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A Bayesian Approach to the Analysis of Split-Plot Product Arrays  

and Optimization in Robust Parameter Design 
 

 

 

Abstract 

 

Many robust parameter design (RPD) studies involve a split-plot randomization structure 

and to obtain valid inferences in the analysis, it is essential to account for the design 

induced correlation structure. Bayesian methods are appealing for these studies since they 

naturally accommodate a general class of models, can account for parameter uncertainty 

in process optimization, and offer the necessary flexibility when one is interested in non-

standard performance criteria.  In this article, we present a Bayesian approach to process 

optimization for a general class of RPD models in the split-plot context using an 

empirical approximation to the posterior distribution of an objective function of interest.  

Two examples from the literature are used for illustration. 

 

KEY WORDS: Bayesian Predictive Density; Generalized Linear Mixed Models; Hard-

to-Change Factor; Markov Chain Monte Carlo; Process Optimization; Response Surface; 

Restricted Randomization. 
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Introduction 

 In many robust parameter design (RPD) applications, the response of interest 

follows a non-normal distribution. For instance, Lee and Nelder (2003) utilize Poisson 

regression to estimate the relationship between the number of solder defects and eight 

design variables (5 control factors and 3 noise factors). Myers, Brenneman and Myers 

(2005) demonstrate the use of gamma regression in modeling the relationship between 

resistivity and four design factors (3 control and 1 noise factor) using data from a wafer 

etching process in semiconductor manufacturing.   

Quite often in RPD, the designed experiment is a crossed or product array (i.e., a 

design for the noise factors crossed with a design in the control factors). Although there 

are times when a completely randomized design (CRD) is appropriate for these 

experiments, a split-plot design (SPD) can be easier and more cost efficient to implement 

when hard/difficult-to-change factors exist.  Even when hard-to-change factors do not 

exist, Box and Jones (1992) point out that SPD’s are often more efficient than CRD’s 

especially when the noise factors are in the outer array. Goos et al. (2006), Wolfinger and 

Tobias (1998), and Ganju and Lucas (1997) note that the induced correlation structure 

from a SPD must be accounted for in the analysis to obtain valid statistical inferences. 

Wolfinger and Tobias (1998) suggest the use of linear mixed models for RPD SPD’s with 

normal responses but do not discuss prediction. Robinson et al. (2004) advocate the use 

of generalized linear mixed models (GLMMs) for industrial SPD’s with non-normal 

responses. Robinson et al. (2009) propose Bayesian methods for the analysis of SPD’s 

with non-normal responses.    

Several uses of Bayesian methods for RPD have appeared in the literature but all 

assume complete randomization of the experimental run order. Chipman (1998) propose 

a Bayesian approach for product arrays. Miro-Quesada, Del Castillo, and Peterson (2004) 

present a Bayesian approach using the posterior predictive distribution for multiple 

response optimization. Rajagopal, Del Castillo and Peterson (2005) extend the work of 

Miro-Quesada et al. (2004) to cases in which the practitioner seeks an RPD solution 

robust to uncertainty in the process model by using Bayesian model averaging. Bayesian 

approaches are appealing in RPD since (a) they allow for uncertainty in parameter 

estimation to be accounted for when obtaining an optimal solution in the control factor 
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space; (b) process quality can be optimized in terms of a variety of performance criteria 

such as conformance probabilities and other more useful characteristics of the response 

distribution than being restricted to the process mean and variance; and (c) the approach 

can handle a wide class of error distributions in a straightforward manner.   

In this article, we define a general class of models for product array robust design 

experiments with a split-plot randomization structure. We then develop a Bayesian 

approach for modeling the data along with an optimization approach using an empirical 

approximation to the posterior distribution of a user-defined objective function. The 

methodology is illustrated with two examples from the literature and we consider some 

non-standard performance criteria in characterizing the underlying process.  

 

Model Formulation and Examples 

For an exponential family member response observed from a split-plot 

experiment, we consider an extended class of generalized linear models which include 

random effects.  Let y be an N1 vector of responses (N denoting the total number of 

subplot runs), X an Np matrix of whole plot and subplot model terms,   denote the 

associated p1 vector of fixed-effects regression parameters, Z an Nw model matrix for 

the random effects and   the corresponding w-vector of random effects.  Models under 

consideration contain two parts: 

1.  Conditional on the random effect  , the response distribution is a member of 

the exponential family of distributions with 

        | , |E Var V    y y , 

where  is the dispersion parameter and  V  is the variance function.  The linear 

predictor is given by 

        X Zg . 

Here, the link function,  g , is chosen to be monotonic and differentiable. 

2.  The random effects in   are assumed i.i.d. according to some specified 

probability distribution. 

 



                                                                        

 4 

Normal Response Example 

 Box and Jones (1992) consider an example where the manufacturer seeks the best 

recipe for a box cake mix. In the example there are three control factors: X1 = flour, X2 = 

shortening and X3 = egg powder, coded in the ranges -1 to +1.  The manufacturer is 

concerned that random fluctuations in cooking time, Z1, and cooking temperature, Z2, in 

home ovens (both treated as noise factors with 2 levels codes as -1 and +1) may result in 

cake flavor that is too variable.  In order to develop a robust cake recipe, a 2
2
 factorial 

design in the noise factors is crossed with a 2
3
 factorial design in the control factors. For a 

fixed level combination of Z1 and Z2, eight cakes are baked, each with a different 

combination of X1, X2 and X3 levels and the run order of the control factor combinations 

are randomized.  Note that in this experiment, the noise factors are in the whole plots, 

while the control factors are changed within the whole plots. 

 Consistent with Box and Jones (2002), we assume  2 2| , ~ ,ij ij ijy N     , where 

ijy denotes the average cake quality (i.e., averaged across a panel of judges who each 

ranked taste from 1-7) for the j
th

 cake baked at the i
th

 level combination of Z1 and Z2 

 1,...,4; 1,...,8i j  . Also consistent with Box and Jones, we treat the response as 

continuous since ordinal scores are averaged over a panel of judges. While Box and Jones 

focused upon treatment comparisons we consider response optimization and fit a model 

with an identity link  i.e.,  | |ij i ijg     
 

. Thus, the linear predictor is given by 

   
    


ij
|

i
 

ij
|  x

ij

'   
i
,     (1)  

where each 
   
x

ij

' denotes a 115 vector of model terms consisting of the intercept, the two 

noise main effects, six control factor only effects (i.e., 3 main effects and 3 two-factor 

interactions), and the six control-by-noise two-factor interactions. The  ’s are the 

associated fixed-effects model parameters while the i
  represent the whole-plot error 

terms and are assumed to be i.i.d. Normal  20 , .  Relating the model in (0) to the 

general formulation, we have    g    , y denotes the 321 vector of responses starting 

with the eight observations in the first whole plot and so on, Z is a 324 classification 

matrix of ones and zeros where the kl
th

 entry is a one if the k
th

 observation (k=1,…,32) 
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belongs to the l
th

 whole plot (l=1,…,4). The 
i

  comprise the 41 vector of random 

effects,  , and the rows of the 3215 model matrix X are formed by 
   
x

ij

' . 

Gamma Response Example 

Robinson et al. (2004) consider data from a film manufacturer in which the 

investigator wishes to study the effects of six factors (three mixture components [X1, X2, 

X3] and three process variables [p1, p2, and p3]) on film quality. We assume for this 

application that the process variables represent environmental variables whose 

fluctuations in the process cause unwanted variation in the response. A product array with 

the mixture design in the control factors serving as the outer array and a 2
3-1

 design in the 

process variables as the inner array was conducted. Note that there is potential for 

confusion with the terminology of the experiment, since we need to clarify both the RPD 

and the split-plot pieces of the design. In RPD, the control factors are traditionally labeled 

as being in the inner array and noise factors in the outer array, and yet for this 

experiment, control factor levels were randomized at the whole plot level and the noise 

factor levels were randomized at the subplot level. Note that this experimental set-up 

differs from the first example where the noise factor levels were varied within the whole 

plots. The goals of this experiment were to: (a) examine the impact of the mixture 

variables on response quality; (b) study the contribution of the noise factors to process 

variance; and (c) determine optimal settings for the mixture variables. In the experiment, 

five distinct formulations of the mixture variables were used to produce a total of 13 

batches (one batch=one roll). Upon production of a roll of film with a given setting of the 

mixture variables, four pieces of the roll were randomly assigned according to a 2
3-1

 

design in the process variables.   

Consistent with Robinson et al. (2004, 2009) and Lee, Nelder and Park (2010), we 

assume  | , ~ ,ij ij ijy Gamma    , where 
ijy  denotes the film quality for the j

th
 piece of 

film from the i
th

 roll. The following parameterization of the gamma density is assumed, 

    
 

1 y

y

y e
f y

  



 




.     (2) 

Using the model of Robinson et al. (2004, 2009), a log link    i.e., g
ij i ij i

ln    
 

| | , 

with linear predictor 
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  '

3 3 2 3

12 1 2

1 1 1 1

                              

ij i ij i ij i

b b ij ij ij c ij c ij bc b ij c ij i

b c b c

ln

x x x p x p

    

    



   

  

      

x

, , , , , , ,

| |

,  (3) 

is fit. Note that the linear predictor in (0) does not include an intercept since we are fitting 

a Scheffé model for mixture experiments and only a subset of the total number of 

possible two factor interactions were of interest. In (3), the  ’s are for the first and 

second order mixture/control factor terms, the ’s are for the linear process/noise terms, 

and the  ’s represent the mixture-by-process/control-by-noise interactions. Relating the 

model in (0) to the general formulation, we have    lng    , y denotes the 521 vector 

of observations starting with the four observations from the first roll and so on, Z is a 

5213 classification matrix of ones and zeros, where the kl
th

 entry is a one if the k
th

 

observation (k=1,…,52) belongs to the l
th

 roll (l=1,…,13). The rows of the 5213 model 

matrix X are formed by 
'

ij
x  for each observation.  

 

Bayesian Inference 

 Let   denote the vector of model parameters. The Bayesian inferential approach 

combines prior information about   with the information contained in the data. The 

prior information is described by a prior density,    , and summarizes what is known 

about the model parameters before data are observed. The information provided by data 

is captured by the data sampling model,  |fy y  , known as the likelihood. The 

combined information is described by the posterior density,  | y . We evaluate the 

posterior density using Bayes' Theorem [Degroot (1970) p. 28] as 

( | ) ( | ) ( )f y y   . 

For the cake mix example,  ' ' ',  ,,     , where  
' is the 115 vector of 

regression coefficients, '
δ is the 14 vector of random effects used to model the outer 

array error term,  is the standard deviation of the random effects distribution, and  is 

the normal error shape parameter. The likelihood  |fy y  has the form 
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4 8

1 1

( | ) ( | , )y ij ij
i j

f f y  

 

y y , 

with ij  given in (0),  where ( | , )y ij ijf y    is a normal density. We see from (0) that 

ij  also depends on
   
x

ij

' , 
' , and i . The prior density,    , has the form 

  

()  f
i
(i

i1

4

 |
2)









 f

j
( j

j1

15

 )












f
( ) f

( ) , 

where ( )f   is the Normal(0, 2

 ) density assumed for the random effects, i . For the 

regression coefficients (the 'j s ), we use the following diffuse but proper prior 

distributions: Normal(0,1000
2
). For


, we use the diffuse prior distribution Uniform(0, 

10). For  , we use the informative prior distribution Gamma(625,10000). An 

informative prior is needed here since there is no replication of whole plots, and hence 

the observed data do not contain information about both the interaction between time and 

temperature and the whole plot variability.  

For the film manufacturing example,  ' ' ', , ,     , where   is the gamma 

shape parameter, ' is the 113 vector of regression coefficients given in (3), '
δ is the 

113 vector of random roll effects, and  is the standard deviation of the random effects 

distribution. The likelihood  |fy y  has the form 

13 4

1 1

( | ) ( | , / )y ij ij ij
i j

f f y    

 

 y y , 

with 
  
fy ( yij | ,ij )  from (0) and ij  given in (0). From (0), it is evident that ij  depends 

on
'

ijx ,β , and i . The prior density,    , has the form 

13 13
2

1 1

( ) ( | ) ( ) ( ) ( )
i ji j

i j

f f f f
          

 

  
     

  

  , 

where ( )f   is the Normal(0, 2

 ) density assumed for the random roll effects i . For the 

regression coefficients (the 'j s ) and  , we use the diffuse but proper prior 
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distributions: Normal(0,1000
2
) and Uniform(0,100), respectively.  For  , we use the 

diffuse prior Uniform(0,100) distribution  as suggested by Gelman (2006).  

When the form of the posterior density is well known, the posterior distribution 

can be obtained in closed form. For more general forms of the posterior density, we can 

approximate the posterior distribution via Markov chain Monte Carlo (MCMC) [Gelfand 

and Smith (1990), Casella and George (1992), Chib and Greenberg (1995)].  The MCMC 

algorithm produces samples from the joint posterior distribution of   by sequentially 

updating each model parameter conditional on the current values of the other parameters.  

To analyze both examples, we used WinBUGS [Spiegelhalter, Thomas, Best, and 

Lunn (2004)].  For the cake mix data, summaries of the joint posterior draws of   are 

given in Table 1, and are based on two chains of length 100,000 thinned to every 20
th

 

draw, i.e., totaling 10,000 draws.  A similar summary for the film example is given in 

Table 2. Note that in the cake mix example there are no whole plot replicates, so the 

marginal posterior distribution of the whole plot error variance is essentially the chosen 

informative prior. For the film example, there are several whole plot replicates, so that 

the whole plot error variance can be estimated; thus, the data can update the prior. 

To assess convergence of the MCMC algorithms and goodness-of-fit of the 

models to the data, several diagnostics were considered.  We begin with diagnostics for 

the cake mix example.  To assess the convergence of the MCMC algorithm, trace plots of 

the MCMC chains, such as those in Figure 1, work well.  Figure 1 contains the trace plots 

of the MCMC chains for the first four regression coefficients in the cake mix example.  

Here, only one of the two chains is shown, and the pictured chain is thinned to every 

100
th

 iteration instead of every 20
th

.  Figure 1 shows that convergence for the four 

parameters has occurred by iteration 10,000, and that they are mixing well.  Trace plots 

for the other model parameters (not shown) all lead to similar conclusions.  See Gelman 

et al. (2004, Section 11.6 pp. 294-299) for more discussion of MCMC convergence 

diagnostics.   

The overall fit of the model to the data can be examined by the Bayesian 2  

goodness-of-fit test (Johnson, 2004).  The test proceeds as follows:  

1. Divide the interval [0, 1] into N
0.4

=32
0.4

=4 bins (as recommended by Johnson 

(2004)), and set each bin count to zero. 
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2. For a given MCMC draw of Θ, calculate the cumulative probability of , 

,  and .  Here, F is a normal 

cumulative distribution function. 

3. If , the count of bin 1 is increased by 1.  If , the 

count of bin 2 is increased by 1, etc. 

4. Compute the standard  statistic for comparing the observed bin counts to the 

expected bin counts, N/4=32/4=8. 

5. Compare the  statistic to the 95
th

 percentile of the  distribution where the 

degrees of freedom are computed as 3=4-1. 

6. Repeat 1-5 for all 10,000 (2 chains  5,000 draws per chain) draws of . 

If approximately 95% of the tests fail to reject that the observed bin counts are consistent 

with the expected bin counts, there is no evidence of lack-of-fit.  That proportion for the 

cake mix example is 94.14%. 

 To check the assumption of normal random effects, for each posterior draw of , 

, an envelope based the corresponding draw of  is created.  The number 

of  draws, , that falls within its corresponding envelope summarizes the 

appropriateness of the normal assumption for the random effects.  An envelope is created 

by the following procedure: 

1. Generate 1,000 sets of 4  deviates. 

2. Order each set. 

3. Calculate the 0.013/2 and 1-0.013/2 percentiles of each order statistic since 

0.987
4

0.949. 

A draw of , , is said to fall within its envelope if its order statistics fall 

within their corresponding intervals.  If approximately 95% of the , , 

draws fall within their corresponding envelope, the normal assumption for the random 

effects is tenable.  The percentage for the cake mix example is 95.12%. 

 Lastly, we consider the conditional normality of the response, , by examining 

the residuals, .  Using the posterior distribution of , we create a normal 

q-q plot from the medians of those distributions.  The plot is given in Figure 2, and it 

suggessts the conditional normality of the response is reasonable. 
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 Similar diagnostics were considered in the film manufacturing experiment, and 

they imply no problems with the convergence or mixing of the MCMC chains or the fit of 

the model to the data.  One difference between the diagnostics for the cake mix 

experiment and the film manufacturing experiment is that deviance residuals, instead of 

raw residuals, are used for the film manufacturing experiment because the response is 

assumed to be conditionally gamma instead of normal.  Also for the film manufacturing 

experiment, we may consider a different diagnostic for assessing the assumption of 

normal random effects.  Specifically, we create a normal q-q plot from the posterior 

means of , , which are given in Table 2.  The plot is shown in Figure 3, 

and it implies the normal assumption for the random effects is reasonable.  Such a plot in 

the cake mix experiment is not as useful since there are only four random effects. 

 

Prediction, Performance Criteria and Optimization 

Posterior Predictive Density and Performance Criterion 

The primary goal of RPD is to find levels of the control factors which lead to 

desirable process quality results. Thus, we wish to optimize an appropriate characteristic 

of the response distribution under future production conditions. Inference regarding 

unobserved values of the response generally focuses upon characteristics of a posterior 

predictive density where the density incorporates all potential sources of uncertainty.  

However, we take a slightly different approach.  Let newy  denote a new, observed value 

of the response from the process, new  an unobservable random effect associated 

with newy , cx  a combination of control factors, and nx  a combination of noise factor 

levels.  We consider the following density   

   

     

| ,  , , |

                     = | , , |

new n

new n

new c new new n c n new

new new c n new n n new

f y f y

f y f f





 

  

 

 

  

 

 

 

x

x

x x x x

x x x x
,  

where  | , ,new new c nf y  x x  is a normal density in the first example and a gamma 

density in the second example,  |newf    is a univariate normal density, and  nf x  is 

a user-specified multivariate normal density representing anticipated random fluctuations 
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of the noise factors during the process. Note that  | , new cf y  x  incorporates the 

variability associated with random fluctuations of the noise factors (through  nf x ), the 

variability associated with a new whole plot effect (through  |newf   ) and the 

variability associated with the new observed responses (through  | , ,new new c nf y  x x ). 

Also,  | , new cf y  x  is related to the posterior predictive density,  | , new old cf y y x , since 

        | , |new old c new c oldf y f y f y x x y


    , 

and oldy denotes the vector of observed data. The posterior predictive density, which 

integrates over the uncertainty from estimating the model parameters, is the focus of 

Miro-Quesada, Del Castillo and Peterson (2004) who discuss process optimization for 

completely randomized designs with normal responses. We choose to focus on the 

distribution of  | , new cf y x  because it summarizes what we expect to see under future 

regular process conditions, and allows for greater flexibility in specifying performance 

criteria or objective functions for the optimization. Specifically, let the function  , ch x  

denote a characteristic of the density in (4). This function is chosen to represent an 

important aspect of the response upon which process optimization should be based. 

Given that we have variability from many sources as well as uncertainty from the 

parameter estimation, we wish to examine what range of values of  , ch x  are possible 

across the probable parameter values. For example, in the film example, guarding against 

a worst case scenario for the proportion of high quality film could be more important to 

the practitioner than estimating the proportion of high quality film using the posterior 

predictive density. Quite often in RPD, optimization focuses on a criterion such as 

squared error loss.  In the cake example, high taste scores (close to the maximum of 7) 

are most desirable. Thus, one might wish to find   cx such that a property of the posterior 

distribution of 

     
| ,

2
, 7 * 7

new c
c y new newh E y I y   

 x
x


  

is minimized, where 
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         
| ,

2 2
| ,7 * 7 7 * 7

ne

new c

w

y new new new new new c new

y

E y I y y I y f y dy     
  x

x


   . 

In the definition of  , ch x  above, we include the indicator function so as not to 

penalize any predicted response greater than 7, which is the maximum possible average 

score for taste.  

For the film example, Robinson et al. (2009) suggest that film pieces whose 

quality exceeds 150 represent premium grade film. As such, it might be desirable to find 

  cx such that the exceedence probability    Pr 150| ,,  newc ch y x x   is maximized, 

using   

   
150

Pr 150| , | ,

new

new c new c new

y

y f y dy





   x x    . 

General Description of Optimization Algorithm 

To investigate robust values of cx , we evaluate properties of the posterior 

distribution of  , ch x  over a grid of cx  points.  Consider a single point in the grid of 

cx  values, say 0

cx . To evaluate properties of the posterior distribution of  0, ch x , we 

first obtain a sample of MCMCN  's  from  oldf  y  using WinBUGS, and a sample of 

NoiseN  observations of nx  from the user-specified ( )nf x .  Then, for each of the 

MCMC NoiseN N  , n x   pairs, we sample a value of new  from the appropriate distribution. 

For our examples, this is the univariate normal.  For each of these 
MCMC NoiseN N  

 ,n newx  triples, we sample a newy  value from the appropriate normal (first example) 

or gamma (second example) distribution.  Since noiseN  of these newy  values are generated 

from the same posterior draw, say 0 , we can estimate  0 0, ch  x .  For example, if 

   00 0 0Pr 150| ,,  newc cyh   xx , 

    0 0 0

1

1
Pr 150| ,  150

noiseN

i

new c new

inoise

y I y
N




   
 x , 
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where  0i

newy   is the thi  value of newy  generated according to  0  for a particular 

choice of cx .  This process gives MCMCN  posterior samples of  0, ch  x , thereby enabling 

the estimation of quantities such as  0,
old

cE h


 
 

x
y|

,  0,
old

chVar


 
 y

x
|

, and the 5
th

, 

10
th

, and 50
th

 posterior percentiles of the posterior distribution of  0, ch x , for instance.  

The median gives us the center of the distribution while the 5
th

 and 10
th

 percentiles give 

lower bounds on  0, ch x . If we had focused on the posterior predictive distribution, 

then only a single summary, such as the mean or an exceedance probability is possible. 

With the proposed approach, understanding the characteristics of the distribution of 

 0, ch x  induced by the uncertainty in   is possible, and allows for greater flexibility to 

select a most relevant attribute of the distribution.  

 Examining these quantities over a grid of cx  values provides the opportunity to 

choose cx  candidates that are robust to changes in nx . Note that maximizing 

 0150| , Pr
old

new cE y 
 

x
y


|

 over values of cx , is equivalent to maximizing 

Pr( 150 | ,  )new old cy  y x  over values of cx , since 

 

     

 

0 0 0

150

0

150

0

150| , | , ,

( , | , )

150| .,

Pr

Pr

old
new

new

new c new c new old c

y

new old c new

y

new old c

E y f y y f

f y y

y




    

  











 
    

  

 



 
   

 

x x y x
y

y x

y x

|

   

Also note that optimizing  Pr | , new old cy A y x over values of cx  was the approach of 

Miro-Quesada, Del Castillo and Peterson (2004) but they did so for situations where 

 | , new old cf y y x  exists in closed form.     

 To facilitate a fair comparison for each cx  in the grid, we use the same sample of 

MCMC NoiseN xN   n x  pairs for each cx  in the grid.  Further, when the analyses in both 
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examples were re-done, using different samples of the 



NMCMC  NNoise  n x  pairs, the 

results were essentially unchanged. 

 

Results for the Examples 

Cake Mix Experiment Results 

 Using the sample of NMCMC posterior ' s obtained from WinBUGS, we now seek 

to find the optimal combination of control factors (Flour, Shortening and Eggs) to 

minimize the expected squared loss from the target taste value of 7. These settings are 

chosen to be robust to variations in the cooking time and temperature which are not as 

tightly controlled when consumers bake the cake compared to the laboratory 

environment. Similar to other RPD applications, we assume that the distribution of the 

coded noise variables (cooking time and temperature) in the less controlled consumer 

environment is appropriately modeled with a bivariate normal distribution with mean (0, 

0) and variance 2I . 

 When we examine the optimizations based on different criteria from the posterior 

distribution of      
2

, 7 * 7c new newh E y I y   
 

x  over the design region, we see that 

different settings are identified as best depending on the criterion considered. Table 3 

shows various locations of optima along with their respective optimum values depending 

upon which characteristic of the posterior of  , ch  x  one is interested in optimizing 

with respect to. Note that all optimal settings have Flour and Eggs set to their maximum 

amount (1 in the coded factors), but the amount of Shortening to be included varies by 

criterion. The optimization actually proceeded in two stages.  In the first stage, 

 is optimized over the grid .  In the second stage, 

optimization is performed over the finer grid .  By considering 

several properties of the posterior of  , ch  x , rather than just  a single  summary, we 

are able to gain a more detailed understanding of how to best optimize the process. For 

example, the smallest mean and median of the posterior for  , ch x  occurs at the 

control factor setting of (1, 1, 1) with corresponding values 2.93 and 2.83, respectively. 

The optimal control factor setting shifts more towards middle values of Shortening to 
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optimize the tail of the posterior distribution of  , ch x . Specifically, the 90
th

 percentile 

is minimized at the control factor setting (1, 0.8, 1) with a value of 4.08 and the minimum 

95
th

 percentile is 4.44 at the control factor setting (1, 0.6, 1). Hence if the manufacturer 

wishes to optimize the typical taste characteristic for the consumer, then the optimal 

setting should be chosen as (1, 1, 1). However, if it is a priority for the company to make 

sure that very few consumers experience poor taste, then the setting of (1, 0.8, 1) or (1, 

0.6, 1) should be considered as best. 

 Figure 4 shows the contour plot of the mean of the posterior distribution of 

 , ch x  across the design region. The first three sub-figures show contour plots for 

different fixed values of Flour across the range of design Egg and Shortening factors. The 

final sub-figure shows an enlargement of the optimal corner of the design region with 

more detailed contours.  

 Figure 5 shows contour plots for different attributes of the posterior distribution of 

 , ch x  with Flour fixed at a value of 1. Examining the plots, we see that the shape of 

the contour lines changes for the different percentiles of the posterior, with the median 

optimized in the corner of the design space, while the optimum control factor settings for 

tail percentiles favors smaller amounts of Shortening. While there are differences in the 

global optimum, we can see that the optimal RPD operation setting does not change the 

amounts of Flour and Eggs. Given the flat contour lines in the Shortening direction for 

Flour and Eggs at their maximums, these differences in the optimal settings represent 

some alternatives which perform quite well across a range of different distributional 

characteristics. 

 Finally, we compare the results of our optimization to those that would have been 

obtained if we had used a criterion of maximizing the proportion of the posterior 

predictive distribution above a certain threshold using methodology similar to what was 

outlined in Miro-Quesada et al. (2004). In this case, if one maximizes the proportion of 

responses above the taste score thresholds of 6 and 6.5 according to the posterior 

predictive distribution, similar but not identical results are found compared to those 

above. Optimal control factor settings for maximizing  Pr 6 |new oldy  y  and 

 Pr 6.5|
new old

y  y  along with the corresponding values are found in the last two rows of 
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Table 3. In the case of the posterior predictive distribution, the proportions of Flour and 

Eggs are maintained at their maximum values, but the optimal setting of Shortening is at 

its low level. The global best control factor setting is (1, -1, 1), with 37% and 24% of the 

distribution predicted to fall above each threshold, respectively. Based on these results, it 

is clear that the Flour and Eggs settings should be maximized, while the criterion for 

optimizing determines the value of the Shortening.  

 

Film Manufacturing Experiment Results 

 We now consider RPD optimization for the film manufacturing example using the 

sample of NMCMC posterior ' s obtained from a Bayesian analysis of the data in 

WinBUGS. The goal of this analysis is to determine the control/mixture factor level 

combination  [X1, X2, X3] which maximizes the proportion of high quality film given the 

unwanted variation from the process variables [p1, p2, p3] in the less controlled 

production environment. As with other RPD applications, we assume that the coded noise 

factors are from a trivariate normal distribution with mean (0, 0, 0) and variance, 3I . The 

optimal settings and corresponding values based on different criteria from the posterior 

distribution of    Pr 150| ,,  newc ch y x x   are summarized in Table 4. For all 

summaries of the posterior of    Pr 150| ,,  newc ch y x x  , the goal is to find the 

control factor settings resulting in maximization. We utilized a grid search to find the 

optimal mean, median, 5
th

 and 10
th

 percentiles of the posterior distribution of  , ch x .  

As in the cake mix example, the optimization proceeds in two stages.  In the first stage, 

 is optimized over the grid 

.  In the second stage, optimization is 

over the finer grid . The 

best mixture combination based on the mean of  Pr 150| , new cy  x  is at 

1 2 3( , , ) (0.5425,0.2575,0.2000)X X X  . Figure 6 provides the contour plots of the mean 

of  Pr 150| , new cy  x  across the control factor space. Since the control factors are 

mixture variables in this experiment (constrained to sum to one), the entire design region 

for the outer array is shown in two dimensions ( 2 3 and X X ) with 1 2 31 - X X X   
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inferred. Figure 6(a) shows the control factor design space, while Figure 6(b) shows an 

enlargement of the region with the optimum, shown with the dashed line in Figure 6(a). 

The surface corresponding to the 
 
mean of the  posterior distribution of  , ch x  is quite 

smooth with a single maximum on the boundary of the space. We note that this solution 

is similar to the approach of Miro-Quesada et al. (2004) as it maximizes the proportion of 

the posterior predictive distribution above 150.  For our implementation, we have 

estimated the value using the MCMC draws, rather than finding a closed form expression 

for the quantity. 

 Alternately, we consider different percentiles of the posterior of  , ch x  for 

selecting the best production recipe for film. The settings of the optimum based on the 

50
th

, 5
th

 and 10
th

 percentiles of the posterior distribution of  , ch x are also given in 

Table 4. All of the identified optima have 3 0.2X  , but the proportions of 1 2 and X X  

differ depending on the criterion considered. For the median, the estimated proportion of 

high quality film is 0.886, with two distinct settings, 1 2 3( , , ) (0.535,0.265,0.200)X X X   

or (0.52,0.28,0.20) , producing this value. The median or mean of   , ch x ’s posterior 

distribution represent “typical” proportions of high quality film under expected noise 

condition variation, while the lower percentiles (5
th

 and 10
th

) monitor the “worst case” 

proportion of high quality film under the uncertainty in the model parameters. By 

considering the proportion of high quality film in the tails of the posterior distribution 

(0.623 and 0.719 for the 5
th

 and 10
th

 percentiles, respectively), we gain a more realistic 

assessment of what proportions might be observed during regular production. The choice 

of which metric to select depends on whether we want to optimize typical proportions of 

high quality film or determine a setting where we can be very confident of attaining at 

least a certain proportion. Figures 4, 5 and 6 shows contour plots for the median, 5
th

 and 

10
th

 percentiles, respectively, across the design region. The second sub-figure 10 in each 

plot shows an enlargement of the contour plot around the optimum for the area denoted 

by the dashed line in the first sub-figure. 

 As we protect more against the tail of the posterior distribution, the 
2X  

proportion decreases to 0.2050 (with
1X  increasing to 0.5950). Quantifying the trade-off 
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in both settings and the proportion of high quality film expected can help managers make 

more informed decisions about what to expect during regular production. Table 5 shows 

the values of the different criteria associated with  , ch x  for two settings which 

correspond to the optimal settings for the median and 5
th

 percentile criteria. If we choose 

based on the median or “typical proportion”, then an optimal setting is 

1 2 3( , , ) (0.535,0.265,0.200)X X X  . However, if we used the 5
th

 percentile as a 

conservative measure to almost guarantee at least a certain proportion of high quality 

film, then the optimal setting is 1 2 3( , , ) (0.595,0.205,0.200)X X X  . When we consider 

the results in Table 5, we see that while the optimum setting shifts slightly depending on 

the chosen criterion, none of the competing criteria perform too badly at the optima of 

another.  By considering the entire posterior distribution of  Pr 150| , new cy  x , and 

matching its characteristics to aspect of production on which we wish to focus, we can 

make a more informed choice for how to optimize the process.   

 

Conclusions and Discussion 

 In this paper we present a method for finding optimally robust settings in the 

control factor space for different characteristics of the posterior distribution of an 

objective function. The Bayesian approach allows flexible objective functions for a very 

general class of models. In the two examples, the responses were normal and gamma 

distributed; the proposed methodology easily handles other response distributions such as 

the Weibull and lognormal distributions for continuous responses and the binomial and 

Poisson distributions for discrete responses. The methods presented were compared to the 

optimization based on the posterior predictive distribution described in Quesada et al. 

(2005) and shows the two approaches are related if the mean of the posterior distribution 

is selected.  In other cases, the more general new approach allows different functions of 

the model parameters to be considered, and different attributes of the posterior 

distribution to be utilized. This flexibility allows the user to specify an attribute of the 

distribution that most realistic summarizes what is of primary interest in the experiment. 

Assessing the robustness of the optimization results across different potential attributes is 

straightforward and allows direct comparison of trade-offs. 
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 Using the optimization algorithm, it is straightforward to substitute more 

complicated noise variable structures, including correlations, into the optimization. For 

example, in the film experiment, the distribution of the coded noise factors in the 

production environment could have been replaced with a multivariate normal distribution 

with mean (0,0,0) and variance 

12 13

12 23

13 23

1

1

1

 

 

 

 
 
 
 
 

, with no additional complication other 

than how to sample  the noiseN  values.  

 In the cake example, there were no whole plot replicates to allow estimation the 

variance of 2

  from the data. Hence the prior distribution provided the needed 

information to complete the analysis. In general, the authors feel that whenever possible 

designs should be selected with adequate whole plot replication to provide some 

confirmation of the range of values for 2

 . However, when no replication is possible, the 

Bayesian approach allows incorporating external knowledge of uncertainty into the 

analysis. 
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TABLE 1. Posterior Means, Standard Deviations, and Selected Quantiles for Regression 

Coefficients  's , Random Effect Variance  2
  and Subplot Variance  2

  for the 

Cake Mix Experiment 

   Quantiles 

Parameter Mean Std. Dev. 0.025 0.5 0.975 

Intercept 3.444 0.162 3.127 3.444 3.760 

Time (t) 0.268 0.159 -0.048 0.269 0.575 

Temp (T) 0.553 0.158 0.240 0.552 0.862 

t



T 0.034 0.158 -0.278 0.034 0.338 

Flour (F) 1.336 0.098 1.142 1.334 1.525 

Shortening (S) -0.167 0.100 -0.366 -0.167 0.034 

Egg (E) 0.603 0.098 0.409 0.604 0.797 

F



S 0.098 0.099 -0.097 0.098 0.292 

F



E 0.103 0.099 -0.092 0.103 0.302 

S



E 0.065 0.099 -0.131 0.065 



0.263 

F



T 0.154 0.098 -0.039 0.155 0.347 

F



t 0.004 0.098 -0.191 0.003 0.197 

S



T -0.461 0.098 -0.656 -0.461 -0.268 

S



t -0.110 0.099 -0.307 -0.108 0.084 

E



T -0.015 0.099 -0.216 -0.015 0.182 

E



t -0.043 0.098 -0.238 -0.043 0.151 
2

  0.310 0.133 0.145 0.280 0.644 

2

  0.062 0.002 0.058 0.062 0.067 
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TABLE 2. Posterior Means, Standard Deviations, and Selected Quantiles for Regression 

Coefficients  's , Gamma Shape Parameter   , Random Effects  'i s  and Random 

Effect Variance    for the Film Manufacturing Experiment 

 Quantile 

Effect Estimate 
Standard 

Dev. 
0.025 0.5 0.975 

x1 6.169 0.4533 5.284 6.166 7.104 
x2 4.035 0.4661 3.116 4.031 4.980 
x3 1.265 0.9708 -0.7040 1.2780 3.213 

x1



x2 10.550 2.8080 4.896 10.52 16.20 
p1 -0.7074 0.5317 -1.7530 -0.7132 0.3595 
p2 0.3728 0.5351 -0.6979 0.3743 1.417 
p3 0.2952 0.5323 -0.7399 0.2886 1.344 

x1



p1 1.217 0.7490 -0.2781 1.224 2.668 
x2



p1 1.992 0.7506 0.5145 1.997 3.467 
x1



p2 -0.2336 0.7551 -1.6920 -0.2372 1.283 
x2



p2 -1.040 0.7582 -2.521 -1.039 0.4820 
x1



p3 -0.4783 0.7477 -1.9690 -0.4745 0.9840 
x2



p3 -0.1303 0.7524 -1.6230 -0.1255 1.333 
      

  4.835 1.167 2.861 4.717 7.412 

1  0.1236 0.2550 -0.3563 0.1084 0.6605 

2  -0.0301 0.2536 -0.5550 -0.0258 0.4871 

3  0.1519 0.2558 -0.3296 0.1310 0.6943 

4  0.0718 0.2560 -0.4311 0.05894 0.6122 

5  -0.05651 0.2552 -0.6006 -0.04433 0.4486 

6  -0.2264 0.2611 -0.7915 -0.2066 0.2395 

7  -0.04031 0.2986 -0.6639 -0.0308 0.5665 

8  -0.3423 0.2814 -0.9395 -0.3209 0.1273 

9  0.2259 0.2643 -0.2499 0.2045 0.7945 

10  0.1295 0.2582 -0.3637 0.1103 0.6803 

11  0.2589 0.2579 -0.1818 0.2358 0.8286 

12  0.04056 0.2991 -0.5474 0.03139 0.6818 

13  -0.3369 0.2880 -0.9675 -0.3139 0.1369 

  0.3372 0.1606 0.06390 0.3212 0.7082 
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TABLE 3. Optimal Control Factor Settings and Values for Different Summaries of 

     
2

, 7 * 7c new newh E y I y   
 

x  and the Posterior Predictive Distribution for the 

Cake Mix Experiment 

Minimizing summaries of      
2

, 7 * 7c new newh E y I y   
 

x  

 Setting  

Value  Flour Shortening Eggs 

Mean 1.0 1.0 1.0 2.93 

Median 1.0 1.0 1.0 2.83 

90
th

 Percentile 1.0 0.8 1.0 4.08 

95
th

 Percentile 1.0 0.6 1.0 4.44 

Maximization Using Posterior Predictive Distribution 

 Pr 6 |new oldy  y  1.0 -1.0 1.0 0.37 

 Pr 6.5|
new old

y  y  1.0 -1.0 1.0 0.24 

 

 

 

TABLE 4: Optimal Control Factor Settings and Values for Different Summaries of 

   Pr 150| ,,  newc ch y x x   for the Film Manufacturing Experiment 

 Setting  

Value  X1 X2 X3 

Mean* 0.5425 0.2575 0.2000 0.854 (maximum) 

Median 0.5350 

0.5200 

0.2650 

0.2800 

0.2000 

0.2000 

0.886 (maximum) 

5
th

 Percentile 0.5950 0.2050 0.2000 0.623 (maximum) 

10
th

 Percentile 0.5650 

0.5500 

0.2350 

0.2500 

0.2000 

0.2000 

0.719 (maximum) 

* equivalent to the posterior predictive optimization of Quesada et al. (2005) 

 

 

 

 

TABLE 5: Posterior Percentiles of    Pr 150| ,,  newc ch y x x   at Two Optimal 

Control Factor Settings for the Film Manufacturing Experiment 

 

X1 X2 X3 Mean Median 5
th

 %ile 10
th

 %ile Variance 

0.5350 0.2650 0.2000 0.854 0.886* 0.614 0.716 0.015 

0.5950 0.2050 0.2000 0.847 0.875 0.623* 0.714 0.014 

* denotes best value across all control factor locations in design space
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FIGURE 1:  Trace Plots of the MCMC Samples for the First Four Regression 

Coefficients in the Cake Mix Experiment. 
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FIGURE 2: Q-Q plot of the Medians of the Posterior Distributions of the Raw Residuals 

for the Cake Mix Experiment. 

 

 

 

FIGURE 3: Q-Q Plot of the Posterior Means of the Random Effects in the Film 

Manufacturing Experiment. 
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FIGURE 4: Contour Plots of Mean of Posterior Distribution for 

     
2

, 7 * 7c new newh E y I y   
 

x  at Different Fixed Values of the Coded Flour 

Factor for the Cake Mix Experiment. Asterisk (*) denotes the optimal control factor 

setting. 
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FIGURE 5: Contour Plots of Median, 90
th

 and 95
th

 Percentiles of the Posterior 

Distribution for      
2

, 7 * 7c new newh E y I y   
 

x  Coded Flour factor Set at 1 for 

the Cake Mix Experiment. Asterisk (*) denotes the optimal control factor setting. 
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(a) 

 
 

(b) 

 
 

 

FIGURE 6: Contour Plots of Mean of Posterior Distribution for 

   Pr 150| ,,  newc ch y x x   for the Film Manufacturing Example: (a) Entire Design 

Region, (b) Enlargement of Region Close to Optimum Denoted by Dashed Line in (a). 

Asterisk (*) denotes the optimal control factor setting. 
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(b) 

 
FIGURE 7: Contour Plots of Median of Posterior Distribution for 

   Pr 150| ,,  newc ch y x x   for the Design Space Region in the Film Manufacturing 

Experiment: (a) Entire Design Region, (b) Enlargement of Region Close to Optimum 

Denoted by Dashed Line in (a). Asterisk (*) denotes the optimal control factor setting. 
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(b) 

 
 

FIGURE 9: Contour Plots of 5
th

 Percentile of Posterior Distribution for 

   Pr 150| ,,  newc ch y x x   for the Design Space Region in the Film Manufacturing 

Experiment: (a) Entire Design Region, (b) Enlargement of Region Close to Optimum 

Denoted by Dashed Line in (a). Asterisk (*) denotes the optimal control factor setting.
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(b) 

 
FIGURE 10: Contour Plots of 10

th
 Percentile of Posterior Distribution for 

   Pr 150| ,,  newc ch y x x   for the Design Space Region in the Film Manufacturing 

Experiment: (a) Entire Design Region, (b) Enlargement of Region Close to Optimum 

Denoted by Dashed Line in (a). Asterisk (*) denotes the optimal control factor setting. 

 


