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Abstract 

Recently, there has been significant research investigating new optical technologies for 

dimensional metrology of features 32 nm in critical dimension and smaller. When 

modeling optical measurements a library of curves is assembled through the simulation of 

a multi-dimensional parameter space.  A nonlinear regression routine described in this 

paper is then used to identify the optimum set of parameters that yields the closest 

experiment-to-theory agreement. However, parametric correlation, measurement noise, 

and model inaccuracy all lead to measurement uncertainty in the fitting process for 

optical critical dimension (OCD) measurements.  To improve the optical measurements, 

other techniques such as atomic force microscopy (AFM) and scanning electronic 

microscopy (SEM) can also be used to provide supplemental a priori information. In this 

paper, a Bayesian statistical approach is proposed to allow the combination of different 

measurement techniques that are based on different physical measurement. The effect of 

this approach will be shown to reduce the uncertainties of the parameter estimators.     
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Introduction 

 

Recently, there has been significant research investigating new optical technologies for 

dimensional metrology of features 32 nm in critical dimension and smaller.  Among them 

are scatterometry and more recently scatterfield microscopy, a technique that combines 

well-defined angle-resolved illumination with image-forming optics [1][2][3]. 

Experimental results using these optical techniques have demonstrated nanometer 

accuracy across a range of target dimensions as small as 40 nm with pitch values 1/10 the 

measurement wavelength [4]. To achieve these results using the angle-resolved 

scatterfield technique, reflected intensities are measured using a well-characterized 

optical microscope operated in a scanned illumination mode. In addition, electromagnetic 

scattering simulations are generated using idealized geometric representations of the 

measured features.  These representations are designed so that the quantitative parameters 

that define the dimensions and material properties of the idealized structures correspond 

to the physical attributes of interest, such as line width and line height.  Comprehensive 

libraries of simulated reflectivity curves are generated using well-developed rigorous 

coupled waveguide or finite difference time domain electromagnetic scattering models 

[5][6][7][8] with input parameters that cover the actual physical values.  Quantitative 

critical dimension measurements can then be achieved through a comprehensive 

parametric analysis, in which the experimental signature is compared against the 
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simulation library.  This method of parametric fitting is often used in quantitative 

scatterometry. Not only can a set of parameters be found that best describes the measured 

object, but the parametric fitting process can also yield quantitative critical dimension 

measurements with measurement uncertainties that include all instrumentation and 

sample components that contribute to the measurement uncertainty [9].  In the work 

presented here, we develop a method to embed a priori measurement information in the 

regression fitting algorithm and achieve reduced measurement uncertainties. 

 

When modeling optical measurements a library of curves is assembled through the 

simulation of a multi-dimensional parameter space.  A nonlinear regression routine is 

then used to identify the optimum set of parameters that yields the closest experiment-to-

theory agreement. This approach assumes that the model is adequately describing the 

physical conditions and that an acceptable goodness-of-fit is achieved with the best set of 

parameters.  However, parametric correlation, measurement noise, and model inaccuracy 

all lead to measurement uncertainty in the fitting process for optical critical dimension 

(OCD) measurements as shown in [9].  To improve the optical measurements, other 

techniques may be used to augment the parametric fitting.  As an example reference 

measurements for critical dimensions can assist in the definition of the central starting 

point and the boundaries of the multi-dimensional parameter space.  Reference metrology 

techniques such as atomic force microscopy (AFM) and scanning electronic microscopy 

(SEM) that are used to provide supplemental a priori information can also be used to 

validate the library fitting results. Historically, in the statistical regression analysis optical 

metrology simulation and experimental data are treated independently from the 
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supplemental reference metrology data obtained from AFM or SEM, for example. In this 

paper we establish rigorous statistical methods to combine measurement information 

from different metrology sources directly in the parametric fitting process and thereby 

improve the measurement uncertainty.  

 

The Bayesian statistical approach proposed in this paper allows the combination of 

different measurement techniques that are based on different physical measurement 

principles (e.g., probe scanning, electron scanning, etc.) that often have varying 

sensitivities to physical properties such as edge runout and surface roughness.  

Additionally, this approach allows the inclusion of measurements of the sample optical 

properties from a different hardware platform (e.g. an ellipsometer) and rigorously 

incorporates these measurements and their uncertainties in the regression algorithm. 

Including independently obtained information on the optical constants, feature geometry, 

or any other attribute of the measurement system, influences the best fit values and their 

associated uncertainties.  In Section 2, we discuss the use of nonlinear regression models 

in scatterfield microscopy for OCD analysis. In Section 3, a Bayesian statistical approach 

is introduced to use a priori information of the parameters and thus to obtain optimal 

posterior parameter estimators and their corresponding uncertainties. The effect of this 

approach will be shown to reduce the uncertainties of the parameter estimators. As a 

detailed illustration, two physical examples are presented in Section 4 followed by 

conclusions. 

 

2. Nonlinear regression models for OCD study 
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The technique of scatterfield microscopy has been described elsewhere in detail 

[1][2][3][10] . A complete set of scatterfield microscope measurements includes 1,..., Ny y

1,..., N

, 

which are the measured values of an interested variable Y , e.g., intensity, and x x , 

which represent the measurement conditions, e.g., the values of wavelength or angle, 

under which the N data points 1,..., Ny y  are obtained correspondingly. As mentioned in 

the Introduction, electromagnetic scattering simulations can be performed at each of 

1,..., Nx x  based upon a representation of the sample defined using K  measurement/tool 

parameters.  The simulated optical response is denoted by ( ; 1,...,i ),y x ia N=  , where 

 is a parameter vector representing the floating (i.e. variable) parameters, 

for example, line height, line width, line edge roughness (LER), and sidewall height, etc. 

Our goal is to compare 

1{ ,...,a=a }T
Ka

1{ ,..., }Ny y  with { ( ; )},iy x a 1,i ..., N= , the simulated values under 

the condition of ,i 1,...,x i N=  for the parameters , to find an optimal 

estimator of the parameter vector a . 

1,{ ...,=a }T
Ka a

 

One illustration of a, used also for Section 4, is shown below as Figure 1.  Here, five lines 

show five parameters that completely define a geometric model of the sample.  The 

dotted lines represent the top, middle, and bottom line widths.  The solid lines indicate 

the pitch, p , and the line height, h , of this periodic structure.  Any number of these 

parameters may be floated, with the remainder defined by fixed values.  Additional 

floating parameters may be included to improve the model, such as the optical constants, 
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n and k, of the material.  The individual floating parameters used in the model are the 

components of the vector a.                     

 

In general  is a nonlinear function of the parameter vectora . Treating as a 

mean response of 

( ; )iy x a ( ; )iy x a

iy , we have a nonlinear regression for iy  and  for  

given by 

( , )iy x a 1,...,=i N

                                        ( , )i iy y x iε= +a    for 1,...,i N= ,                                              (1) 
 
where iε  is the corresponding random error with zero mean. Using a first order Taylor 

expansion at a specific point of the vector a  (e.g., an initial value or an optimal value), 

, a linear approximation of that nonlinear function is given by 1{(0) (0),..., (0)}T
Ka a=a

  

           
1 (0)

( ; )( ; ) ( ; (0)) ( (0)),
K

i
i i k k

k k

y xy x y x a a
a= =

⎡ ⎤∂
+ ⎢ ⎥∂⎣ ⎦
∑

a a

aa a∼ −                                           (2) 

 

where   is the simulated value of  at . From (1) we have an 

approximation of the nonlinear regression model given by 

( ; (0))iy x a ( ; )iy x a (0)a

 

1 (0)

( ; )( ; (0)) ( (0))
K

i
i i k k

k k

y xy y x a a
a iε

= =

⎡ ⎤∂
= + −⎢ ⎥∂⎣ ⎦

∑
a a

aa + N,        1,...,i = ,                               (3) 
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where 
(0)

( ; )i

k

y x
a

=

⎡ ⎤∂
⎢ ⎥∂⎣ ⎦a a

a is the value of the partial derivative of with respect to   

at . See [11] p. 473. The covariance matrix of is denoted by V . In 

this paper, we assume that the random variables{

( ; )iy x a

..., }T
Nε ε

ka

(0)=a a 1{ ,=ε

}iε  are uncorrelated. Namely, V is a 

diagonal matrix denoted by 2
1[ ,..., ]Ndiag 2σ σ=V . In general, V does not have to be a 

diagonal matrix. By re-parameterization, the linear model in (3) is expressed as  

 

 
1

(0) (0) (0)
K

i ik k
k

y D iβ ε
=

= +∑ ,    1,...,i N= ,                                                               (4) 

where              (0) (0)k k ka aβ = − ,                                                                                    (5) 

                       
(0)

( ; )(0) i
ik

k

y xD
a

=

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦a a

a ,                                                                           (6) 

and 

                        .                                                                             (7) (0) ( ; (0))i i iy y y x= − a

 

In (4), (0)kβ  for are the regression parameters.  and  are the 

values for the explanary or predictor variables and the response variable of the regression 

model, respectively. A matrix form of (4) is given by 

1,...,k = K

ε

(0)ikD (0)iy

 

              ,                                                                                         (8) (0) (0)= ⋅ +Y D(0) β

 

where  is a  by 1 vector and  1(0) ( (0),..., (0))T
Ny y=Y N
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                                                                                    (9) 
11 1

1

(0)..... (0)
........

(0)..... (0)

K

N NK

D D

D D

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

D(0) ⎥
⎥

1−

K

)

 

is a N by  matrix.  and . The mean of ε  is 

and the covariance matrix of  and  is . The best linear unbiased estimator 

(B.L.U.E.) of  is the generalized least squares (GLS) estimator given by 

K 1(0) ( (0),..., (0))T
Kβ β=β

(0)Y ε

1( ,..., )T
Nε ε=ε

0 V

(0)β

 

 .                                                             (10) ( ) 11ˆ (0) (0)T T−−=β D(0) V D(0) D(0) V Y

 

See [12], p. 123. Namely, among all the linear unbiased estimators of ,  is the 

one with the smallest variance. See e.g., [13], p. 88. Here, a linear estimator of based 

on (8) is a linear combination of . In the case that V is a diagonal matrix, 

the model in (8) is a weighted least squares regression. See [13], p. 164. From (5), the 

B.L.U.E. of  is  given by 

(0)β ˆ (0)β

(0)β

1(0),..., (0)Ny y

â{ ; 1,..., }ka k K= =a

 

                                                                                                            (11)                             ˆˆ (0) (0),k k ka aβ= +

for . An example of best-fit data are shown in Figure. 2.  The covariance 

matrix of  is given by 

1,...,k =

ˆ {=a 1̂ ˆ,..., }T
Ka a

 

       ( 11ˆˆCov[ ] Cov[ (0)] T −−= = ⋅ ⋅a β D(0) V D(0) .                                                             (12) 
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See [12], p. 124. The standard deviations or standard uncertainties of  or , 

 are given by the square roots of the diagonal elements of  and denoted 

by 

ˆ (0)kβ

]

ˆka

1,...,k =

ˆka

K ˆCov[a

σ . Note that when { }iε  are Gaussian distributed, from (10) and (11)  and are 

also Gaussian distributed. Note also that we can use the Gauss-Newton method [14], p. 

40 – 41 to iteratively improve   and keep improving the estimates until there is no 

change. Thus, we can assume that  in (2) is an estimate vector 

from the Gauss-Newton method.  

ˆ (0)β â

â

1(0) { (0),..., (0)}T
Ka a=a

 

3. Bayesian statistical analysis and the use of prior information of parameters 

 

Recent studies have shown that OCD measurements are fundamentally limited by 

correlation of the fitting parameters [15]. Although it is possible that the simulated library 

of curves and the experimental data are in good agreement, the uncertainty in the fitting 

process may be greater than desired due to measurement noise and correlation between 

the fitting parameters.  However, quantitative information regarding these parameters, 

either from other measurement techniques or a priori manufacturing knowledge of 

material parameters such as their optical constants, n and k,  may be available and used to 

improve measurement uncertainties. For example, for the parameter of middle height, we 

may use another nondestructive tool, such as AFM to get an estimate of middle height 

with its own uncertainty. We can treat this information based on AFM measurements as 

prior information for that parameter and apply a Bayesian statistical approach.  
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In Bayesian analysis, model parameters such as in (8) or equivalently, { , 

are treated as random and have their own probability distributions. In 

particular, we assume that among the K  parameters, the first 

(0)β }ka

1,...,k = K

p  ( p K≤ ) parameters, 

 have prior information with their means given by  1,..., pa a

                                                                        (13) * * *
1[ ] ( ,..., )T

pE a= =a a a

p

and a known covariance matrix. From (5), the means of the corresponding adjusted 

regression parameters are given by 

 

                                                                              (14) *[ (0)] (0)k k kE a aβ = −

 

and denoted by for . We assume that {*(0)kβ 1,...,k = ; 1,..., }ia i p= are uncorrelated 

from each other and the covariance matrix of   or equivalently the sub-vector 

of  denoted by  is given by  

)1( ,..., pa a

p

T

(0)β 1( (0),...,p β(β 0) (0))Tβ=

 

  .                                                                                     (15) 

1

2

2

2

(0)

2

,0,0,...,0

0, ,0,...,0

.........
0,0,........

p

p

a

a

a

σ

σ

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟

Σ = ⎜
⎜ ⎟
⎜ ⎟
⎝ ⎠

β ⎟

 

In general, can be correlated leading to a non-diagonal covariance matrix in (15). 

Referring to the regression model in (8), from [15], p. 382 – 384, we treat the prior 

information on  as 

{ }ia

β (0)p p  additional “data points” of the response variable in (8). For 
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example, for the first parameter 1(0)β , we assume that it has a prior distribution with a 

mean of and a variance of * *
1 1 1(0) (0)a aβ = −

1

2
aσ . Considered as a function of 1(0)β , the 

prior distribution can be viewed as an “observation”  with all “explanatory 

variables” in the regression model equal to zero except the first one. Namely, an 

additional regression equation similar to (8)  is given by 

*
1 (0)β

 

*
1 1(0) (0) 1                 Nβ β=

1[ ] 0N

ε ++ ,                                                                              (16) 

 

1

2]Nwhere E 1, 2,...,k pε + = Var[ and 1 aε σ=+ . In general, for = , we have 

                     *(0) (0)k k N kβ β=

* *(0)k ka aβ = −

* *Y (0) D (

N p+ K

ε

+(0) ε

++                                                                              (17) 

where  

                    .                                                                                (18)  (0)k

 

Combining (16) and (17) with (8), we have an expanded linear model given by 

 

  ,                                                                    (19) = ⋅0) β *

 

where the ( ) by  matrix 
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                                                           (20) 

11 1

1

(0),..., (0)
........

(0),..., (0)
1,0,0,...............,0
0,1,0,...............,0
..........................
0,0,0...0,1,0,....0

K

N NK

D D

D D

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜⎛ ⎞

= =⎜ ⎟ ⎜
⎝ ⎠ ⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

* D(0)
D (0)

1
⎟
⎟

 

with 1  a p  x K matrix consisting of p  row vectors of length of K  with only a single 1 

in each row and the other elements in each row are zeros as shown in the second equality. 

In (18), 

 

                                                   (21)              * *
1 1( (0),..., (0), (0),..., (0))T

Ny y β β=*Y (0) p

2

and         

   ,                                                                     (22) 1 1( ,..., , ,..., )T
N N N pε ε ε ε+ +=*ε

 

with  and the covariance matrix of   given by [ ]E =*ε 0 *ε

 

 
1

* * 2 2 2
1Cov[ ] [ ,..., , ,..., ]

pN a adiag σ σ σ σ= =V ε .                                                      (23) 

 

Similar to (10), the posterior estimators of based on the GLS are given by (0)β

                                                             (24) ( ) 1# 1ˆ (0) T T−−= * * * * * *β D (0) V D (0) D (0) V Y (0)1−

with the posterior covariance matrix of the parameter estimators given by 
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 ( ) 1# * 1ˆ ] T#ˆCov[ ] Cov[
−−= ⋅ ⋅* *(0) D (0) V D (0) ,                                              (25) 

where # #ˆ )= +a a(0) are the posterior estimators of the original parameters a . It is 

clear that #ˆ (0)β  is the B.L.U.E. of (0)

=a β

ˆ (0β

β based on the expanded model (19 mely, 

under the model in (19) among all the linear unbiased estim (0)β , #ˆ (0)β  is the 

one with the smal stimator of (0)β based on (19) is a linear 

combination of * *
1 1(0),..., (0), (0),..., (0)y y β β . Note that both #ˆ (0)β  and ˆ (0)β  e 

timators of (0)β . The standard uncertainties of the posterior es  #ˆka , 

1,...,k K=  are g

 in ). 

ators of 

riance r e

ar

unbias

 the diagon

Na

ato

ˆ[ #a

lest va

ed es

i

.  Here, a linea

re roots

N p

ven by the squa  of

tim

Cov

rs

]al elements of  and 

denoted by #ˆka
σ . 

Following that #ˆ (0)β  in (24) is the B. L. U  of (. E. 0)β ,

ators. In particular, when 

 it 

 ti the 

varian d covariances of these estim  = 2 and

is demonstrated in Appendix 2 

that #ˆ (0)β  is also a linear function of  ˆ (0)β  and *(0)β  as well as a func on of 

ces an K  p  = 1, 

1
1

*
1# 1

21 1 2
21 2

0ˆVar[ (0)](0)1ˆ ˆ(0) (0) ,
ˆ ˆCov[ (0), (0)]a

a

gQ Q
Q

βββ β
σ β β σ

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟= + +⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

                   (26) 

 

where Q  and 1Q  are th  determinants of T* *-1 *D (0) V D (0  T -1D(0) V D(0) in 

(12), respectively, and 2g are the second components of 1T −D(0) V Y(0) (see A.19). From 

(26), it is obvious that when a

e in (25) and)  

1
σ = ∞ , i.e, there is no prior information for the first 

 13



parameter, and #ˆ ˆ(0) (0)β β= . Note that Note that when the random errors, { }iε  are 

from (24) and (11)  and are also Gaussian distributed

 

We investigate th ariance m ix in (25). By expanding it, we have  

 

                            (27)   

 

In (27), 

    

Gaussian distributed, #ˆ (0)β

atr

,

,

T T

T T

= ⋅

(0) 1

0) 1

0) V

#â

1

1

,
,

,
,

p

p

−

−

Σ

⋅

β

β

V 0

V 0
Σ

(0)

. 

e posterior cov

* 1−⋅ ⋅D (0) V D ( )

( )

1

(0)

(0)

1 1
(0) .

p

T

T T

−

− −

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

+ Σ

* *

β

D(0)
(0) D 0 1

D(0)
D(

0 1

D( D 1 1

1

21 ,...,0,...,0

..................

...................
0,..................,0

pp

a

a

σ⎛ ⎞
⎜ ⎟
⎜ ⎟

Σ = ≡ ⎜ ⎟
12

(0)1
(0)

,0,...,1 ,...,0
,0,..................,0

p

T σ −
−

⎜ ⎟ ⎛ ⎞Σ⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟
⎜ ⎟
⎝ ⎠

,                              (28) 

trix with an appropria

estima  of osterior es

⎝ ⎠⎜ ⎟

β
β

0

0 0
1 1

a

tors given by (10) and the variances

where indicates a zero m te size. We compare the variances of 0

the the p timators given by (25). 

In Appendix 1, it is shown that  

      #ˆ ˆVar[ (0)] Var[ (0)]k kβ β≤                                                                          (29) 

for 1,...,k K= . Or equivalently, #ˆ ˆVar[ ] Var[ ]a a≤  for 1,...,k Kk k = . This indicates that the 

variance of a posterior parameter estimator is equal to or smaller than that of the 

 14



corresponding usual GLS estimator without prior information of the model parameters. In 

addition, no matter which parameter the prior information is used for, the variances of all 

posterior estimators are equal to or smaller than those of the corresponding usual GLS 

estimators. The two variances are the same if and only if 2
iaσ = ∞  for i.e., if 

ere is no prior information for all these 

1,...,i p= , 

pth model param ters. Note that s nce both 

ual ators, 

correspondingly. 

riances  the poster rior 

ariances of the model parameters. In Appendix 1, it is shown that  

e

ior estim

i

 GLS estim

ators with the p

estimators are unbiased estimators of the model parameters, the posterior estimators have 

smaller mean squared errors than those of the corresponding us

 

In addition, we also compare the va of

v

# 2ˆVar[ (0)]
ii ββ σ≤                                               (30) 

for 1,...,i p= . Thus, the posterior variances are smaller than the prior variances of the 

model parameters, correspondingly.  

 

From (29) and (30), it is clear that when we use prior information about the regression 

model parameters from other metrology  the resultant  

uncertainties of the posterior estimators are smaller th and 

 the regular GLS estim s of the m e

sing the Bayesian analysis to combine m ent results f ces, the 

 

sources to OCD study,

an both the prio

odel param

rom

r uncertainties 

ters. Therefore, by 

 multiple sour

the uncertainties of ator

easuremu

resultant uncertainties are improved. 
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4.  Two examples 

 

To illustrate the methodology, two sets of measurements were performed on etched 

features on well-characterized wafers.  A first set of experiments involved the 

measurement of line arrays on a silicon-on-silicon wafer produced by SEMATECH* 

using the OMAG-3 reticle set [17]. There are multiple nearly identical arrays on the 

wafer, each nominally 100 nm in line width with a 200 nm space, yielding a 300 nm pitch 

and thus are labeled on the wafer as “L100P300” arrays.  The actual line widths vary 

among arrays located throughout the wafer due to pattern variations induced by various 

combinations of lithographic exposure dose and focus across the wafer in a focus-

exposure matrix.  As illustrated in Figure 2, measurements were conducted by performing 

two orthogonal scans for one polarization, and then repeated for a second polarization, 

ans for each array.  Measurements w gles for each scan 

with four scans per target (two polarizations at each of the two orthogonal gles) 

resulting in N = 68 for each experimental data set.  As indicated in Figure 2, for this 

example, the variable Y  is the reflectivity and the iable 

yielding four sc ere made at 17 an

scan an

 var X  represent the measurement 

conditions, the angle and the corresponding polarization and scan direct

i

ion. In Equation 3, 

y  ( 1,...,i = 68) are th easured reflectivity and e m ( ; )iy x a (i 1,...,68)= are the simulated 

 are

 the regression model, atrix 

ulations and splin

The covariance matrix of 

values of reflectivity. In the simulation, there ters ( 3)K , i.e., 

top, middle, and bottom line widths as shown in Figure. 1.  The matrix for the 

 three fl

D(0) in (8)

e interpol

V

oating parame

 (9) is a 68

ions. The 

is a 68 x 68 diagonal m

=

 x 3 m

from (8) is a 

atrix based on 

explanatory variables in

calculated by (6) based on sim

 and

at (0)Y

vector of size of 68. ε , 
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measurements. The original parameters (0) (121,115,141)T=a  are a set of optimal values 

for top, middle, and bottom line widths. From (10), the GLS of the adjusted parameters 

, 3.68,2.24)T− and from (11) the original parameters 

ˆ(0) (119.68,111.32,143.24)T=a  for top, middle, and bottom line widths. The 

corresponding standard deviations, i.e., standard uncertainties are 0.84, 2.23, and 1.32, as 

shown in Table 1. In this example, quantitative reference information from AFM 

metrology is available. Table 1 lists the mea values of the three parameters given by 

(119.21,117.32,132.87)T=*a with the corresponding standard uncertainties equal to 0.75 

in the corresponding parentheses from AFM metrology. I  the 

means and stan eters of top and middle line widths as 

prior informat se two pieces of information as two data points in 

(18), i.e., 2p = . Now the covariance matrix V  in (23) is a 70 x 70 diagonal matrix with 

the last two diagonal elements equal to 0.75. From (24), the Bayesian estimators of the 

three adjusted and the original parameters are #ˆ (0) (0.27,1.03, 0.54)T= −β and 

correspon

are given by 

s example we only use

are also 

 of 

ent 

ˆ (0) ( 1.32= −β

dard uncertainties fo

n and thus, treat the

#ˆ (121.27,116.03,=a

(0.30,0.68,0.44)T=#

 the prior uncertainty of

ters as well as an improvem

easurements are sm

n 

n thi

r the param

*

140.46)T  

. It is obvious that the un

 0.75. Th

ent in the uncertainties

aller than each of the ind

io

ding 

ncertainties ˆσ
a

smaller than

the parame

from the combined m

results.  

 

with the corresponding standard 

certainties of #ˆ (0)β

e results show a change in the estimates

. The resulting uncertainties 

ividual measurem

u
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A similar second set of experiments was completed for line patterns etched into a nitride 

film on a polysilicon substrate.  These gratings were measured in the same manner as 

before, although here 21 angles per scan were measured.  The four combinations of 

polarizations and scan axes yield an experiment for which N = 84.  Notably, the 

simulation library was expanded to five floating parameters (K = 5).  These nitride 

atterns were parameterized by again using the top, middle, and bottom line widths from 

h contributed insignificantly to the Type B estimate, while the largest component 

as the possibility of LER, which also is approximately 5% of the reflectivity. The 

p

Figure. 1.  In addition, the height of the line and the optical constant n of the nitride film 

were also allowed to vary.  The optical constant variable n is expressed here as a 

percentage of a nominal value provided a priori but without an uncertainty. Reference 

metrology data were also acquired using an AFM, yielding the height and the top, middle, 

and bottom widths.  

 

Both the Type A and Type B uncertainties were evaluated based on the optical 

reflectivity data.  The Type A uncertainty was evaluated from the standard deviation of 

the mean reflectivity at each data point and can be approximated as 5 % of the measured 

reflectivity.  The Type B uncertainties were evaluated through parametric uncertainty 

analysis and estimations of the spectral width of the light-emitting diode (LED), the 

choice of simulation model, the reflectivity changes from adding 1 nm of line-edge 

roughness (LER), and the calibration of the incident angle.  Model choice and spectral 

widt

w

uncertainty from angular calibration contributes to the Type B as a function of increasing 

angle. Between cross-correlation among floating parameters and the combined 
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uncertainties related to the reflectivity measurements, the parametric uncertainties for the 

OCD fitting results for this example are large, as seen in the OCD fitting column of Table 

  

lightly better than 

at provided from AFM.  However, the standard uncertainty for the bottom line width 

as decreased by almost a factor of two with respect to that for the AFM measurement.  

AFM reference values allow the standard uncertainty for the optical 

constant n for the nitride film to be halved with respect to the OCD measurement.  The 

goodness-of-fit of this embedded metrology parameterization for OCD is shown as 

Figure 3.  The goodness of fit data are quite good with small residuals. 

 

 

5. Conclusions 

information from other reference metrology platforms into OCD regression analysis. The 

2. 

 

Comparisons were made between the measured data and the simulation library with and 

without the AFM reference data. Calculations were carried out in the same way as for the 

previous example.  Table 2 shows the parametric results and the measured AFM values 

as well as their corresponding standard uncertainties in the parentheses.   

   

Embedding the four AFM parameters into the parametric fitting affects each of the best-

fit parametric values and their uncertainties differently. For example, the standard 

uncertainty for the top line width from the embedded metrology is just s

th

h

The embedded 

 

In this paper, a Bayesian statistical approach has been applied to combine measurement 

 19



resultant estimators of the model parameters have smaller variances and smaller mean 

squared errors than those based on the measurements from optical measurements alone. 

he measurement uncertainties are also improved. The new methodology has important 

ent uncertainties. This approach has immediate appeal to combine 

easurement techniques that achieve the lowest overall uncertainty for a given structure.  

 the midst of sub - 20 nm sized features of increasing geometric complexity, this 

ethod will allow the best rigorous combination of metrology platforms, each best suited 

ar aspect of the measurement, resulting in the most complete and lowest 

 

T

implications in devising measurement strategies that take advantage of the best 

measurement attributes of each individual technique. This method may be applied to 

other metrology methods such as model-based scanning electron microscopy or 

quantitative ellipsometry.   

 

A key result of this is approach is that a combination of measurements may be conceived 

that optimizes measurement uncertainty for a given measurement throughput.  For 

example by combining film thickness measurements and optical constants measurements 

on one platform with OCD measurements and known manufacturing variations, a 

substantial gain in measurement uncertainty can be achieved with simultaneous 

improvements in throughput.  A second important possibility is improved calibrations 

and measurem

m

In

m

to a particul

uncertainties.  
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Appendix 1: Proof of Equations 29 and 30. 

 

First we consider the case of K = 2. Since the cases of 1p =  can be treated as a special 

case of  p  = 2 by letting the corresponding 2
iaσ = ∞ , we will discuss the case of  p  = 2 

only. We denote the symmetric matrix  in (11) by , i.e., 1−0)V D(0)TD ( 1Q

                                                      (A.1) 11 12
1

12 22

,
.

,
T q q

Q
q q
⎛ ⎞

= = ⎜
⎝ ⎠

-1D(0) V D(0) ⎟

Assuming that D( has a full column rank, is a positive definite matrix 

because V  is positive definite by Theorem 4.2.1, p. 140 from [18]. The determinant of 

 is given by

0) T -1D(0) V D(0)

1Q 2
1 11 22 12 0Q q q q= − > . By Corollary 4.2.2, p. 140 in [18], > 0, > 0. 

The corresponding term in (25) denoted by  is expressed as 

11q 22q

Q

2

1

2

1
(0)

211 12

212 22

1 ,

1,

T

T T

a

a

Q

q q

q q

σ

σ

−

=

= +

⎛ ⎞+
⎜ ⎟

= ⎜ ⎟
+⎜ ⎟⎜ ⎟

⎝ ⎠

* *-1 *

-1
β

D (0) V D (0)
D(0) V D(0) 1 1Σ  .                                                     (A.2) 

 
The determinant of Q  is given by 

2 1 1 2

11 22
1 2 2 2 2

1 0
a a a a

q qQ Q
σ σ σ σ

= + + + > .                                           (A.3) 

 
From (25) and (A.3), the variance of the posterior estimator of the first parameter is given 

by 
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2

2 1 1

22 2

1
11 22

1 2 2 2 2

1

ˆVar[ (0)] 1
a

a a a a

q

q qQ

σ
β

2
σ σ σ σ

+

=
+ + +

#                                           (A.4) 

 
 
while from (12) and (A.1) 

                       22
1

1

ˆVar[ (0)] q
Q

β = . 

The difference between the two variances is given by 

1 2 1 2

#
1 1

2 2
22 12 22
2 2 2 2

1

ˆ ˆVar[ (0)] Var[ (0)]

0a a a a

q q q

Q Q

β β

σ σ σ σ

−

+ +

= >

 

 
Similarly, the result holds for 2 (0)β . Thus, the variance of a posterior parameter 

estimator is smaller than that of the usual GLS estimator without prior information of 

model parameters. 

 

If does not have a full column rank,  D(0)

               
1 2 1 2

#
1 1

2 2
22 12 22
2 2 2 2

1

ˆ ˆVar[ (0)] Var[ (0)]

0a a a a

q q q

Q Q

β β

σ σ σ σ

−

+ +

= ≥

 

 

For (30), from (A.4) the difference of the prior variances of the model parameter, e.g., 

 and the corresponding posterior variance is given by 1i =
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1

1

2

1

2 1 1 2

2
112

1 2
2

1
11 22

1 2 2 2 2

ˆVar[ (0)] 01

a
a

a
a

a a a a

q
Q

q qQ

σ
σ

σ
σ β

σ σ σ σ

+

− =
+ + +

# ≥ . 

Now we consider a case with three parameters, i.e.,  = 3. Since the cases of  can 

be treated as special cases of  

K 3p <

p  = 3 by letting the corresponding 2
iβ

σ = ∞ , we will discuss 

the case of p = 3. 

 

We denote the symmetric matrix  in (12) by , i.e., 1T −D(0) V D(0) 1Q

 .                                                                 (A.5) 
11 12 13

1 12 22 23

13 23 33

, ,
, ,
, ,

T

q q q
Q q

q q q

⎛ ⎞
⎜= = ⎜
⎜ ⎟
⎝ ⎠

-1D(0) V D(0) q q ⎟
⎟

Assuming that D(0) has a full column rank, is a positive definite matrix 

because V  is positive definite by Theorem 4.2.1, p. 140 from [18]. The corresponding 

term in (25) denoted by Q  is expressed as 

T -1D(0) V D(0)

3

1

2

3

1
(0)

211 12 13

212 22 23

213 23 33

1 , ,
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T

T T

a

a

a

Q

q q q

q q q

q q q

σ

σ

σ

−

=
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⎛ ⎞
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⎜ ⎟
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⎜ ⎟
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⎝ ⎠
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D (0) V D (0)
D(0) V D(0) 1 1Σ  .                                                  (A.6) 

The determinant of Q  can be expressed as 

1 2 3 1 2 1 3 2 3 1 2

33 3311 22 22 11
1 2 2 2 2 2 2 2 2 2 2 2

1

a a a a a a a a a a a

M qM M q qQ Q
3

2
aσ σ σ σ σ σ σ σ σ σ σ σ

= + + + + + + + .               (A.7)                   
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where the determinants, 

22 23
11

23 33

,
,

q q
M

q q
=       11 13

22
13 33

,
,

q q
M

q q
=     and 11 12

33
12 22

,
,

q q
M

q q
=  

are the (1,1), (2,2), and (3,3) minors of matrix . See [19], p. 143. Without loss of 

generality, we only need to check the variances for the first parameter. From (24) and 

(A.7), the variance of the posterior estimator of the first parameter is given by 

1Q

2 3 2 3

1 2 3 1 2 1 3 2 3 1 2

33 22
11 2 2 2 2

1
33 3311 22 22 11

1 2 2 2 2 2 2 2 2 2 2 2

1

ˆVar[ (0)] 1
a a a a

a a a a a a a a a a a a

q qM

M qM M q qQ

σ σ σ σ
β

3

2σ σ σ σ σ σ σ σ σ σ σ σ

+ + +

=
+ + + + + + +

#  

                                                                                                                             (A.8) 

while from (12) and (A.5) 

                       11
1

1

ˆVar[ (0)] M
Q

β = . 

In (A.8), the matrices of the corresponding 11M , 22M , and 33M  are positive definite (or 

semidefinite positive when does not have a full column rank) and > 0, > 0, 

> 0 by Corollary 4.2.2, p. 140 in [18]. The difference between the two variances is 

given by 

D(0) 11q 22q

33q

 

1 2 3 1 2 1 3 2 3 1

#
1 1

2
11 22 33 1 11 33 22 1 11 11 133 1111 22 11

2 2 2 2 2 2 2 2 2 2 2

1

ˆ ˆVar[ (0)] Var[ (0)]

1
a a a a a a a a a

M M q Q M M q Q q M Qq MM q M

Q Q
2 3

2
β β β

β β

σ σ σ σ σ σ σ σ σ σ σ σ

−

− − −
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=

 

                                                                                                                                   (A.9) 
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It can be shown that 

            2 2
11 22 33 1 23 13 12 33 12( )M M q Q q q q q M− = − = 0≥ .                                           ( A.10) 

Similarly,  

2 2
11 33 22 1 12 23 13 22 31( )M M q Q q q q q M− = − = 0≥ .                                             (A.11) 

In (A.9), 

11 11 1 12 12 13 13

2 2
12 33 12 13 23 13 222

q M Q q M q M

q q q q q q q

− = −

= − +
. 

We show this term is also non-negative. We first consider the case that . In this 

case,  

12 13 0q q ≥

( ) ( )

2 2
12 33 12 13 23 13 22

2 2
12 33 33 22 13 23 33 22 13 23 12 13 23 13 22

2

12 33 13 22 12 13 22 33 23
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 .                            (A.12) 

The inequality holds because 2
11 22 33 23 0M q q q= − > and  leading to   22 33,q q > 0

22 33 23q q q> . When , corresponding to (A.12), 12 13 0q q <

  

 

( ) ( )

2 2
12 33 12 13 23 13 22

2 2
12 33 23 12 13 13 22

2 2
12 33 33 22 12 13 33 22 12 13 23 12 13 13 22

2

12 33 13 22 12 13 22 33 23

2

2

2 2 2

2

0

q q q q q q q

q q q q q q q

q q q q q q q q q q q q q q q

q q q q q q q q q

− +

= + +

= − + + +

= − + +

≥

                   (A.13) 

From (A.9) – (A.13), #
1 1

ˆ ˆVar[ (0)] Var[ (0)] 0β β− ≥ .  

The general case for  follows in the foot-steps of the case of 3K > 3K = . 
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For (29), from (A.8) the difference of the prior variances of the model parameter, e.g., 

 and the corresponding posterior variance is given by 1k =

1 1 1

2 3 2 3

1

1 2 3 1 2 1 3 2 3 1 2

2 2 2
22 33 11

1 11 2 2 2 2
2

1
33 3311 22 22 11
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Appendix 2: An expression of  in (26). #ˆ (0)β

 

We consider the case with  = 2 and K p  = 2. From (20) and (23), 
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From (A.3), 
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From (A.14), 
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From (12), (24), (A. 16), (A.17), (A.18) and (A.19), 
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Note that 11 Q  and 1 Q are the generalized variances of and , respectively. 

From (A.19),  is a linear function of  and  as well as their generalized 

variances, and variances and covariances of . 
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For a special case that p  = 1, we have 
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Table captions:  

 

Table 1.  Parametric optical criticial dimension (OCD) fits to the data from in Figure 2 

before and after the inclusion of data from an atomic force microscope (AFM). 

 

 

 

Table 2.  Parametric optical criticial dimension (OCD) fits to the data in Figure 3 before 

and after the inclusion of data from atomic force microscopy (AFM).  The five floating 

parameters are top width, middle width, bottom line width, line height, and the percent 

variation of the optical constant, n. 
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Table 1. 

 OCD Fitting  

ˆka ( ˆkaσ ) 

AFM  

*
ka  ( *

ka
σ ) 

OCD w/AFM  

#ˆka  ( #ˆka
σ ) 

Top 119.68 (0.84) 119.21 (0.75) 121.27 (0.30) 

Middle 111.32 (2.23) 117.32 (0.75) 116.03 (0.68) 

Bottom 143.24 (1.32) 132.87 (0.75) 140.46 (0.44) 
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Table 2. 

 OCD Fitting  

ˆka ( ˆkaσ ) 

AFM  

*
ka  ( *

ka
σ ) 

OCD w/AFM  

#ˆka  ( #ˆka
σ ) 

Top 33.7 (10.8)  37.6 (1.8) 39.2 (1.7) 

Middle 48.9 (6.0)  44.7 (2.8) 50.1 (2.1) 

Bottom 68.9 (8.3) 49.6 (5.9) 63.9 (3.1) 

Height 60.0 (2.2) 55.5 (1.4) 58.4 (0.6) 

n (% of nominal) 98.1 (1.0)  98.1 (0.5) 
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Figure captions: 

 
Fig. 1. Cross-sectional view of a periodic line structure that serves as an input to the 
electromagnetic scattering simulations.  The solid lines ending in diamonds are the height, 
h, and the pitch, p,    The dotted lines ending in circles are the width of lines at the top, 
middle, and bottom.  In the first example in Section 4, the height and pitch will remain 
fixed to reduce computational time, and the three line widths will be floated.  Therefore, 
the vector a will have three components, but in general could have more or less.   
 
Fig. 2. Examples of experimental data (markers) and library data fits (lines) for three line 
arrays from the overlay metrology advisory group (OMAG) 3 wafer.  The four curves in 
each plot correspond to the four combinations of scan direction and orthogonal linear 
polarizations shown in the schematic.           
 
Figure 3.  An example set of experimental data (markers) and library data fits (lines) for 
the reflectivity from a patterned nitride line array on polysilicon. 
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