

Property Data for Low-GWP Refrigerants: What Do We Know and What Don't We Know?

Mark O. McLinden

Thermophysical Properties Division National Institute of Standards and Technology Boulder, Colorado USA

Removing Barriers to Low-GWP Refrigerants Learning Objectives

- Describe the climate change issue associated with high-GWP refrigerants and the leading low-GWP options available today
- Explain the refrigerant thermophysical property requirements needed for new low-GWP refrigerants and how property data may be used
- Be able to explain the challenges with measuring the flammability properties of refrigerants that are only marginally flammable and options to make these measurements
- Explain the development history of hydrofluoroolefin low-GWP refrigerants such as HFO-1234yf and why this new class of compounds has unique properties
 - Describe the codes and regulations in the U.S., Europe, and Japan that govern the use of low-GWP refrigerants, such as CO_2 , ammonia, hydrocarbons, and HFOs, and the barriers in current standards for their potential use
- Apply learnings from seminar to begin selecting low-GWP refrigerants for specific applications and begin designing new HVAC&R systems with these refrigerants

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to ASHRAE Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/ASHRAE for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Outline

What data do we need?
What are the candidate fluids?
Assessment of the data
How are the new fluids different?

What Data Do We Need on a Refrigerant?

- Safety
 - toxicity (acute and chronic)
 - →flammability
- Environmental
 - →ozone depletion potential (ODP)
 - →green house warming potential (GWP)
 - atmospheric life (impacts ODP & GWP)
- Materials
 - →compatibility with metals, seals, etc.
 - Iubricant
 - stability (hydrolysis, polymerization, etc.)
- Performance
 - →thermodynamic properties
 - →transport properties

What Counts as "Low-GWP"?

• R134a: GWP = 1430

(relative to CO₂ w/ 100-year time horizon)
... must have GWP << 1430</pre>

- EU regulation for automotive A/C: GWP < 150 (takes effect 2011 for new models)
- North American Proposal to Montreal Protocol: 85 % phase-down by 2033 (0.15 × 1430 = 215)

Low-GWP Options (Current Fluids)

Fluid		NBP (°C)	GWP [CO ₂ = 1]	ASHRAE class (tox/flam)
HFC	41	-78.3	92	N/A (flam)
	32	-51.7	675	A2L
	161	-37.6	12	N/A (flam)
	134a	-26.1	1430	A1
	152a	-24.0	124	A2
HCFC	123	27.8	77	B1
HC	290 (propane)	-42.1	20	A3
	600a (isobutane)	-11.7	20	A3
	600 (butane)	-0.5	20	A3
CO ₂	744	-56.6	1	A1
NH ₃	717 (ammonia)	-33.3	<1	B2L
H ₂ O	718 (water)	100.0	<1	A1
Ether	E170	-24.8	1	A3

Low-GWP Refrigerants—New Possibilities

Fluid		NBP (°C)	GWP [CO ₂ = 1]	ASHRAE class (tox/flam)
HFO	1234yf	-29.5	4	A2L
	1234ze(E)	-19.0	6	2L(pending)

Additional HFOs Under Development

- Announced in talks and conference papers
 but not identified
- Many (most?) are in patent or chemical literature
 ... molecules themselves are not patentable
 (production processes are patentable)
- Blends w/ HFOs also being developed
 azeotropic blends are patentable
 - zeotropic blends may be patentable

This is the major "What We Don't Know"

Low-GWP Refrigerants—Additional Possibilities

- Interest in fluorinated ethers in 1990s
- Examples among specialty solvents and heat-transfer fluids:
 - -fluorinated ethers
 - especially "segregated" ethers (all H on a single carbon)
 - -fluorinated ketones
 - →non-flammable
 - <mark>→</mark>low(ish) GWP
 - commercially available
 - (but boiling points higher than typical refrigerants)

Property Data and Equations of State

Fluid Properties—Why Should ASHRAE Care?

Cycle analysis *IS* properties

$$COP_{R} = \frac{h_{1} - h_{4}}{h_{2} - h_{1}} = f\left(T_{\text{evap}}, T_{\text{cond}}, properties\right)$$

Equation of State (Thermodynamic Properties)

A thermodynamically consistent representation of the properties of a fluid

$$\alpha = \frac{A}{RT} = \alpha^{ideal} + \sum_{i} N_{i} \tau^{t_{i}} \delta^{d_{k}} \qquad \text{"traditional terms"} \\ + \sum_{j} N_{j} \tau^{t_{j}} \delta^{d_{j}} \exp\left(-a_{j} \delta^{l_{j}}\right) \qquad \text{"Gaussian terms" (critical region)} \\ + \sum_{k} N_{k} \tau^{t_{k}} \delta^{d_{k}} \exp\left(-a_{k} (\delta - \varepsilon_{k})^{l_{k}}\right) \exp\left(-\beta_{k} (\tau - \gamma_{k})^{m_{k}}\right)$$

where: $\delta = \rho / \rho_{crit}$, $\tau = T_{crit} / T$

All other properties by differentiation:

$$p = RT\rho \left[1 + \frac{\partial \alpha^r}{\partial \delta} \right], \qquad C_V = R \left[-\tau^2 \frac{\partial^2 \alpha}{\partial \tau^2} \right]$$

Evaluate at reduced T,ρ (not mixture T,ρ) given by "reducing parameters"

$$\tau = T \ T \qquad \delta = \rho T \rho$$

$$T^* = \sum_{i=1}^n x_i T_i^{crit} + \sum_{i=i+1}^{n-1} \sum_{j=i+1}^n x_i x_j \zeta_{ij} \qquad \frac{1}{\rho^*} = \sum_{i=1}^n \frac{x_i}{\rho_i^{crit}} + \sum_{i=i+1}^{n-1} \sum_{j=i+1}^n x_i x_i \xi_{ij}$$

Adjustable parameters ζ , ξ , F_{ij} + mixing function give great flexibility in fitting mixtures with limited or extensive data

Data Needed to Establish Equation of State (Thermodynamic Properties)

Recent R1234ze(E) Data

Equation of State—Fitting Process (R1234ze(E) as Example)

- Non-linear in the parameters
 must start with initial guess for EOS
 propane equation with 14 terms
- Objective function:
 minimize sum of squares
- Fit numerical coefficients
- Fit exponents on temperature terms
 (0 ~ 5), max for R1234ze is 2.5
- Fixed exponents on density terms
 →integers ≥ 1
- Highly iterative process (1000's of iterations)

Equation of State—Fitting Process (Constraints)

• Numerous further constraints e.g., shape of critical isotherm

for $\rho < \rho_{\rm crit}$:

$$\frac{\partial p}{\partial \rho} > 0; \quad \frac{\partial^2 p}{\partial \rho^2} < 0; \quad \frac{\partial^3 p}{\partial \rho^3} > 0; \quad \frac{\partial^4 p}{\partial \rho^4} < 0$$

for $\rho > \rho_{\rm crit}$:

$$\frac{\partial p}{\partial \rho} > 0; \quad \frac{\partial^2 p}{\partial \rho^2} > 0; \quad \frac{\partial^3 p}{\partial \rho^3} > 0; \quad \frac{\partial^4 p}{\partial \rho^4} > 0$$

add $exp\left[-\frac{\partial p}{\partial \rho}\right]$ to sum of squares

- EOS with correct shape:
 small addition to sum of squares
 EOS with incorrect shape:
 - Iarge penalty to sum of squares

Data Comparisons and Assessments

Data Comparisons—EOS vs. $p-\rho-T$ Data, R1234ze(E)

Source	$\sigma(\%)$
McLinden et al. $O \diamondsuit \triangle$	0.032
Tanaka +	0.087
Grebenkov (saťn) 🔳	0.22
Grebenkov (liquid)	0.52
Grebenkov (vapor)	1.31

Data Comparisons—EOS vs. *p*_{sat} Data, R1234ze(E)

Data Comparisons—EOS vs. C_p and Sound Speed Data R1234ze(E)

Source	$\sigma(\%)$
Tanaka (C_p) +	2.16
Lago (w) 🔶	0.49

Data Summary

		Eqn. of State	Transport	
Fluid		(thermo)	(visc. & t.c.)	
HFC	32	good	good	
	134a	good	good	
	152a	fair (old form)	good	
HCFC	123	fair (old form)	fair (visc)-good (t.c.)	
HC	290 (propane)	excellent	very good	
	600a (isobutane)	very good	very good	
	600 (butane)	very good	very good	
CO ₂	744	excellent	very good	
NH ₃	717 (ammonia)	fair (!)*	good	
H ₂ O	718 (water)	excellent	excellent	
DME	E170	fair (limited data)	fair (limited data)	
HFO	1234yf	good (limited data)	limited data	
	1234ze(E)	good (limited data)	limited data	

*new EOS under development

Thermo Data Summary—Blends

		lre	
Blend Class	Data Assessment	ressı	
HFC 32/125/134a very good data and model		<u>م</u>	
other HFC blends	numerous mixture pairs, but generally only VLE data (i.e., no $\rho(T,p,x)$)		dew line (v
HFC + HC limited pairs, generally only VLE data			Compos
HFC + ethers	virtually no data		.87
HC blends	very good data and models (natural gas)		
	Arakawa et al. (2010): R32/1234yf*	sure	
	proprietary data (azeotropes disclosed)	Press	
predictive model for refrigerant blends	available, generally good, but dated (2001)		

*additional work in progress in Japan

Refrigerant Molecules Are Getting More Complex

- Increased complexity:
 - changes fundamental shape of thermodynamic surface
 - ➡increased flash losses
- The cycle may need to be modified

Conclusions

 Adequate data for a range of traditional and new low-GWP fluids

- But much work remains:
 - -Additional candidates are proprietary
 - -Blend data w/ HFOs are very limited

New fluids may require modified cycles

