary curves of the region. Let alsoD̃i be the
set of all circles such that: (i) they are tangent to at least
three boundary curves of thei-th MW-Voronoi region (or
their extensions); (ii) their centers lie inside the regionor on
its boundaries, and (iii) they intersect with or are tangentto
all of the boundary curves of the MW-Voronoi region (or their
extensions). DefineDi := D̂i ∪ D̀i ∪ D̃i; then the Minmax-
curve circle belongs toDi, and is the smallest circle in this
set.

Proof: The proof follows directly from Lemmas 3
and 4, Remark 1, and Definitions 5 and 9. �

Remark 2. If an MW-Voronoi region has exactly one
boundary curve, then this curve is a circle and it is considered
as the Minmax-curve circle. If, on the other hand, it has
exactly two boundary curves, then according to Lemma 2
the Minmax-curve circle is tangent to both curves.

Using the result of Theorem 1 and discussions in Re-
marks 1 and 2, one can develop a procedure with a complex-
ity of order O(e3i ) to calculate the Minmax-curve centroid
in the i-th MW-Voronoi region. Since typically a MW-
Voronoi region does not have ”too many” boundary curves,
the computational complexity for calculating the Minmax-
curve centroid is normally not very high.

B. Maxmin-Curve Strategy

The main idea behind this strategy is that normally for
optimal coverage, each sensor should not be too close to
any of its Voronoi curves. The Maxmin-curve strategy selects
the target location for each sensor as a point inside the
corresponding MW-Voronoi region whose distance from the
nearest curve is maximized. This point will be referred to
as theMaxmin-curve centroid, and will be denoted by̆Oi

for the i-th region,i ∈ n. Furthermore, the distance between
this point and the nearest curve from it will be represented
by r̆i. The Maxmin-curve circle is defined next.

Definition 10. The Maxmin-curve circle of an MW-Voronoi
region is the largest circle inside the MW-Voronoi region.
This circle is, in fact,C(Ŏi, r̆i), for the i-th region.



Lemma 5. If an MW-Voronoi region has more than one
boundary curve, then the corresponding Maxmin-curve circle
is tangent to at least two of the curves.

Proof: Let ǫ̆i1 be the nearest boundary curve to the
Maxmin-curve centroid of thei-th MW-Voronoi region. This
means that̆ri is equal to the distance between̆Oi and ǫ̆i1,
also denoted byd(Ŏi, ǫ̆i1); thus,C(Ŏi, r̆i) is tangent tŏǫi1.
Define:

ŵ = min
ǫ∈ǫi−{ǫ̆i1}

{

d(Ŏi, ǫ)
}

(7)

Suppose that the Maxmin-curve circle is not tangent to any
other boundary curve, and henceδ∗ = (ŵ− r̆i)/2 is strictly
positive. LetM be a point on̆ǫi1 such thatMŎi⊥ǫ̆i1. Let
also Ô be a point on the extension ofMŎi such that the
distance between̆Oi and Ô is equal to an arbitrary value
δ ∈ (0, δ∗] (see, e.g. Fig. 3). According to Lemma 1:

d(Ô, ǫ) ≥ d(Ŏi, ǫ)− δ ≥ ŵ − δ, ∀ǫ ∈ ǫi − {ǫ̆i1} (8)

From (8) and the relationŝw − δ ≥ r̆i + δ > r̆i and
d(Ô, ǫ̆i1) > d(Ŏi, ǫ̆i1), one can conclude that:

min
ǫ∈ǫi

{

d(Ô, ǫ)
}

> r̆i (9)

which contradicts the initial assumption that̆Oi is the
Maxmin-curve centroid. This completes the proof. �
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Fig. 3. An illustrative figure used in the proof of Lemma 5.

Lemma 6. Consider an MW-Voronoi diagramV, and sup-
pose that thei-th MW-Voronoi region has at least three
boundary curves. Then the Maxmin-curve circle of this
region is tangent to at least three boundary curves. Fur-
thermore, if the Maxmin-curve circle is tangent to exactly
two boundary curves, say̆ǫi1, ǫ̆i2, then these two curves are
either parallel or Ŏi ∈ Ψmax

ǫ̆i1,ǫ̆i2
.

Proof: Suppose the Maxmin-curve circle of thei-th
region is tangent to exactly two curves, sayǫ̆i1 and ǫ̆i2, but
these two curves are not parallel. Define:

w̃ := min
ǫ∈ǫi−{ǫ̆i1,ǫ̆i2}

{

d(Ŏi, ǫ)
}

(10)

SinceC(Ŏi, r̆i) is tangent to exactly two boundary curves,
henceδ∗ = (w̃ − r̆)/2 is strictly positive. If Ŏi /∈ Ψmax

ǫ̆i1,ǫ̆i2
,

then one can choose a point inside thei-th MW-Voronoi
region and on the bisector of̆ǫi1 and ǫ̆i2, say Õ, such that
d(Õ, ǫ̆i1) = d(Õ, ǫ̆i2) > r̆i, and ŎiÕ = δ, for someδ ∈
(0, δ∗] (e.g., see Fig. 4). According to Lemma 1:

d(Õ, ǫ) ≥ d(Ŏi, ǫ)− δ ≥ w̃ − δ, ∀ǫ ∈ ǫi − {ǫ̆i1, ǫ̆i2} (11)

It results from (11) and the relations̃w − δ ≥ r̆i + δ > r̆i
andd(Õ, ǫ̆i1) = d(Õ, ǫ̆i2) > r̆i, that:

min
ǫ∈ǫi

{

d(Õ, ǫ)
}

> r̆i (12)

which contradicts the initial assumption that̆Oi is the
Maxmin-curve centroid. This completes the proof. �
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Fig. 4. An illustrative figure used in the proof of Lemma 6.

Definition 11. For convenience of notation, the circle tangent
to two curvesǫr andǫs of MW-Voronoi regioni, centered at
the pointA ∈ Ψmax

ǫr,ǫs
, is denoted byΩA,max

r,s for anyr, s ∈ ei.

Lemma 7. If a Maxmin-curve circle is tangent to two
parallel curves, then generically there are other Maxmin-
curve circles, all of which are tangent to these parallel
curves.

Remark 3. Consider an MW-Voronoi region with at least
three boundary curves, two of which are parallel. If one of
the Maxmin-curve circles is tangent to these parallel curves,
then genericly all Maxmin-curve circles are also tangent to
these two curves. At least one of these circles is tangent to
some other boundary curves too, and one of such circles is
arbitrarily chosen as the Maxmin-curve circle in this case.

Theorem 2. Consider an MW-Voronoi diagramV, and
suppose that thei-th MW-Voronoi region has at least
three boundary curves. Let̀Zi be the set of all circles
ΩA,max

r,s , ∀r, s ∈ ei, A ∈ Ψmax
ǫr,ǫs

that are inside the region.
Let also Z̃i be the set of all circles which: (i) are tangent
to at least three curves of regioni, and (ii) are inside the
region. DefineZi := Z̀i ∪ Z̃i; then the Maxmin-curve circle
belongs toZi, and also it is the largest circle in this set.

Proof: The proof follows directly from Lemmas 6
and 7, Definitions 10 and 11, and Remark 3. �

Remark 4. If the MW-Voronoi region has exactly one
boundary curve, then this curve is a circle as pointed out
before, and it is, in fact, the Maxmin-curve circle.

Using the result of Theorem 2 and discussion in Remarks 3
and 4, one can develop a procedure with a complexity of
orderO(e3i ) (which is typically not very high) to calculate
the Maxmin-curve centroid for thei-th MW-Voronoi region,
i ∈ n.

C. Curtex Strategy

By properly combining the strategies introduced in the
previous subsection and existing techniques, one can come
up with more efficient algorithms for coverage. This im-
provement, however, comes at the expense of more involved
computation for the destination point. The Curtex method
introduced here is a combination of the Maxmin-curve strat-
egy proposed in this paper, and the Minmax-vertex strategy



introduced in [22]. In this method, every sensor finds two
points in each round as its new location: one point according
to the Maxmin-curve strategy, and another one according to
the Minmax-vertex strategy. One of the two points which
provides better coverage is subsequently selected as the
target location of the sensor. Simulation results in the next
section demonstrate that this algorithm outperforms the other
strategies in terms of coverage.

Remark 5. In some special cases, even if the sensor moves
toward its target location (according to any of the algorithms
introduced above), the local coverage might not be improved.
This happens when the target location is too far from its
present location. To overcome this problem, one can adopt a
technique similar to the one provided in [12], and choose the
midpoint or3/4 point between the current location and the
calculated target location. If the local coverage of the sensor
is better from this point (compared to the calculated target
point), it stops there.

Remark 6. In order to prevent the sensors from oscillatory
movements, a proper scheme can be used to let each sensor
move toward the target location only if the direction of its
move is consistent with its move in the preceding round, as
proposed in [12].

IV. SIMULATION RESULTS

In this section, the three algorithms proposed in Section III
are applied to a flat space of size50m×50m. It is to be noted
that the results presented in this section for field coverage
are all the average values obtained by using 20 random
initial deployments for the sensors. Furthermore, while the
horizontal axis in all figures in this section represents a
discrete parameter, the graphs are displayed as continuous
curves for clarity.

Assume first there are 36 sensors: 20 with a sensing radius
of 6m, 8 with a sensing radius of 5m, 4 with a sensing
radius of 7m, and 4 with a sensing radius of 9m. Moreover,
the communication range of each sensor is assumed to be
10/3 times greater than its sensing range. The coverage
factor (defined as the ratio of the covered area to the overall
area) of the sensors in each round is depicted in Fig. 5 for
the algorithms proposed in this paper. It can be seen from
this figure that all three algorithms result in a satisfactory
coverage level of the target field in the first few rounds. It can
also be observed that for this example the Curtex algorithm
performs better than the other algorithms as far as coverage
is concerned.
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Fig. 5. Network coverage per round for 36 sensors.

It is desired now to compare the performance of the
proposed algorithms in terms of the number of deployed
sensorsn. To this end, consider three more set-ups:n=18,
27, and 45, in addition to the set-up discussed above. Let the

changes in the number of identical sensors in the new setups
be proportional to the changes in the total number of sensors
(e.g., for the case ofn=18 there will be 10 sensors with a
sensing radius of 6m, 4 with a sensing radius of 5m, 2 with
a sensing radius of 7m, and 2 with a sensing radius of 9m).
Fig. 6 provides the coverage results for different number of
sensors. It can be seen from this figure that the target field
coverage in Curtex algorithm is larger than that in other two
algorithms for different number of sensors.

Another important factor in the performance evaluation
of different algorithms is how fast the desired coverage
level is achieved. Notice that the sensor deployment time
in each round is almost equal for all algorithms. Hence,
to compare the deployment speed, it suffices to check the
number of rounds it takes for the sensors to provide a
prescribed coverage level. It is shown in Fig. 7 that in all
three algorithms the number of rounds (required to meet
a certain termination condition) increases by increasing the
number of sensors up to a certain value, and then starts to
decrease by adding more sensors. This is due mainly to the
fact that when there are a small number of sensors in the
target field, the MW-Voronoi regions are large in comparison
with the corresponding sensing circles. Hence, there is a good
chance that each sensor’s local coverage area is completely
inside its MW-Voronoi region, which means that the sensor
does not need to move in order to increase its coverage
area. On the other hand, when there are a large number of
sensors in the target field, there is a good chance that each
sensor covers its MW-Voronoi region, which implies that the
termination condition will be satisfied in a short period of
time. It is also to be noted that the number of rounds in
the Minmax-curve algorithm is relatively low, making it a
good candidate for field coverage as far as deployment time
is concerned.
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Fig. 6. Network coverage for different number of sensors using the
proposed algorithms.
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Fig. 7. The number of rounds required to reach the termination conditions
for different number of sensors using the proposed algorithms.



Another important means of assessing the performance of
sensor deployment algorithms is the energy consumption of
the sensors. Sensors’ energy consumption highly depends on
the traveling distance of sensors, and the number of times
they stop before arriving at the destination (the latter is due
to static friction). Thus, to compare the proposed methods in
terms of energy consumption, the traveling distance and the
number of movements should be taken into consideration.
Fig. 8 depicts the average moving distance for different
number of sensors. This figure shows that by increasing
the number of sensors, the average moving distance of the
sensors is decreased in all scenarios. This is due to the fact
that in all algorithms when the number of sensors increases,
the MW-Voronoi regions become smaller. As a result, the
distance between each sensor and its destination point in the
corresponding MW-Voronoi region decreases, which leads
to a decrease in the average moving distance. It can be seen
from Fig. 8 that the average moving distance of all three
algorithms are more or less the same when there are large
number of sensors in the field. The number of movements
versus the number of sensors is depicted in Fig. 9. It can be
observed from this figure that when the number of sensors
is more than a certain level (whose value varies for different
algorithms), the number of movements decreases. This is due
to the fact that for large number of sensors the MW-Voronoi
regions become smaller, and hence the sensors will likely
cover their MW-Voronoi regions. As a result, the coverage
holes will be covered in a shorter period of time, decreasing
the number of movements.
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Fig. 8. The average distance each sensor travels for different number of
sensors using the proposed algorithms.
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Fig. 9. The number of movements required for different number of sensors
using the proposed algorithms.

V. CONCLUSIONS

This paper presents efficient deployment algorithms for
field coverage in a network of mobile sensors with dif-
ferent sensing ranges. A multiplicatively weighted Voronoi

(MW-Voronoi) diagram is then employed to develop three
distributed deployment algorithms accordingly. Under these
algorithms, the sensors move iteratively to minimize cov-
erage holes in the network. The algorithms are based on
some known facts about the general characteristics of an
ideal sensor configuration (e.g., each sensor should not be
too far or too close to any of the boundary curves of its
corresponding MW-Voronoi region). Simulation results are
pretested to compare the proposed approaches for different
number of sensors in the network in terms of coverage factor
and energy consumption (which is assumed to be mainly a
function of number of stops as well as moving distance).
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