
Random Lines: A Novel Population Set-based
Evolutionary Global Optimization Algorithm

İsmet Şahin1

Department of Materials Science and Engineering
Room 2123, Chemical and Nuclear Engineering Building (Bldg 90)

University of Maryland, College Park, MD 20742-2115 USA
isahin@gmail.com

Abstract. In this paper, we present a new population set-based evolutionary
optimization algorithm which aims to find global minima of cost functions.
This algorithm creates random lines passing through pairs of points (vectors) in
population, fits a quadratic function based on three points on each line, and then
applies the crossover operation to extrema of these quadratic functions, and
lastly performs the selection operation. We refer to the points determining
random lines as parent points and the extremum of a quadratic model as the
descendant or mutated point under some conditions. In the crossover operation,
some entries of a descendant vector are randomly replaced with the
corresponding entries of one parent vector and some other entries of the
descendant vector are replaced with the corresponding entries of the other
parent vector based on the crossover constant. The above crossover and
mutation operations make this algorithm robust and fast converging. One
important property of this algorithm is that its robustness in general increases
with increasing population size which may become useful when more
processing units are available. This algorithm achieves comparable results with
the well-known Differential Evolution (DE) algorithm over a wide range of cost
functions.

Keywords: Global Optimization, Continuous Variable Optimization, Direct
Search Methods, Evolutionary Computation, Random Lines, Differential
Evolution.

1. Introduction

Global extrema of a function play an important role in design and analysis of many
science applications [1]. Without loss of generality, we discuss only minimization of
functions; therefore, we refer to these functions as cost functions. Direct search
algorithms are global optimization algorithms which rely on only cost function

1 The author works in direct collaboration with the NIST Center for Neutron Research, National

Institute of Standards and Technology, 100 Bureau Drive, MS 6100, Gaithersburg, MD
20899-6100 USA. This work is supported in part by the US National Science Foundation
under grant DMR-0520547

evaluations for achieving minimization task [2]. As a result, these algorithms are very
useful whenever derivative information (gradient or Hessian) about a cost function is
not available due to its complexity, discontinuity, or nonnumeric structure. Multiple
direct search algorithms [2] have been proposed and successfully used in literature
including the Hooke and Jeeves algorithm [3] and the Downhill Simplex algorithm
[4].

Population set-based algorithms are direct search algorithms which use multiple
points simultaneously for creating variations and then selecting the variations yielding
smaller function values than points of the current generation [5-11]. Points of the
current generation are called target points and the points representing variations for
this generation are called trial points. Variations are usually achieved by means of the
mutation and crossover operations. One important example of population set-based
algorithms is the DE algorithm [12,13] which is robust and efficient and therefore has
been studied extensively and used successfully in many different applications [14-24].
The DE algorithm creates a mutated vector by choosing three different vectors,
scaling the difference between two of these vectors, and then adding the scaled
difference vector to the third vector [12]. In order to create a trial vector, the DE
algorithm replaces some entries of the mutated vector with the entries of one parent
vector in the crossover operation based on the crossover constant.

Quadratic functions have been used in many deterministic and stochastic
optimization algorithms. The quasi-Newton algorithm in [25] finds a descent
direction based on the BFGS (Broyden–Fletcher–Goldfarb–Shanno) Hessian update
and performs an inexact search for the minimum along the line in this direction by
using quadratic and cubic modals. The line search algorithm in [26] also makes use
of quadratic interpolations. The stochastic algorithm Controlled Random Search [27]
has a mutation operation which randomly chooses three points in population and fits a
quadratic to these three points. A similar mutation operation for DE is also used in
[28].

The proposed algorithm inherits main characteristics of population set-based direct
search algorithms by using the mutation, crossover, and selection operations but it has
major differences in using these operations compared to other population set-based
algorithms. The most important difference is in the mechanism of creating variations.
The proposed algorithm tries to learn cost function surface by fitting quadratic models
and uses extrema of these quadratic models as mutated vectors under some
conditions. This allows the algorithm to quickly locate the regions of search space
with highly promising points and therefore to achieve fast convergence. In order to
increase robustness, this algorithm uses a crossover operation for replacing some
entries of a mutated vector with entries from two parent vectors rather than one vector
as is usually performed in DE. Comparison of our algorithm with DE demonstrates
its high efficiency and robustness over multiple cost functions.

2. Formulation

Consider a set of N -dimensional real vectors 1 2{ , ,...., }
PN

X x x x= with PN
elements. For each target point ix in X , we randomly choose another point jx in X

and construct the line passing through ix and jx which are called parent points. This
line can be represented by ()i j ix x xμ+ − where μ is a real number. In Fig. 1, a
generation with five points are demonstrated where each pair of square points
represent a specific ix and the corresponding jx . Next, we evaluate the function
value at a randomly sampled point kx from the line passing through ix and jx :
 ()k i k j i i kx x x x x pμ μ= + − = + (1)
where ()j ip x x= − and kμ is a randomly chosen real number representing the step
size constant, 0kμ ≠ , 1kμ ≠ . A step k pμ from ix toward jx is taken if 0kμ > ,
otherwise a step in the opposite direction along the line is taken. We also note that
the sampled point kx is between ix and jx if 0 1kμ< < . Clearly, the point kx will
have larger distances from ix for larger step sizes, therefore the local quadratic model
may have larger mismatches with the underlying cost function surface. For this
reason, we choose relatively small step sizes μ from the union of two intervals: [-0.95
-0.05] U [0.05 0.95] uniformly in this paper. Note that step sizes chosen from this
distribution satisfy the conditions 0kμ ≠ and 1kμ ≠ . The sampled points for the
generation in Fig. 1 are represented by circle signs.

We consider one-dimensional real-valued function () ()if x pφ μ μ= + which
represents one-dimensional cross section of ()f x along the line passing through ix
and jx for the mutation operation. Since function values (0) ()if xφ = , (1) ()jf xφ = ,
and () ()k i kf x pφ μ μ= + are known at three different points, a quadratic function

2(̂) a b cφ μ μ μ= + + can be fit to ()φ μ . After some algebraic operations, we can
show that the constraints (̂0) (0)φ φ= , (̂1) (1)φ φ= , and (̂) ()k kφ μ φ μ= uniquely
determine the following coefficients of this quadratic model

1 1 1
(1) (0) (1) (0) ()

1 (1)
1 1

(1) (0) ()
1 (1)

(0)

k
k k k k

k k
k

k k k k

a b

b

c

φ φ φ φ φ μ
μ μ μ μ

μ μ
φ φ φ μ

μ μ μ μ
φ

= − − =− + +
− −

+
= − −

− −
=

 (2)

where 0kμ ≠ and 1kμ ≠ . The critical point *μ of this quadratic model is

* /(2)b aμ =− , 0a≠ , and the corresponding point * *ix x pμ= + represents a
descendant or mutated point under some conditions. If 0a> , the quadratic model is
convex with a unique minimum, and therefore *x becomes the descendant point.
Since all quadratic models in Fig. 1 are convex, their minima are the descendant
points which are demonstrated with star signs. When 0a< , the model is concave
with a maximum. In this case, we also use *x as the descendant point if the function
value at the sampled point is smaller than the function value of at least one parent
point. This condition can be written as 0a< and [() ()k if x f x< or () ()k jf x f x<]. If
these conditions are not satisfied, *x is not considered to be a descendant point and

(a)

(b)

Fig. 1. Surface of the cost function Schwefel12 [21] is shown from side and top views in (a)
and (b) respectively. Five square points represent the current generation. For each square point
ix , another square point jx is chosen randomly in order to draw a line passing through both

points. From each line a point kx is randomly sampled and the function value at this point is
evaluated. The sampled points are demonstrated with circle signs. Since function values at
three different points on each line are known, the quadratic function passing through these three
points is determined as shown in (a) and its minimum is marked with a star sign in the above
figures. Star points constitute descendant points which are clearly located at lower altitudes of
the cost function compared to the parent (square) points.

the target vector ix remains in the next generation. In addition to convex quadratic
models, using concave quadratic models creates further diversity in search and
therefore increases robustness of the proposed algorithm over multiple cost functions.
When 0a= we have a linear model rather than a quadratic model; also in this case,
ix remains in the next generation.

1 Create an initial generation 0 1 2{ , ,...., }

PN
X x x x= and 0cX X=

2 while (convergence is not achieved)
3 for each , 1,2,....,i c Px X i N∈ =

4 randomly choose j cx X∈ , i jx x≠ and evaluate j ip x x= −

5 choose a step size kμ uniformly from the interval [-0.95 -0.05] U [0.05 0.95]

6 evaluate () () ()k i k kf x f x pμ φ μ= + =
7 calculate , ,a b and c by using equation (2)
8 if 0a> or [0a< and (() ()k if x f x< or () ()k jf x f x<)]

9 evaluate * /(2)b aμ =− , * *ix x pμ= + , and *()f x

10 calculate îx by using the crossover operation in equation (3)

11 if ˆ() ()i if x f x<

12 îx X+∈
13 else
14 ix X+∈
15 end if
16 else
17 ix X+∈

18 end if
19 end for
20 cX X+=
21 end while

Fig. 2. The Random Lines (RL) Algorithm. The sign ‘U’ on line 5 denotes the union operation.

The crossover operation in our algorithm involves two parent points ix and jx ,

and the descendant point *x . The trial vector îx is determined based on the following
rule:

if 0.5(1)

if 0.5(1)ˆ

if 0.5(1) 0.5(1)

k k R

k k Rk

k R k R

r C

r C

C r C

α
βα
γ

⎧⎪ ≤ −⎪⎪⎪ ≥ +=⎨⎪⎪ − < < +⎪⎪⎩

 (3)

where ˆ , , , ,k k k kα α β γ and kr are thk entries of vectors îx , ix , jx , *x , and r respectively
and RC is the crossover constant chosen between 0 and 1. The vector r contains N
entries, each of which is drawn randomly from the uniform distribution [0,1]U . This

rule means that 100 RC⋅ percent of the trial vector îx is determined by the descendant
vector *x , half of the remaining entries of the trial vector is determined by the first
parent ix and the other half is determined by the second parent jx . For instance, if

0.7RC = , the contributions of *x , ix , and jx vectors to the trial vector îx are 70, 15,
and 15 percents on average respectively.

We evaluate function value ˆ()if x at the trial point for performing the selection
operation. If the trial point îx achieves a smaller function value than the target point

ix , the trial point replaces the target point in the next generation, otherwise the target
point remains in the next generation. In order to summarize this algorithm, let CX
and X+ denote the current and next generations respectively. In Fig. 2, we
summarize the steps of the proposed Random Lines (RL) algorithm.

3. Performance Evaluation

In this section, we compare performance of the RL algorithm with the well-
known global optimization algorithm DE [12]. Since the DE/rand/1/bin variant of the
DE algorithm is robust and fast convergent for different cost functions, this variant is
often used in performance analysis in literature [5,8,12,21]. We also use this variant
through this section. We use 30 cost functions listed in Table 1 including unimodal,
multimodal, separable, non-separable, and badly scaled functions. Each algorithm
minimizes each of these cost functions 100 times and its total number of successes
SN and average number of function evaluations FN are recorded for comparing

robustness and efficiency of these algorithms. The average number of function
evaluations is calculated based on only successful runs. In order to compare number
of function evaluations of the algorithms, we use the acceleration rate (AR) defined as
the ratio of average number of function evaluations for RL to average number of
function evaluations for DE [21]. The acceleration rate is only defined for the cost
functions for which both algorithms achieve at least 30 successes since the average
number of function evaluations may deviate largely for smaller number of successful
runs.

Since both algorithms use parameters RC and PN , we choose the same parameter
values 0.9RC = and 10PN N= for both algorithms. The DE algorithm also uses
0.5F = for scaling difference vectors. Multiple studies [5, 21, 29, 30] also use

similar DE parameters as the DE algorithm usually achieves larger number of
successes with smaller number of function evaluations with these parameter values.
Both algorithms use the Mersenne Twister random number generator [13,35]. We say
that an algorithm is successful or it achieves convergence when the algorithm finds an

Table 1. Cost functions and their limits and references. Here [a,b] means that each component
of a vector in the initial generation is in interval [a,b]. Dimensions of functions are specified in
paranthesis in first column.

Cost Functions Limits References
Ackley(N) [-30, 30] [21]
Alpine(N) [-10, 10] [21]
Beale(2) [-10, 10] [21]

Branin(2) 1x ∈[-5, 10], 2x ∈ [0, 15] [21]
Brown Badly Scaled(2) [-1e7, 1e7] [32]

Camel6(2) [-5, 5] [21]
Colville(4) [-10, 10] [21]

Cubic Valley(2) [-100, 100] [34]
Dejong4(N) [-1.28, 1.28] [21]

GoldsteinPrice(2) [-2, 2] [33]
Griewangk(N) [-600, 600] [21]

Hartman3(3) [0, 1] [21]
Hartman6(6) [0, 1] [21]

Hyperellipsoid(N) [-5.12, 5.12] [21]
Kowalik(4) [-5, 5] [21]
Matyas(2) [-10, 10] [21]

Powell Badly Scaled(2) [-10, 10] [32]
Rastrigin(N) [-5.12, 5.12] [21]

Rosenbrock(N) [-2.048, 2.048] [21]
Schwefel12(N) [-65, 65] [21]

Schwefel221(N) [-100, 100] [21]
Schwefel222(N) [-10, 10] [21]

Shekel5(4) [0, 10] [21]
Shekel7(4) [0, 10] [21]

Shekel10(4) [0, 10] [21]
Shekel’s Foxhole(5) [0, 10] [5]

Sphere(N) [-5.12, 5.12] [21]
Step(N) [-100, 100] [21]

Sum.Diff.Powers(N) [-1, 1] [21]
Zakharov(N) [-5, 10] [21]

acceptable point bestx satisfying () ()best optf x f x ε< + where 510ε −= and optx is the
global minimizer. The algorithm is unsuccessful if it cannot find an acceptable point
over 3000000 function evaluations. The algorithm is also unsuccessful if it cannot
reduce the best function value over 500 generations.

Table 2 lists the number of successes and average number of function evaluations
for DE and RL. For these results, we use two dimensional forms of the cost functions
which can be extended to higher dimensions such as the Ackley and Rosenbrock’s
functions. Comparison of the results under the population size 10PN N= shows that
RL achieves 2824 successes and DE achieves 2525 successes over 3000 runs. Both
algorithms have the same number of successes over 16 functions. RL has larger
number of successes than DE over 10 functions and DE has larger number of
successes than RL over 4 cost functions. Both algorithms have at least 30 successes
over 27 functions and DE is slightly more efficient than RL by requiring smaller
number of function evaluations for 15 of these cost functions.

Table 2. The number of successes and average number of function evaluations for DE and RL.
Hyphens signify that there is no successful run for the corresponding cost function and
therefore FN and AR are not defined. Extended functions such as Rosenbrock are 2-
dimensional.

DE
PN = N10

RL
PN = N10

DE
PN = N40

RL
PN = N40 Cost

Functions
SN FN SN FN

AR

SN FN SN FN
AR

Ackley 100 1165 100 2472 0.47 100 4479 100 6719 0.67
Alpine 100 1269 100 2752 0.46 100 5502 100 8672 0.63
Beale 99 691 100 733 0.94 100 2456 100 1819 1.35
Branin 100 799 100 415 1.93 100 3495 100 1211 2.89
Brown -- -- 100 2259 -- 2 15240 100 9099 --
Camel 100 673 100 508 1.32 100 2690 100 1652 1.63
Colville 70 4840 100 8336 0.58 100 20259 100 28361 0.71
Cube 58 1443 100 4350 0.33 100 5487 100 10198 0.54
De Jong 4 100 149 100 114 1.31 100 387 100 313 1.24
Golds. Price 100 685 100 659 1.04 100 2458 100 1926 1.28
Griewangk 92 1765 57 2587 0.68 100 7115 100 6375 1.12
Hartman3 100 990 100 1142 0.87 100 3604 100 3454 1.04
Hartman6 35 5929 100 6146 0.96 36 29753 100 17075 1.74
Hyperellips. 100 488 100 183 2.67 100 1739 100 523 3.33
Kowalik 99 3318 100 1297 2.56 100 4265 100 2915 1.46
Matyas 100 450 100 138 3.26 100 1612 100 396 4.07
Powell -- -- 83 5980 -- -- -- 100 23934 --
Rastrigin 95 1123 96 1556 0.72 100 4494 100 2808 1.60
Rosenbrock 83 670 100 1339 0.50 100 2517 100 4202 0.60
Schw. 1.2 100 695 100 238 2.92 100 2546 100 697 3.65
Schw. 2.21 100 1178 100 3136 0.38 100 4536 100 7141 0.64
Schw. 2.22 100 1000 100 1862 0.54 100 3816 100 4850 0.79
Shekel 5 90 3468 95 7811 0.44 100 13852 100 20348 0.68
Shekel 7 100 3242 96 7148 0.45 100 12787 100 19839 0.64
Shekel 10 100 3289 97 6647 0.49 100 12931 100 18995 0.68
Shek. Foxh. 4 5987 -- -- -- 21 27219 4 134205 --
Sphere 100 475 100 179 2.65 100 1686 100 507 3.33
Step 100 289 100 137 2.11 100 950 100 375 2.53
Sum of pow. 100 264 100 140 1.89 100 820 100 374 2.19
Zakharov 100 534 100 297 1.80 100 1906 100 963 1.98

When the population size increases from 10PN N= to 40PN N= , both

algorithms have larger number of successes and function evaluations. RL converges
successfully for 2904 runs and DE converges for 2659 runs over 3000 runs. They
have the same number of successes for 26 cost functions. RL achieves larger number
of successes than DE for the Brown, Hartman 6, and Powell cost functions, and DE
has larger number of successes than RL for the Shekel's Foxholes function. From the
last AR column, notice that RL requires smaller number of function evaluations than
DE over 17 functions and DE requires smaller number of evaluations than RL over 10
functions.

Table 3. The number of successes and average number of function evaluations for DE and RL
with 20-dimensional extended cost functions. Hyphens have the same meaning with hyphens
in Table 2.

DE
PN = N15

RL
PN = N15

RL
PN = N30

RL
PN = N45 Cost

Functions
SN FN SN FN

AR

SN FN SN FN
Ackley 100 294489 94 196893 1.50 100 292128 100 402248
Alpine -- -- 100 120937 -- 100 208987 100 299383
Dejong4 100 82614 100 29052 2.84 100 28932 100 32616
Griewangk 100 436881 42 149311 2.93 68 289330 64 330154
Hyperellips. 100 169137 100 97157 1.74 100 161616 100 222191
Rastrigin -- -- 76 136360 -- 100 222571 100 309498
Rosenbrock 100 500196 100 877172 0.57 100 1412765 100 1931361
Schwefel12 100 609909 100 294425 2.07 100 458028 100 613619
Schwefel221 100 578682 100 690687 0.84 100 747657 100 892602
Schwefel222 100 344670 100 137122 2.51 100 241600 100 343211
Sphere 100 148458 100 79955 1.86 100 134016 100 183455
Step 100 101364 7 73548 -- 40 96062 71 121155
Sum of pow. 100 42546 100 3720 11.44 100 7092 100 10332
Zakharov 100 534828 100 216276 2.47 100 348900 100 477540

The number of successes and average number of function evaluations for 20

dimensional cost functions are given in Table 3. Since DE performance with
30PN N= and 45PN N= are usually worse than 15PN N= for these cost

functions, only the DE results under 15PN N= are listed. Comparison of the results
with 15PN N= shows that RL achieves slightly larger total number of successes than
RL as they converge over 1219 and 1200 runs respectively out of 1400 runs. RL
converges over 100 and 76 runs for the Alpine and Rastrigin cost functions
respectively as DE does not converge for these cost functions. However, DE achieves
100 successes for the Step function while RL has 7 successes for this function. The
sixth column specifies the acceleration rates for the results under 15PN N= . From
this column, notice that RL is more efficient over 9 functions and DE is more efficient
over 2 cost functions. In particular, notice that DE requires approximately 11.4 times
more function evaluations for the Sum of Powers function, 2.8 times more function
evaluations for the Dejonk4 and Griewangk functions, and 2.5 times more function
evaluations for the Schwefel222 and Zakharov functions than the RL algorithm.

Robustness of the RL algorithm in general increases with increasing population
size. The number of successes for RL increases for the Ackley, Rastrigin, and Step
functions with increasing population size in Table 3. Even though the number of
function evaluations increases with increasing population size, the RL algorithm
simultaneously achieves higher efficiency and robustness than DE. The total number
of successes increases to 1308 and 1335 when population size is increased to

30PN N= and 45PN N= respectively for RL. For the population size 30PN N= ,
RL is more efficient over 10 cost functions than DE and DE is more efficient than RL
over 2 functions.

4. Conclusion

In this paper, we presented a new population set-based global optimization
algorithm. The mutation operation of this algorithm makes an effort to learn cost
function surface by constructing random lines passing through pairs of points in the
current generation and then fitting a quadratic function by using three points on each
line. The extrema of these quadratic models constitute descendant points which are
subject to the crossover operation. The mutation operation with quadratic fit quickly
finds regions of the search space with highly promising points and therefore allows
this algorithm to achieve fast convergence. The crossover operation randomly selects
components from two parents and replaces corresponding components of the
descendant point. Using components from both parents increases diversity in search
and therefore increases robustness. Minimization of 30 cost functions demonstrates
that this algorithm achieves very promising results compared with the well-known DE
algorithm. In particular, the robustness of this algorithm in general increases with
increasing population size which becomes important when there are more processing
units available.

Acknowledgements. I would like to thank Paul Kienzle, Florencia McAllister,
Bulent Akgun, and Nuri Yilmazer for their useful comments.

References

1. Törn, A., Zilinskas, A.: Global Optimization. Springer-Verlag, New York (1989)
2. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: New perspectives on

some classical and modern methods. Siam Review 45(3), 385-482 (2003)
3. Hooke R., Jeeves, T.A.: Direct Search Solution of Numerical and Statistical Problems.

Journal of the ACM 8(2), 212-229 (1961)
4. Nelder J.A., Mead, R.: A Simplex Method for Function Minimization. Computer Journal

7(4), 308-313 (1965)
5. Ali M.M., Törn, A.: Population Set-based Global Optimization Algorithms: Some

Modifications and Numerical Studies. Computers and Operations Research 31(10), 1703–
1725 (2004)

6. Back, T., Schewefel, H.P.: An Overview of Evolutionary Algorithms for parameter
optimization. Evolutionary Computation 1(1), 1-23 (1993)

7. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, New York
(2003)

8. Yao, X., Liu, Y., Lin, G.: Evolutionary Programming Made Faster. IEEE Transactions on
Evolutionary Computation 3(2), 82-102 (1999)

9. Back, T., Hammel, U., Schwefel, H.P.: Evolutionary Computation: Comments on the
History and Current State. IEEE Transactions on Evolutionary Computation 1(1), 3-17
(1997)

10. Fogel, D.B.: What Is Evolutionary Computation? IEEE Spectrum 37(2), 28-32 (2000)
11. Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in Evolutionary Computation: A

Survey. In: IEEE International Conference on Evolutionary Computation, pp. 65-69. IEEE
Press, Los Alamitos (1997)

12. Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 41-359
(1997)

13. Price, K.V., Storn, R.M., Lampinen, J.A..: Differential Evolution: A Practical Approach to
Global Optimization. Springer-Verlag, Berlin, Heidelberg (2005)

14. Veenhuis, C.B.: Tree Based Differential Evolution. In: Vanneschi, L., Gustafson, S.,
Moraglio, A., De Falco, I., Ebner, M. (eds.) LNCS, vol. 5481, pp. 208-219, Springer,
Heidelberg (2009)

15. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-Adapting Control
Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark
Problems. IEEE Transactions on Evolutionary Computation 10(6) 646-657 (2006)

16. Montgomery, J., Chen, S.: An Analysis of the Operation of Differential Evolution at High
And Low Crossover Rates. In: IEEE Congress on Evolutionary Computation, pp. 1-8. IEEE
Press, Los Alamitos (2010)

17. Caponio, A., Neri, F.: Differential Evolution with Noise Analyzer. In: Giacobini, M.,
Brabazon, A., Cagnoni, S., Di Caro, G., Ekart, A., Esparcia-Alcazar, A., Farooq, M., Fink,
A. Machado, P. (eds.) LNCS, vol. 5484, pp. 715-724, Springer, Heidelberg (2009)

18. Liu, G., Li, Y.X., He, G.L.: Design of Digital FIR Filters Using Differential Evolution
Algorithm Based on Reserved Genes. In: IEEE Congress on Evolutionary Computation, pp.
1-7. IEEE Press, Los Alamitos (2010)

19. Das, S., Konar, A.: Automatic Image Pixel Clustering with an Improved Differential
Evolution. Applied Soft Computing 9(1) 226-236 (2009)

20. Shi, Y., Teng, H., Li Z.: Cooperative Co-evolutionary Differential Evolution for Function
Optimization. In: Wang, L., Chen, K., S. Ong, Y. (eds.) LNCS, vol. 3611, pp. 1080-1088,
Springer, Heidelberg (2005)

21. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential
Evolution. IEEE Transactions on Evolutionary Computation 12(1) 64-79 (2008)

22. Kundu, D., Suresh, K. Ghosh, S., Das, S., Abraham, A., Badr, Y.: Automatic Clustering
Using a Synergy of Genetic Algorithm and Multi-objective Differential Evolution. In:
Corchado, E., Wu, X., Oja, E., Herrero, A., Baruque, B. (eds.) LNCS, vol. 5572, pp. 177-
186, Springer, Heidelberg (2009)

23. Abbass, H.A., Sarker, R., Newton, C.: PDE: a Pareto-frontier Differential Evolution
Approach for Multi-objective Optimization Problems. In: Proceedings of the 2001 Congress
on Evolutionary Computation, Seoul, South Korea, vol. 2, pp. 971-978. IEEE Press, Los
Alamitos (2001)

24. Vesterstroem, J., Thomsen, R.: A Comparative Study of Differential Evolution, Particle
Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. In:
Proc. Congr. Evol. Comput. vol. 2, pp. 1980–1987 (2004)

25. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs, NJ (1983)

26. More, J.J., Thuente, D.J.: Line Search Algorithms with Guaranteed Sufficient Decrease.
ACM Transactions on Mathematical Software 20, 286-307 (1992)

27. Mohan, C., Shanker, K.: A Controlled Random Search Technique for Global Optimization
Using Quadratic Approximation. Asia-Pacific Journal of Operational Research 11, 93-101
(1994)

28. Thangaraj, R., Pant, M., Abraham, A.: New Mutation Schemes for Differential Algorithm
and Their Application to the Optimization of Directional Over-current Relay Settings.
Applied Mathematics and Computation 216, 532-544 (2010)

29. Liu, J., Lampinen, J.: A Fuzzy Adaptive Differential Evolution Algorithm. Soft Computing-
A Fusion of Foundations, Methodologies and Applications 9(6) 448–462 (2005)

30. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Selfadapting Control
Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark
Problems. IEEE Transactions on Evolutionary Computation 10(6) 646–657 (2006)

31. Storn, R.: On the Usage of Differential Evolution for Function Optimization. In: Proc.
Biennial Conf. North Amer. Fuzzy Inf. Process. Soc., pp. 519–523 (1996)

32. More, J.J., Garbow, B.S., Hillstrom, K.E.: Testing Unconstrained Optimization Software.
ACM Transactions on Mathematical Software 7(1) 17-41 (1981)

33. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A Numerical Evaluation of Several
Stochastic Algorithms on Selected Continuous Global Optimization Test Problems. Journal
of Global Optimization 31, 635-672 (2005)

34. Pierre, D.A.: Optimization Theory with Applications. Dover Publications Inc., Mineola, NY
(1969)

35. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer
Simulation 8(1), 3-30 (1998)

