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ABSTRACT

The operating principles of various voltmeters, ammeters, and
phase meters are described. The results of tests on these instru-
ments at different levels of distortion indicate that phase meters
are subject to large, often unpredictable errors while most volt-
meters and ammeters respond to the rms value, independent of
waveshape.

INTRODUCTION

The influence of waveform distortion on induction watthour me-
ters has been well documented. The performance of power sys-
tem voltmeters, ammeters, and phase meters under distorted
conditions has received less attention. While these instruments
are generally not used for revenue purposes, they are often used
in control circuits which, in some cases, detect faults and shut
down power systems to prevent damage. It is generally felt that
modern rms-responding voltmeters and ammeters are relatively
immune to the influences of waveform distortion and the data
presented in this paper generally supports that position. On the
other hand,-modern phase meters operate by timing threshold
crossings and these instruments may be very susceptable to dis-
tortion.

DEFINITIONS [1]

Peak Value: ¥, = maximum instantaneous value of waveform Y’
with fundamental period T.

Average Value:
a+T
Y, = 1T f Yt

Y, of a sine wave = 0.

Average Absolute Value:
Y 1 a+T Yid
:uw — e t
[

Y,av of a sine wave ~ 0.637 Y.

Root Mean Square Value:

1 a+T 1/2
= | = Y?dt
}rn\s [T L ]

Yoms of a sine wave = Y,/v/2 ~ 0.707Y,.

Form Factor: \\—”—m
o

¥
Crest Factor: ¢*-

OPERATING PRINCIPLES [2]

The following are commonly used techniques for measuring the
various parameters of voltage and current waveforms:

A. In the peak voltage detector shown in Fig. 1, amplifier A,
compares the output v, to the input v;,. If the input is
greater, capacitor C is charged until the output exceeds
the input and the capacitor charging circuit is turned off.
A, senses the voltage on C without draining charge. For
a peak current detector, the circuit is modified by adding
shunt resistor R. The voltage drop across R is then applied
to the peak voltage detector. A peak-responding instru-
ment could be configured to indicate the rms value of a
sine wave by dividing the peak value by the crest factor
(1.414); however instruments based on this technique are
vulnerable to waveform distortion. The peak detector is
generally used in power-line monitors where the peak value
is of interest.

Fig. 1. Simplified diagram of a circuit to detect the peak value
of voltage v;,. The output, v,, is a dc voltage proportional to
the peak value of v;,. Peak current is measured by converting
the current to a voltage in shunt resistor R.

B. In the average voltage detgctor, a low-pass filter continu-
ously integrates the signal providing an indication of it's dc
component. If it is sufficiently large, the de component of
a signal can saturate transformers, damage certain equip-
ment, and cause metering errors; thus, the average value 15
also of interest in power-line monitors.

C. In the average-absolute-value (aav) voltage detector shown
in Fig. 2, the input v;, is split into positive and negative
components in a full-wave operational rectifier. The nega-
tive component is applied to an inverting output stage and
combined with the positive component to give a dc output
that is proportional to the aav of the input voltage. The
aav of a current waveform is derived from the simple analo
gous circuit also shown in Fig. 2. In the past, aav detectors
were used as rms-indicators by multiplying their ontpur
by the form factor of the waveform (1.111 for sine waves).
However, form factor varies with waveform and thus an aav
circuit set up to indicate rms for sine waves may be in error
by +£20% when measuring a waveform with 40% third har-
monic. The aav of a waveform has little physical meaning
and with the advent of inexpegsive “true” rms detectors.
aav instruments are becoming rare.

90EH0327-7/90/1100-0007301.00 © 1990 IEEE



2. The time-division multiplier, in its simplest form, gen-
erates a series of pulses whose widths are proportional
V.= (Vi to the X input and heights are proportional to the Y
o o input. The pulse area is then proportional to the prod-
& _ A uct XY. Versions of this multiplication technique are
S used extensively in commercial electronic watt/watthour
>_ meters and in a few multifunction (V,I,P,J) meters.

_%0 = lin R | 3 tI‘he_ “thermal/electronic” rms-to-dc converter shown
a in Fig. 5 compares the heating power of the unknown
voltage to the heating power of the dc voltage, v,. A
differential amplifier drives the difference betwecen a
matched pair of thermal-voltage-converters to zero by
producing the output voltage v, which is proportional
to the rms value of the input voltage v;,.

Fig. 2. Simplified diagram of circuits that convert the average-
absolute-value of voltage vi, or current i;, to a dc voltage v,.

D. In the rms-responding circuits described below, the input
voltage is processed using an electronic multiplier. Com-
monly used multiplier techniques are “variable transcon-
ductance”, “log/antilog”, “time-division”, “thermal”, and
most recently “digital sampling”. In the past, electrome-
chanical multipliers such as “electrodynamic” circuits were
used extensively. All of these techniques can be configured
to respond to the rms value of voltage or current waveforms,
independent of harmonic amplitude or phase, as long as
the harmonics are within the operating bandwidth of the
instrument.

Fig. 5. Simplified diagram of a circuit that uses a differential
pair of thermal voltage converters to convert the rms value of v,
to a dc voltage v,.

1. A block diagram of an rms-responding circuit using
two analog multiplier modules is shown in Fig. 3. The
input signal is squared in the first stage, averaged in
a low-pass filter, and the square root is extracted by
using the second multiplier as a feedback element in

4. In the sampling instrument (Fig. 6), instantancous
values along the input waveform v;, are held (using
a sample/hold circuit (S/H)) so that an analog-to
digital converter (ADC) can transform the sampled
voltage to digital code. Data are then processed in a
computer to give the rms voltage by caleulating the
square root of the mean-squared value of all of the
sample points v;. An advantage of this technigue 1s
that it is also capable of computing other waveform

the third stage.

A log/antilog rms-responding circuit is shown schemat-
ically in Fig. 4. The output is a dc voltage propor-
tional to the rms value of v;,. The input signal is first
rectified by the absolute value r_i.rcuit._ The next circuit parameters such as the peak value. the aav, and total
takes twice the log of the rectified signal. The log of Bl distactioh:
the output is subtracted in the next circuit block and

this is followed by an antilog block to give vfnfv‘_,,,_ s

The final circuit block takes the average, completing & 1/2

2 : S : = 1 2

o - g laz oo . g =
the rms-to-de conversion. Log/a 1T.1|0__|. circuit mo'd Wi S/H ADC 5 2 s s
ules are commonly used as rmis-sensors in commercial 4
digital multimeters.
DIGITAL
PROCESSING

(N SAMPLES/PERIOQD)

Fig. 6. Simplified diagram of a cirenit that uses digital sampling
to compute the rms value, v, of vi,.

Lt ve ve Vo=\ ye
in in n in ’
E. The phase angle between two signals mav he compnted
Fig. 3. Simplified diagram of a circuit that uses an analog mul- by measuring the ratio of the time, t,. between the zero-
tiplier to converts the rms value of v;, to a dc voltage v,,. crossings of two signals and period, t,, of one of the sig-

nals. In Fig. 7, the phase relationship between the two sig-
nals is defined as: ¢ = (t;/t3) x 360°. Many commercial

ol 2 Log Vin phase meters also measure the time between negative going
vy Yin|H2 Log Vv ANTILOG FILTER v, . . . i i
ki in - Log Vgut His a zero-crossings (ts) which is averaged with 1) to compensate

for dc components or nonsyminetrical waved

s can=ed by

‘HTn o even harmonics. However, odd harmonics can lead to errors

i i i Vi that are a function of the phase relationship of the harmonic

to the fundamental. Figures 8-10 are os raphs of a 100

Fig. 4. Simplified diagram of a circuit that uses logrithmic mod- Hz sine wave, and a sine wave with 4057 harmonic at
ules to convert the rms value of v, to & de voltage v,. . 0, 90, and 180 degrees respectively. In :

crossings are coincident and the phase meter



correctly. In Figs. 9 and 10 the difference in zero-crossings
is indicated by the timing markers, with “delta t” shown be-
low the trace. From Fig. 9, assuming a period of 10ms (t,)
and a delta t of 400 ps (t,), the approximate phase meter
error, ® = (0.4/10) x360° = 14.4°. Similarly, from Fig. 10,
the phase meter error, ® = (0.56/10) x 360° = 20.2°.
Manufacturers often specify the maximum error (in % radi-
ans) as equal to the percentage of odd harmonic distortion
(e.g- a 40% 3rd harmonic produces a maximum error of
B4 57" == 23%).

[ U
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Fig. 7. Timing diagram showing the times t,, t;, and t; used by
digital phase meters to compute the phase relationship between
two signals.
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Fig. 8. Oscillograph of two waveforms used to test phase meters:
a nearly pure sine wave and a waveform consisting of a sine wave
plus 40% 3rd harmonic at 0° relative to the fundamental (zero-
crossings are coincident).
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Fig. 9. Same waveforms as Fig. 8, with the harmonic phase-
shifted 90° (dashed timing markers show the difference between
zero-crossings).
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Fig. 10. Same waveforms as Fig. 8, with the harmonic phase-
shifted 180° (dashed timing markers show the difference between
zZero-crossings).

TEST RESULTS

To measure the effect of nonsinusoidal waveforms on the accu-
racy of voltmeters, ammeters, and phase meters, a number of
commercial instruments were tested under the following condi-
tions:

a. sine wave frequency-response (10 Hz to 10 kHz),

b. square wave frequency-response (10 Hz to 400 Hz),

c. 60 Hz chopped sine wave at different firing angles,

d. 60-Hz sine wave plus 40% 3rd harmonic at different phase
angles.

e. 60-Hz sine wave plus 3% 3rd harmonic at different phase
angles (phase meter test only).

The waveforms were obtained from a dual-channel digital wave-
form synthesizer [3] which has amplitude uncertainties of < 0.01%
and phase angle uncertainty of < 0.01°. The source was verified
using thermal rms-responding instruments for voltage and cur-
rent, and using an impedance bridge for phase angle.

Voltmeters and Ammeters , -

Test results for voltmeters and ammeters are plotted in Fig-
ures 11-18 where the following abbreviations indicate the op
erating principle of the instruments tested:

™ - transconductance multiplier,

Log - log/antilog multiplier,

Avg - aav-responding calibrated in rms,
TDM - time-division-multiplier,

Samp - digital sampling

TVC - thermal voltage converter.

The results of tests “a”(sine wave) and “b" (square wave) were
normalized to the 60-Hz data point to show the relative frequeney
response rather than the absolute error. It should be noted that
for tests “b” the aav-responding (Avg) voltmeter and ammcter
were in error, as expected, by the ratio of the form factors.

The results of test “c” (chopped sine wave which simnlates o
thyristor-controlled circuit) were normalized to the 0 degree firing
angle point (sine wave), while those of test “d” (the 3rd harnonic
test) were normalized to the 0 degree phase angle point, For these
tests, the dashed lines, that go off the graph, represent the crror
of the aav-responding instruments which, as expected, follow
the change in form factor rather than the rms value.
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Fig. 11. Errors vs frequency of voltmeters based on six different
operating principles (test signal = 120-V sine wave).
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Fig. 14. Errors vs harmonic phase angle of the six voltmeters
(test signal = sine wave plus 40% 3rd harmonic). 4
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Fig. 15. Errors vs frequency of ammeters based on five different
operating principles (test signal = 1-A sine wave).
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Fig. 16._Err0rs vs frequency of the five ammeters (test signal =
1-A square wave). :
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Fig. 17. Errors vs firing angle of the five ammeters (test signal
= 0.5-A chopped sine wave).
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Fig. 18. Errors vs harmonic phase angle of the five ammeters
(test signal = sine wave plus 40% 3rd harmonic).

Phase Meters

Two commercial phase meters, labelled “P1” and “P2" were

w

tested using waveforms “a”

i

¢” described above with
It
should be noted that the phase angle between complex wave-
forms is not defined [1] and the desired result of these tests is the
phase angle between the fundamental components of the various
waveforms. With sine waves applied to both chaunels, the two
phase meters were within £0.05° out to 1kHz, degrading some-
what at 10kHz. Similarly, with square waves applied to both
channels, errors were within £0.1° from 10 to 400 Hz. Various
configurations of the other waveforms led to the phase meter
results shown in Figs. 19-22.

through
each of the waveforms adjusted to approximately 3-V,..

The results shown in Fig. 19 were obtained by applying a sine
wave to channel 1 and a chopped sine wave (at various firing
angles) to channel 2. The phase angle between the fundamental
waveforms (channel 1 - channel 2) was measured at 0°, 60°, and
90°. Phase meter P2 responded with no significant error while
P1 had a maximum error of 6° at a 90° firing angle.

The results shown in Fig. 20 were obtained by replacing the
chopped waveform in channel 2 with a sine wave distorted with
40% 3rd harmonic. The phase relationship between the 3rd har-
monic and the fundamental was adjusted between 0° and 3152
(see examples in Figs. 8-10), while the phase angle of the fun-
damental between the two channels was measured at 0°, 60°,

T

and 90°. The errors for both meters are within the generalized
odd-harmonic specification for “timing” phase meters (i.e. the
maximum error in % radians = % odd harmonic) except for one
point on phase meter P2 where the error exceeded 100°.
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Fig. 19. Errors vs firing angle of phase meters P1 and P2 with a
sine wave applied to channel 1 and a chopped sine wave applicd
to channel 2.

Error (Degrees)

135 180 225 270

Phase of Harmonic

20 35

—=— 0degP1. = 0degP2 —— 60degP1 |
—S— 60deg P2 —=— 90 deg P1 —&— 90degP2 |

-
Fig. 20. Errors vs harmonic phase angle of the two phase merers
with a sine wave applied to channel 1 and a sine wave plus 407
3rd harmonic applied to channel 2.
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Fig. 21. Errors vs harmonic phase angle of the two phase meters:
with a sine wave plus 40% 3rd harmonic applied to both channels.




When the signals applied to both channels have the same wave-
shape, the harmonic errors described above should not occur.
This premise was tested with the sine wave distorted with 40%
3rd harmonic. The phase of the harmonic was adjusted as be-
fore (with the same waveshape applied to both channels) and
the fundamental phase between channels was measured at 0°,
60°, and 90°. In general, both phase meters were insensitive to
these highly distorted waveforms (see Fig. 21), except at a har-
monic phase of 180° where there are multiple zero-crossings (see
Fig. 10). Both meters had difficulties at this point; however, the
P2 readings were in error by 90° and 120° at fundamental phase
angles of 60° and 90°, respectively.
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Fig. 22. Errors vs harmonic phase angle of the two phase meters
with a sine wave applied to channel 1 and a sine wave plus 3%
3rd harmonic applied to channel 2.

Finally, tests were performed using a sine wave in channel 1 and a
sine wave distorted with 3% 3rd harmonic in channel 2. This rep-
resents a more realistic condition, and at this level of distortion
the waveform looks nearly sinusoidal on an oscilloscope so one
might expect the phase meters to operate properly. The results
of this test, given in Fig. 22, show that the errors are depen-
dent on the phase relationship of the harmonic to the fundamen-
tal and independent of the phase angle between channels. Here
both phase meters fall within the specified uncertainty (maxi-
mum error= +0.03 x 57° = £1.7°). However, unlike the results
shown in Fig. 20, the maximum errors occur at 90° and 270 ° and
not at 180°. The actual and specified errors, for a level of dis-
tortion that is quite common in a power system, are more than
30 times the errors specified for sinusoidal waveforms. There-
fore, when making critical phase measurements using this type
of phase meter, it is very important to accurately measure the
odd harmonic distortion.

CONCLUSIONS

The overall results indicate that the rms-responding voltmeters
and ammeters performed quite well under highly distorted con-
ditions; errors were typically within £0.25%. It is clear, how-
ever, that rms-responding as opposed to aav-responding rms-
indicating instruments must be used under nonsinusoidal condi-
tions.

The two phase meters tested were very susceptible to distortion.
One of the largest errors (102°) was observed with a sine wave
applied to one channel and the test waveform applied to the other
- a condition that might exist when measuring the phasc angle
between the voltage applied to a nonlinear load and a voltage
proportional to the load current. It is clear that this type of
phase meter cannot be relied upon under highly distorted condi-
tions. For critical applications, a phase meter based on waveform
sampling may be required.
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