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Abstract— In this paper we study a model of joint congestion
control and routing in a ring network of sources with a single
destination at the center (Figure 2). A utility maximization
problem subject to routing constraints is posed and equations
for its solution are presented. The distribution of traffic on
routes available to a source is subject to an entropy constraint
that controls the path diversity or degree of robustness of
the allocation. Thus the utility/stability issue can be addressed
directly and quantitatively in a way that differs from previous
work on multiroute NUM problems.

The dynamics of the model equations will be analyzed in
the case of a constant route allocation defined by the allocation
distribution entropy for a source. Motivated by earlier work
on a two link network, the dynamics of the mean route costs
for each source in the ring network are studied by deriving
a continuous time approximation of the equations they satisfy.
The equilibrium solutions of this approximation are used to
greatly simplify the analysis of the model equations and the
solution of the original optimization problem. We conclude with
a discussion of the tradeoff between utility and path diversity
(robustness) for two contrasting assignment of link capacities.
Given a homogeneous assignment of capacities the network
behaves like a two link model (Fig 1), while a heterogeneous
assignment produces utilities displaying different tradeoffs for
different sources.

I. INTRODUCTION

In recent years, network protocols have been interpreted

as algorithms that solve a convex optimization problem (

see e.g. [1], [2]). In this set-up overall congestion control

is formulated as a network utility maximization problem

(NUM) that is solved in a distributed fashion by the various

network layers. The network topology and the capacity of

its links introduce constraints on the optimal solution. Then

algorithms solve the problem by computing and modifying

the primal and dual variables based on efficient communi-

cation between users, link and router layers of the network.

Since the work of Kelly et al [2] congestion control protocols

have been seen as regulating user network transmission

rates so that the objective function that is, the aggregate

utility, is maximized subject to capacity constraints ([3],

[4]). The utility function incorporates efficient utilization and

fair allocation of resources among users. Significantly such

functions have been identified for existing protocols such as

TCP and BGP (Border Gateway Protocols) through a process

of ”reverse engineering”, thus opening up opportunities for

analysis and improvement of existing protocols as well as

the development of new ones.

The paradigm just described has been extended to the

problem of characterizing protocols that jointly control con-

gestion and routing ([1], and see references in [5]. Aside

from the obvious improvement in the utilization of network

resources that could be gained by such an approach, there are

benefits in this time of cyber security concerns, to building

adequate network robustness against route disruptions. How-

ever as noted in [1] there is a tradeoff between robustness

through path diversity on the one hand and network perfor-

mance or utility on the other. Single path routing based on

e.g. the OSPF (Open Shortest Path First) protocol can lead

to route flapping instability. However splitting traffic equally

across all paths regardless of cost would also imply reduced

utility. The best tradeoff if it exists would have to navigate

between these extremes.

In previous work ([5],[6]), we analyzed an algorithm for

joint congestion control and routing where this tradeoff could

be assessed. A generalized NUM (network utility maximiza-

tion ) problem was developed for an arbitrary network and

following [1], equations for the solving the dual optimization

problem were developed and analyzed for simple cases. As

in these references, the use of a dual formulation introduces

a decentralized algorithm that results in a lower utility than

could be achieved theoretically in the unconstrained problem

on the one hand but on the other hand is a more stable and

robust implementation. In our model, each source s, was

assigned a route according to an allocation defined by a route

probability distribution. The distribution entropy hs (see [6])

measured the path diversity or alternatively, the degree of

flexibility in the choice of routes available available to source

s. Equilibrium solutions of the model equations were used

to find the maximal network or aggregate utility over all
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bandwidth rates and route allocations whose distribution

entropy is greater or equal to hs.

In this paper we want to consider the aggregate utility/path

diversity trade-off in the context of larger networks. In

principle this implies systems with more source-destination

pairs and more complex topology. Given the nature of the op-

timization problem solved by the algorithm we have chosen

the relatively simple but still more realistic ring network-with

an arbitrary number of sources and a single destination. The

ring; a circle of pairwise connected sources with a destination

at the center, is a natural extension of a single two link

network and yet it allows us to investigate conditions for dual

optimality and the effect of link capacities on the aggregate

utility as route allocation distribution(s) vary. In [5] and [6],

the entropy constraints created an implicit equation for each

source to be solved at each iteration step of the algorithm.

For a network with numerous sources however, the amount of

numerical computation is prohibitive. Therefore we take two

steps to simplify the problem. The analysis of the two link

case revealed that the optimal route allocation distribution is

piecewise constant over convex regions that depend on the

link costs. Thus it is reasonable to assume that an investi-

gation of the variation of the aggregate utility as a function

hs for this simplified problem can provide some information

about the original and therefore give us some insight about

the tradeoff between aggregate utility and diversity in the

cases we discuss (see below). We approximate the model

equations by its continuous relaxation, a multiroute version

of the dual equation in [2],[3], to obtain an equation for the

mean route cost of each source over time. In particular if

the sources are assumed to have the same route allocation

distribution β̂ = {βs1, βs2}s and thus the same route entropy,

the costs converge to a unique equilibrium.

II. DERIVATION OF MODEL EQUATIONS

A. Utility optimization with routing constraints

Consider a planar network to be a graph with nodes

representing physical nodes in the network and edges repre-

senting links. The link capacities are defined by the vector

c = (c1, c2, · · · , cL). A user who requires bandwidth to

transmit from one node to another in the network (or a

single TCP session between those two nodes) is indexed

by s, the index of the source-destination pair. For each

s the network operator assigns a bandwidth rate xs and

uses a twice differentiable strictly concave utility function

Us : [ms,Ms] → R. Here ms and Ms are lower and

upper bounds respectively on the bandwidth rate. Us(xs)
measures the degree of user satisfaction, network fairness

and efficiency for s. Users in a source-destination class s
are assigned a path by edge routers so that the fraction of

users allocated to path or route r is βsr with 0 < βsr ≤ 1.

We can regard βs = {βsr}r∈Rs
as a probability distribution

because the fractions sum to 1. Here Rs is the set of all

paths available to s. The distribution is constrained so that

the traffic on any link does not exceed the link capacity.

The optimization problem that our protocol seeks to solve

is therefore:

max
β≥0,x∈X x≥0

∑
s

Us(xs) (1)

∑
s

∑
r∈Rs(l)

βsrxs ≤ cl (2)

∀s
∑
r∈Rs

βsr = 1, βsr ≥ 0 (3)

−
∑
r∈Rs

βsr log βsr ≥ hs (4)

x = {xs : s = 1, 2, · · ·S} is the vector of source rates

with each xs ∈ [ms,Ms] where ms ≥ 0 and Rs(l) is the

set of routes used by source s that require link l. In this

paper we will take ms = 0 for all s and Us(xs) = ws(1 −
αs)x

1−αs
s with αs = 2. The matrix β = {βsr}s,r is a set

of probability distributions that define path allocations for

each source s. The constraints in (2) state that all routes

that use link l i.e. routes r in Rs(l) of source s be assigned

bandwidth rates βsrxs so that the total link load does not

exceed the capacity cl. Equation (3) is the usual requirement

for probability distributions and equation (4) places a lower

bound on the degree of randomness for the distribution {βsr}
for source s. Indeed recall that for any allocation βs, the

entropy of the associated probability distribution is:

H(βs) = −
( ∑

r∈Rs

βsr log βsr

)
. (5)

Thus equation (4) is just H(βs) ≥ hs. For example if hs = 0,

then all allocations are permissible because H(βs) ≥ 0 holds

for all allocations βs including non-robust allocations that

place all source traffic on just one path (H(βs) = 0). If

that path maximizes utility the allocation would be optimal.

When hs > 0, these paths are excluded and the more robust

paths are retained. The degree of robustness of the set of

feasible allocations is dictated by the size of hs.

Problem (1-4) is not convex in (x, β) but it can be made to

be convex by performing the invertible change of variables

(xs, βsr) → (xs, ysr) : ysr = βsrxs r ∈ Rs , s = 1, · · · , S.

The transformed system is convex in (x,y) [1].

B. Description of Model

As is customary in a constrained optimization problem,

dual variables- in our case the link costs, play an integral

role in the solution of equations (1)-(4). To solve the dual

problem, a projection gradient procedure is employed and as

in previous works, (see references [3], [1]), the dynamics of

the link costs {pl, l = 1, 2, · · · , L} and route allocations

at each iteration step is a model of the behavior of the

protocol at each time step. Under appropriate conditions on

Us and the initial link costs (see reference [6]) the iterations

converge to an equilibrium cost vector p∗, the solution of

the dual optimization problem. The solutions of the original

optimization x∗ and β∗ of equations (1)-(4) are functions of

p∗ determined by the optimization conditions (see (7) and

(9)).
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If p
(k)
l is the link cost at time k and cl is the capacity of

the lth link then the equations of the model are

p
(k+1)
l =

⎡
⎣p(k)l − h

⎧⎨
⎩cl −

∑
s

xs(k)
∑

r∈Rs(l)

β(k)
sr

⎫⎬
⎭
⎤
⎦
+

l = 1, · · ·L (6)

β(k)
sr = exp(−γ(k)

s dr(k))/Zs(k) (7)

where dr(k) =
∑

l∈r p
(k)
l is the cost of route r at time k, h

is a step size , [a]+ = a if a > 0 and is 0 otherwise.

Zs(k) =
∑

r∈R(s) exp(−γ
(k)
s dr(k)) is the normalization

factor for the route distribution and, the variable γ
(k)
s is the

solution of the implicit equation,

γ(k)
s Ds(k)+log(Zs(k)) = hs, Ds =

∑
r∈R(s)

β(k)
sr dr(k) (8)

The model equations are completed by a relation between

the bandwidth rate xs(k) and Ds(k), the mean route cost at

time k for positive constants ws and M .

xs(k) = min

((
ws

Ds(k)

)1/2

, M

)
(9)

If xs < M , then (9) is a necessary optimality condition that

it must satisfy.

Equations (7) and (8) force the route distribution β
(k)
sr to

be the unique distribution of entropy hs with the smallest

mean route cost at each time step k. Thus the condition on

the route distributions is H(βs) = hs. This constant entropy

requirement will constrain the set of values {pl | l = 1 · · ·L}
for which a bounded γ

(k)
s exists. The precise set depends

on the network topology and capacity of the links. In [6]

we determined the regions of p space for the TwoLinks and

Diamond networks.

C. TwoLinks Network

A network consisting of a single source (the left node),

destination (on the right) connected by two links is depicted

in Figure 1. The equations (6) become:

p
(k+1)
1 =

[
p
(k)
1 − h{c1 − βk

1xs(k)}
]+

,

(10)

p
(k+1)
2 =

[
p
(k)
2 − h{c2 − βk

2xs(k)}
]+

Equations (7)-(8) are added to these. Here each link is a path

or route so di = pi i = 1, 2.

The dynamics of the TwoLinks systems is conveniently

described in terms of a critical entropy hT (c) < log 2 given

by,

hT (c) = −
[

c1
c1 + c2

log
c1

c1 + c2
+

c2
c1 + c2

log
c2

c1 + c2

]
(11)

with a corresponding critical route distribution,

β∗
1 =

c1
c1 + c2

, β∗
2 =

c2
c1 + c2

(12)

In [6], we showed that the optimal route distribution given

Fig. 1. A two links network (TwoLinks)

by (7) , (8) , converges in a single step to one of two

distributions corresponding to the value of hs when hs <
log(2). The specific distribution depends on the initial link

cost vector and link capacities. An important implication of

this fact is that once these variables are defined, we can
dispense with the implicit equation and greatly simplify the

computations and analysis of the link equations. Calculations

based on the use of (10) and (8), and then on (10) and the

constant distribution were compared and the results were

identical.

Let us now describe the dynamics of the link equations for

hs = hT (c). Within the quadrant sector P = {p̂ = (p1, p2, ) :

p1 < p2 }, the route probabilities satisfy β
(k)
1 > β

(k)
2 as

long as (p
(k)
1 , p

(k)
2 ) ∈ P. If hs = hT (c), and c1 > c2, then

(β∗
1 , β

∗
2) is the unique optimal probability distribution and

β
(k)
i = β∗

i i = 1, 2 in P. At the value, hT (c), if (p
(0)
1 , p

(0)
2 ) ∈

P, either (p
(k)
1 , p

(k)
2 ) ∈ P for k ≥ 1 or (p

(k)
1 , p

(k)
2 ) reaches the

line L = {p̂ = (p1, p2) : p1 = p2}, where the solution of (8)

is undefined. Therefore away from L, the route distribution is

constant and equal to the values in (12) for k ≥ 1. There is an

open subset H of P where it can be shown that all subsequent

iterates of (10) remain away from L and converge to a

point on the line of points with constant mean route value,

L∗ = {(p1, p2) : β∗
1p1 + β∗

2p2 = x̄} where x̄ = w(
β∗
2

c2
)2.

The position of the equilibrium point on L∗ depends on the

initial value (p
(0)
1 , p

(0)
2 ), so it cannot be unique. However, x̄ is

unique and from this one obtains a unique optimal bandwidth

rate x∗ =
(
w
x̄

)1/2
. Orbits beginning outside of H limit to a

point on the p2 axis.

For hs > hT (c) , p̂ → (0, p∗), p∗ > x̄. For hs < hT (c),
there is no convergence to an equilibrium. In cases where

p̂ converges, we can use the results of [3] to conclude that
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Fig. 2. RING MULTISOURCE NETWORK

the limiting value is an optimal solution of the dual problem

(see [6]).

III. RING NETWORK

Our goal in this section is to solve the optimization

problem for a more complex but still tractable multisource

network. In Section II-C, the optimal route allocation dis-

tribution was constant after the first time step. By choosing

region P, a convex subset of the non-negative quadrant of

R
2
+, the solutions of the dual problem could be determined

by substituting this route distribution into the equations

and determining the equilibrium behavior. Given a set of

route entropies,for the multisource network we will assume

a constant allocation distribution for each source. Some

rationale for this assumption comes from the fact that each

source in our multisource network has just two links.

We will sketch an approach to the analysis of the link

equations and determining its equilibria, based on the dy-

namics of the mean route cost for each source. A system

of ordinary differential equations for the mean route costs is

formally derived and is approximately valid for small step

sizes h for some interval of time whose length it is assumed,

does not shrink to zero with step size. In section III-A we

identify sufficient conditions for the existence of a positive

equilibrium for the differential equations. The analysis of

(13-15) can be simplified by setting the mean route cost equal

to the positive equilibrium of 18 when it exists. Therefore the

source bandwidth rate is determined by(9). Any equilibrium

values of the link equations are solutions of the dual problem

for the network and the bandwidth rates are optimal. Setting

the mean route costs in advance can be justified in cases

where the mean route costs converge before the individual

link costs. A numerical example of this is shown. More

numerical calculations are found in section III-C.

In the multisource network we consider, all the nodes

(sources of the network) are arranged in a circular pattern

around a single destination at the circle’s center. Each node is

connected by a (direct) link to the destination and a second

link from the node to its nearest neighbor in a clockwise

direction. This means that each source has two routes to the

destination. The first through a direct link and the second, a

path consisting of a link to the clockwise nearest neighbor

followed by a direct link from the neighbor source to the

destination. Given S sources, index the sources using i =
1 2, · · ·S. There are L = 2 · S, links. The equations for the

direct links, using (6) are:

p
(k+1)
1 =

[
p
(k)
1 − h {c1 − β1,1x1(k)− βS,2xS(k)}

]+
(13)

p
(k+1)
i =

[
p
(k)
i − h {ci − βi,1xi(k)− βi−1,2xi−1(k)}

]+
i = 2 , · · · , S

p
(k+1)
S =

[
p
(k)
S − h {cS − βS,1xS(k)− βS−1,2xS−1(k)}

]+

For the indirect (or exterior) links joining the sources we

have:

p
(k+1)
i+S =

[
p
(k)
i+S − h {ci+S − βi,2xi(k)}

]+
(14)

i = 1 · · · , S − 1

p
(k+1)
L =

[
p
(k)
L − h {cL − βS,2xS(k)}

]+
(15)

Here βi,1 and βi,2 are the probabilities of choosing the

direct or indirect paths respectively and are constants in the

problem using the assumptions discussed at the beginning

of this section. Fixed points, i.e. equilibrium values of the

system (13)-(15) are solutions of the dual problem and can be

used to generate the solution of (1)-(4). Sufficient conditions

for an internal equilibrium where all link prices pi are

positive are:

β1,1 =
c1 − cL

x1
βi,1 =

ci − ci−1+S

xi
(16)

i = 1 , 2 · · ·S

x1 = c1 + cS+1 − cL

xi = ci + cS+i − cS+i−1

i = 1 , 2 , · · ·S
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Other equilibria occur when one or more of the pi = 0.

Rather than investigate this system in full generality we

will consider a simplified version of (13)-(15), based on

a differential equation approximation. This technique of

approximating the equations for the dual problem by a

continuous or relaxed system (for a different utility function

and single path routing) was used by Kelly et al in [2].

Given a route allocation β̂, the mean or average route cost

to source i is:

Di = βi,1pi + βi,2 (pi+S + pi+1) , (17)

i = 1 , 2 , · · · , S − 1

DS = βS,1pS + βS,2 (pL + p1) .

To derive equations for the mean route costs we assume that:

• There exist k1 > k0 ≥ 0 with k1 − k0 � 0 as h → 0,

such that Rl(k) ≥ 0 , l = 1 · · ·L for all k0 ≤ k ≤ k1.

Here [Rl(k)]
+

is the right hand side of the equation for

p
(k+1)
l in (13-15). Under this assumption the equations for

mean route costs can be obtained by using (17) and adding

the corresponding right hand sides of the link costs system.

On taking the limit of small h as h → 0, we formally derive

the following equations:

dDi

dt
= −

⎡
⎣Ci −

S∑
j=1

Wijfj(Dj)

⎤
⎦ , i = 1 · · · S (18)

with

fi(Di) = min{
(
wi

Di

) 1
2

,M} ,

where Ci = βi,1ci+βi,2 (ci+S + ci+1) for i = 1 2 · · ·S−1,

and CS = βS,1cS + βS,2 (cL + c1). The elements Wij for

i < S are,

Wij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if |i− j| > 1 ;

βi,1βi−1,2 if j = i− 1 ;

βi,2βi+1,1 if j = i+ 1 ;

β2
i,1 + 2β2

i,2 if i = j;

(19)

and WS,S−1 = βS−1,2βS,1 , WS,1 = βS,2β1,1 with other

elements WS,j = 0 if j �= 1, S.

We can expect the differential equation to approximate

the dynamic behavior of the mean route costs while the

{Rl(k) l = 1 · · ·L} are non-negative. Under the assumption

this remains true for all sufficiently small h.

A. Ring Network Dynamics in Continuous Model
The dynamics of (18) simplify if we introduce the function

V (D) = −
S∑

i=1

Cifi(Di) +
1

2

S∑
i,j=1

Wijfi(Di)fj(Dj) (20)

We are interested in the situation where fi(Di) =
(

wi

Di

) 1
2

for i = 1 · · ·S so the {fi} are differentiable. We discuss

when this is appropriate later in the discussion. It follows

from computing the gradient of V and using (18) that dV
dt =∑S

i=1 f
′
i (Di)

(
dDi

dt

)2 ≤ 0, with equality holding only at the

equilibrium points. Orbits of (18) move in the direction of

decreasing values of V , perpendicular to V = constant level

curves. The system (18) can be rewritten as ([8])

dDi

dt
=

1

f
′
i (Di)

∂V

∂Di
, i = 1 · · ·S (21)

Thus, any equilibrium point of (18) is a critical point of

V and if the matrix W = (Wij) is positive definite, an

equilibrium corresponding to the solution of the equation

Wx∗ = C exists, and it is unique. If in addition x∗
i > 0

we can then get the equilibrium bandwidth rates from the

relations x∗
i = fi(D

∗
i ) > 0. Sufficient conditions for the

existence of a positive x∗ involve verifying a version of

Farkas’ lemma with strict inequalities involving the route

probabilities and link capacities [9]. In this case we can

choose M large enough so that the corresponding value of

D is far from the equilibrium point of (18). We can then

situate the initial mean route cost vector D0 very close to the

equilibrium point. Since it is asymptotically stable, D(t) will

remain close to it for t ≥ 0. Then the {fi(Di(t))} defined

in (18) are differentiable.
Specific use of the equilibria of (18) in the link equations

has only been carried out so far for the very restricted homo-

geneous capacity case discussed in section III-C. Extension

to more general cases is left for future work. However, we

can present choices of capacities where convergence of the

mean route costs occurs before the link costs converge, as

illustrated in Figure 3. For such cases the large time behavior

of (13-15) can be inferred by substituting the equilibrium

mean route cost into these equations. The rationale comes

from the observation (proved for example networks in [6],

[5]) that if the cost vector p̂ is in or sufficiently close to

the region defined by the equilibrium mean route cost D∗,

{D̂ ∈ R
S : Di = D∗

i }, it remains there for all subsequent

time.

B. Symmetric Ring Network
Suppose that all the sources use the same route allocation

distribution so that βi,1 = a and βi,2 = b = 1 − a. Let
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us (without loss of generality) also assume that wi = w in

(18). Then the orbits of (18) approach a unique equilibrium

point given by the solution of the equation Wx∗ = C
when W is non-singular and therefore positive definite. If

x∗ is positive,then for each i, x∗
i = f(D∗

i ) =
(

w
D∗

i

) 1
2

.

The rest of this subsection sketches a proof that W is

positive definite and in the next subsection we discuss several

numerical examples illustrating the dynamics of (13,15) and

the behavior of the aggregate utility as a function of hs.

Under the single route allocation W takes the form,

⎛
⎜⎜⎜⎜⎜⎝

a2 + 2b2 ab 0 · · · · · · ab
ab a2 + 2b2 ab 0 · · · · · · · · · · · · 0 0
0 ab a2 + 2b2 ab 0 · · · · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
ab 0 · · · · · · 0 · · · · · · · · · · · · ab a2 + 2b2

⎞
⎟⎟⎟⎟⎟⎠

(22)

To show that W is positive definite we first observe that

W is symmetric for any choice of allocation β̂. Positive

definiteness holds if and only if the determinants of the

principal minors of W are positive. This can be proved by

induction for minors up to order S − 1. For order S, note

that (22) implies that W is a circulant matrix. Therefore the

determinant can be written explicitly as

det(W ) =

S∏
k=1

q(ωk)

where ωk = exp
(−2πik

S

)
and q(z) = a2 + 2b2 + abz +

abzS−1. Therefore det(W ) ≥ ∏S
k=1

(
(a− b)2 + b2

)
> 0.
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Fig. 5. Link Cost versus time for b = κ. Upper lines show peripheral link
costs, lower lines are direct link costs. Other parameter values are the same
as in previous figure.

C. Results of Computation

In this section we will discuss the results of iterating

the link cost equations (13-15) by illustrating the possible

limiting behaviors of the link costs for two capacity settings.

After this, the tradeoff between utility and path diversity

in both cases will be analyzed in terms of a plot of the

time averaged utility as a function of the entropy of the

route distribution. The first case was obtained by setting the

capacities of direct links of all sources equal to a common

value c1 and all the capacities of peripheral links equal to

cL > c1. As before, L = 2S is the number of links where

S is the number of sources. The equations were iterated for

N time steps. The initial link costs, were p
(0)
i = 1+ κi

L i =

1 · · ·S, where κ = cL
c1

, and p
(0)
i = 1+ (i−S)

L i = S+1 · · ·L.
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In the symmetric allocation case introduced in Section B,

solutions of (13-15) converged to constant values determined

by κ. If b > κ, the costs of the direct links converged to zero

while the corresponding indirect link prices converged to the

same positive constant (see Figure 4). If b < κ, the reverse

was true. At b = κ, all link costs approached non-negative

limits that depended on the initial costs. This is illustrated in

Figure 5. Despite the different limiting link costs, all sources

had the same limiting mean route cost D∗. Thus the system

behaved like a two links network with a single source and

destination. For the choice of allocation probabilities and

capacities under discussion, a positive equilibrium solution

of (18) exists and is in fact equal to Di = D∗ i = 1 · · · , S.

We now turn to the situation where the link capacities of

different sources are different. In contrast to the previous

homogeneous case, existence and convergence to a positive

equilibrium is not assured for either the link equations or

the mean route equations and their continous approximation

(18). This complicates the analysis of the system. When

there is existence and convergence,([3]) we know that the

equilibrium values of the cost equations are dual optimal.

Here we will discuss a choice of link capacities where

convergence has been observed numerically. The initial link

costs in this case including Figure 3 were pi = 1 i = 1 · · ·L.

As with homogeneous capacities, the limiting value of the

direct link costs can be zero while the limits of peripheral

link costs are positive. This is the case for the parameters

shown in Figure 3. Other behaviors are possible however.

Figure 6 shows the time course of the direct links in a

network of 6 sources where links 1, 2 and 3 have zero limits

while, links 4, 5, and 6 have positive limits.

We now turn to a discussion of the effect of these different

capacity settings on the utility/path diversity tradeoff. The

aggregate or average utility was computed as a function of

the entropy of the route allocation {a, b = 1 − a}, for a ≥
1/2. For a fixed entropy value hs = −a log(a) − b log(b),
the utility function Ui was computed as a function of the

bandwidth xi(k) for each time step k and the average was

taken over N time steps for each source i. The time average

was then averaged over all the sources. The resulting plot

for the link capacities and other parameters of Figure 4 is

shown in Figure 7. Here the tradeoff between utility and

diversity is very similar to that obtained for the two links

network. There is a critical value h∗ = .4101 of the entropy

corresponding to b = κ . When hs < h∗, ( b < κ), traffic on

the peripheral links can be increased thereby increasing path

diversity without decreasing utility. This situation changes

when hs = h∗, (b = κ). If hs > h∗, (b > κ), increasing the

traffic on peripheral routes will decrease utility.

For the choice of parameters shown in Figure 6, Figure

8 shows the time averaged utility of each source as a

function of the route allocation entropy. Although the utility

curve for source 1 (and in fact the aggregate utility over

all sources) resembles the utility curve for the previous

case, the utility curves for remaining links have a maximum

utility, depending on the capacity of the individual link.

This contrasts with the previous case where in fact all the

individual source utility curves coincide with the aggregate

utility curve.

IV. CONCLUSION AND FUTURE WORK

In this paper we studied a model of joint congestion

control and routing in a ring network of sources with a single

destination at the center (Figure 2) examining the effect of

link capacities on the resulting optimization problem and on

the tradeoff between path diversity and utility. Motivated by

earlier work on the TwoLink model (Figure 1), we analyzed

the dynamics of the link costs equations in the case of a

constant route allocation distribution. We proposed a method

for finding equation equilibria based on the analysis of the

equilibria of (18), an ordinary differential equation system

that approximates the dynamics of the mean route costs

of the sources. The equations form a gradient system and

sufficient conditions for the existence of a unique positive

equilibrium can be given in terms of the link capacities

and route distribution. In cases where the mean route costs

converge more quickly than the link costs, their equilibrium

behavior can be inferred by substituting the equilibrium mean

route cost and resulting bandwidth rate (9). The resulting

equilibrium link cost vector and bandwidth vector constitute

a solution of the optimization problem. Numerical examples

in section III-C illustrate these ideas.

The tradeoff between path diversity and utility is depicted

in plots of utility (aggregate and individual source) as a func-

tion of the route distribution entropy hs, where all sources are

given the same route distribution. Two contrasting situations

are discussed. The first involves assigning the same direct

and peripheral link capacities to all sources. In the second

case, the link capacities differ among the sources. In the

first, the network behaves like the TwoLinks network and

the tradeoff is expressed in terms of a critical value of hs

that depends on κ = cL
c1

. The fraction of traffic b assigned

to peripheral links cannot exceed κ without decreasing the

utility. The utility curves in the heterogeneous case also show

similar behavior but critical values vary with the source. A

numerical example shows that there can be qualitative dif-

ferences in the individual utilities even though the aggregate

utility curve resembles utility in the homogeneous case.
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Future work involves elaboration and extension of the

conditions on the link capacities that permit the use of the

substitution method proposed for analyzing the link costs

equation and determining their equilibria. A very significant

additional need is to determine ways to allow for different

route distributions for different sources.
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Fig. 6. Link costs versus time for heterogeneous capacities S=6. Capacities
for links 1 through 6 decrease from 16 to 11 with step size 1, capacities
for links 7 through 12 increase from 2.4 to 3.4 with step size 0.2
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