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An equation of state (EOS) is presented for the thermodynamic properties
of benzene that is valid from the triple point temperature (278.674K) to
725 K with pressures up to 500 MPa. The equation is expressed in terms of
the Helmholtz energy as a function of temperature and density. This for-
mulation can be used for the calculation of all thermodynamic properties.
Comparisons to experimental data are given to establish the accuracy of
the EOS. The approximate uncertainties (k = 2) of properties calculated
with the new equation are 0.1% below T = 350K and 0.2% above
T = 350K for vapor pressure and liquid density, 1% for saturated vapor
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1 INTRODUCTION

1.1 Characteristics of Benzene

Benzene (C¢Hp) is included in the family of aromatic hydrocarbons. It is a
colorless liquid at atmospheric conditions. It is flammable and potentially
explosive when it is mixed with air in its gaseous form, and its vapors are
toxic. Benzene is used as an additive to gasoline to increase the knock resis-
tance. The chemical industry needs benzene for the synthesis of many prod-
ucts, e.g., polymers, nitrobenzene, aniline, phenol, insecticides, plastics, and
synthetic resin. Furthermore, it is used in the fabrication of detergent and as a
solvent for varnish, resin, waxes, and oils [1].

Due to these industrial uses, benzene has been widely measured to char-
acterize its chemical, thermal, caloric, and combustion properties. In the
thermodynamics area, experimental data are available for density, vapor
pressure, speed of sound, virial coefficients, heat capacities, and enthalpy
of vaporization. The physical characteristics and properties of benzene are
given in Table 1.

1.2 Previous Equations of State

There are two equations of state available for benzene. The equation of Good-
win [4] is derived from phase boundaries like the melting line. It is written in an
uncommon form, so it is difficult to implement into conventional software
packages. Until today the most recent and commonly used equation of state for
benzene is a Bender-type equation from 1992 developed by Polt ez al. [3]. It is
valid for a temperature range of 7' = (283 — 635)K and pressures up to
p =78 MPa. It was fitted to densities and saturation data (saturated liquid densi-
ties, saturated vapor densities and vapor pressures). Additional data and new
fitting techniques are available now, so that other properties, e.g. heat capacities
or speeds of sound, can also be used to fit an equation of state.

TABLE 1
Physical characteristics and properties of benzene.

Symbol Property Value

M Molar mass [2] 78.1118 g-mol™
T. Critical temperature [3] 562.02K

Pe Critical pressure 4.894MPa

De Critical density 3.902mol-dm™
Ty Triple point temperature 278.674K

Ty Reference temperature for ideal gas properties 353.21635K

at the boiling point

Do Reference pressure for ideal gas properties 0.101325 MPa
at the boiling point
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2 THE NEW EQUATION OF STATE

The new equation of state is written in terms of the reduced molar Helmholtz
free energy as a function of temperature and density. The equation is com-
posed of separate terms arising from ideal-gas behavior (superscript 0) and a
“residual” or “real-fluid” (superscript r) contribution:

( ’6):610 (p,T)—i—clr (p,T)

alT RT =a’ (T,(S)—&—a‘ (T,é), (1)

where R is the molar gas constant.
The ideal-gas contribution is based on a ¢,° equation represented as
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with v; =7.36374, v, = 18.649, vs =4.01834, u; = 4116 K/T, u, = 1511 K/T,
us = 630K/T, and R = 8.314472 J-mol-'K-'. The parameters of the ¢,” equa-
tion were fitted to experimental values of the ideal-gas heat capacity of
Burcat et al. [5] and evaluated values from the Thermo Data Engine (TDE)
[6] of the National Institute of Standards and Technology.

The ¢,” equation has to be integrated so that the ideal-gas contribution o
can be given as

5
o =1n(6)+2.94645In(7) +a, +a,7+ > v, In(1—exp[-b,7]). (3)

k=3

where a, =-0.6740687105, a, =2.5560188958, b; =7.323583, b, =2.688516,
bs = 1.1209566, and the values of v are the same as those in Eq. (2). The
values for a, and a, are calculated so that # = 0kJ-kg™ and s = 0kJ-kg'K! at
the normal boiling point for the liquid state.
Comparisons of experimental and theoretical ideal, isobaric heat capaci-
ties with calculated values from the equation of state are shown in Figure 1.
The real-fluid contribution is given by

o = inié"’T" + inié"'T" exp[—é”" }
i1 =6 4)
14
+ Z no% 7" exp (—ni (6—¢, )2 —B (=7, )2 ),

i=11
where the temperature and density are expressed in the dimensionless variables
7=T./T and 6 = p/p.. The critical temperature 7, = (562.02 + 0.15) K of Polt

et al. [3] was adopted. The critical density p. = (3.902 + 0.05) mol-dm=
was fitted in this work. The critical pressure p. = (4.894 + 0.015) MPa was cal-
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FIGURE 1

Comparisons of ideal gas heat capacities ¢, calculated with the equation of state to experimental
and theoretical data as a function of temperature 7.

culated from the new equation of state. The n; are numerical coefficients fitted to
experimental data. The first and second summations represent the more com-
mon form of the equation of state. The third summation improves the representa-
tion of the properties in the critical region; these terms go to zero far away from
the critical point. The parameters for Eq. (4) are given in Table 2. The equation
of state was fitted to experimental data by use of nonlinear fitting methods. In
addition to optimizing the parameters to the data, numerous thermodynamic
constraints were applied to ensure that the equation was well behaved and would
reliably extrapolate beyond the range of the available data. These techniques
enable a comprehensive equation of state with a relatively small number of
terms. Nonlinear fitting requires starting values for all of the parameters and
exponents, and an unpublished 14-term equation for propane was used as the
starting point. The Helmholtz energy equation of state and the fitting process is
described in detail by Lemmon et al. [7]; that paper also describes the calcula-
tion of all the thermodynamic properties from the Helmholtz energy.

3 EXPERIMENTAL DATA AND COMPARISONS TO THE
EQUATION OF STATE

Since the identification of benzene in 1825 by Michael Faraday, many exper-
imental studies of the thermodynamic properties of benzene have been
reported. Selected data were used for the development of the new thermody-
namic property formulation reported here. Comparisons were made to all
available experimental data, including those not used in the development of
the equation of state. Because of the large data sets, the figures presented in
this work only include data that are located within the given accuracy range
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TABLE 2
Coefficients, temperature and density exponents and Gaussian bell-shaped parameters for the
residual Helmholtz energy o in Eq. (4).

i n; t; d; pi ;i B i €
1 0.03513062 1

2 2.229707 0.3 1

3 -3.100459 0.744 1

4 -0.5763224 1.174

5 0.2504179 0.68

6 -0.7049091 2.5 1 2
7

8

9

[SSIEN 8]

—0.1393433 3.67 3 2

0.8319673 1.26 2 1

-0.3310741 2.6 2 2

10 -0.02793578  0.95 7 1
11 0.7087408 1 1 1.032 1.867 1.118 0.7289
12 -0.3723906 2.47 1 1.423 1766 0.6392  0.9074
13 -0.06267414  3.35 3 1.071 1.824  0.6536  0.7655
14 -0.86295 0.75 3 14.35 297.5 1.164 0.8711

of the equation unless no more reliable data are available. For comparisons
with every available data set see [8].

The accuracy of the equation of state was determined by statistical com-
parisons of calculated property values to experimental data. These statistics
are based on the percent deviation in any property X, defined as

X — X,
AX =100 [—da“‘x e ] 5)

data

With this definition, the average absolute relative deviation is defined as
1 n
AAD ==> |AX], (6)
n.-
where n is the number of data points.

3.1 Comparisons with Saturation Thermal Data

In Figure 2 comparisons of vapor pressures calculated from the equation of
state with experimental data are shown. As this paper was a conference con-
tribution it is limited in size. For the references for each data point see [8].
There are many data up to 7 = 350K and the deviations of most of the data
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FIGURE 2
Comparisons of vapor pressure p, calculated with the equation of state to experimental data as a
function of temperature 7.

are within 0.1%. The new equation of state conforms well to the data set of
Ambrose [9] (AAD = 0.017%). Above this temperature there is just a small
number of data points and the deviations increase to 0.2%, but with still a few
high-accuracy data sets, e.g., Ambrose et al. [10] (AAD = 0.014%).

Comparisons of saturated liquid densities calculated from the equation of
state with experimental data are presented in Figure 3. There are many values
of liquid density up to 7= 350K that scatter around the equation within less
than 0.1%. The data set of Sun et al. [11] (AAD = 0.054%) is represented
very well. Above T = 350K there are only seven data sets. The expected
uncertainty of the equation is 0.2%. The equation agrees very well with the
data measured by Hales and Townsend [12] (AAD = 0.024%) and Chirico ad
Steele [13] (AAD = 0.043%).

A comparison of saturated vapor densities calculated from the equation of
state with experimental data is depicted in Figure 4. There is no recent data set
available for the saturated vapor densities, so it is not possible to achieve a smaller
uncertainty of the equation than 1%. The data, which are reflected best by the
equation, are measured by Akhundov and Abdullaev [14] (AAD = 0.508%).
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Comparisons of saturated liquid densities p' calculated with the equation of state to experimental

data as a function of temperature 7.
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Comparisons of saturated vapor densities p" calculated with the equation of state to experimental

data as a function of temperature 7.

3.2 ppT Data and Virial Coefficients

An overview of the deviations of experimental densities and densities calcu-
lated with the new equation of state is given in Figure 5. For clarity, in the
extended critical region pressure deviations are also shown in Figure 6. The
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FIGURE 5

Comparisons of densities p calculated with the

function of pressure p.
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FIGURE 6. continued.

uncertainties for densities up to 7= 350K, and p = 100 MPa are 0.1%. In this
range the densities of Colin et al. [14] (AAD = 0.04%) and Moravkova et al.
[15] (AAD = 0.022%) can be reproduced very well. Above T = 350K the
deviations increase up to 0.1 — 0.5%. This region is presented well by Kratzke
et al. [16] (AAD = 0.024%).

Figure 7 demonstrates the behavior of the second and third virial co-
efficients as well as the shape of the equation of state in the two-phase region.
The lines show isotherms calculated from the equation of state, and the curve
represents the saturated vapor density. The y-intercept (p = 0) represents the
second virial coefficients at each given temperature, and the third virial coef-
ficients are the slope of each line at zero density. Many equations of state
show curvature in the lines at low temperatures caused by high values of the
exponent # on temperature. As shown in this plot, there is no curvature in the
lines, and the equation is extremely smooth and linear at low densities, as it
should be (Lemmon and Jacobsen [18]).

3.3 Caloric Data

Figure 8 compares experimental enthalpies of vaporization to the equation of
state. There have been no new measurements on the enthalpy of vaporization
of benzene over the last 20 years, and many of the data available are generally
fitted within 1%.
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FIGURE 9
Comparisons of speed of sound w calculated with the equation of state to experimental data as a
function of pressure p.

Most of the data for the speed of sound are in a small temperature range (7' =
283K — 333K). There are just three authors who measured data at higher
temperatures up to 7= 500 K. Comparisons of values calculated from the equa-
tion of state for the speed of sound and high-accuracy experimental data are
illustrated in Figure 9. It includes both saturated and homogenous data. The
expected uncertainty of the equation is 0.5%. The saturated liquid speeds of
sound were measured by Zotov et al. [19] (AAD = 0.36%) and Panin et al. [20]
(AAD =0.328%). The homogenous data of Takagi et al. [21] (AAD =0.111%)
and Takagi and Teranishi [22] (AAD = 0.176%) can be reproduced best.

In Figure 10 comparisons of experimental isobaric heat capacities and values
calculated from the equation of state are shown. Figure 10 includes both
saturated and homogenous data. The saturated liquid heat capacities that fit very
well to the equation were measured by Nikolaev and Rabinovich [23]
(AAD = 0.334%). In the homogenous region there are data from Todd et al. [24]
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FIGURE 10
Comparisons of isobaric heat capacities c, calculated with the equation of state to experimental
data as a function of pressure p.

(AAD = 0.08%) and Yu et al. [25] (AAD = 0.288%), which conform best to the
equation of state.

3.4 Extrapolation Behavior

The equation of state is valid from the triple point up to 7= 725K with pres-
sures up to p = 500 MPa. For some applications it may be necessary to use the
equation beyond these limitations. The extrapolation behavior of the thermo-
dynamic properties is well-known (Lemmon and Jacobsen [18]). In the p ver-
sus p diagram the isotherms should converge, but not cross each other at high
temperatures, pressures, and densities (Figure 11). Furthermore, the speed of
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FIGURE 11
Isothermal behavior of the benzene equation of state at extreme conditions of temperature 7' and
pressure p.
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Speed of sound w versus temperature 7' diagram.

sound along the saturation lines and along isobars is shown in Figure 12. This
plot shows reasonable behavior, especially since the saturation line for the
liquid remains straight down to about 7' = 50K, a reduced temperature of
0.08. The saturated vapor phase of the isobaric heat capacity should be straight
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down to low temperatures. The hypothetically saturated liquid phase should
rise approaching OK (Figure 13). The values of ¢, should have a minimum in
the liquid phase about half way down the saturation line (Figure 14). Finally
the characteristic ideal curves of the equation of state for benzene should be
smooth without any bumps as shown in Figure 15.
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FIGURE 15

Characteristic (ideal) curves of the equation of state for benzene as a function of reduced
temperature 7/7, and reduced pressure p/p..

4 CONCLUSION

In this work a new equation of state for benzene was developed, which
consists of 14 terms (5 polynomial terms, 5 exponential terms and 4
Gaussian bell-shaped terms). As the equation is expressed in terms of the
Helmholtz energy, it can be implemented easily in common software
packages and used to calculate all thermodynamic properties, e.g., den-
sity, saturation state, heat capacity, speed of sound, and energy. The equa-
tion is valid from the triple point up to 7 = 725 K with pressures up to
p = 500 MPa. The extrapolation behavior is reasonable. With the help of
large data sets the expected uncertainties are analyzed. The approximate
uncertainties of properties calculated with the new equation are 0.1%
below T'=350K, and 0.2% above T'= 350 K for vapor pressure and liquid
density, 1% for saturated vapor density, 0.1% for densities up to 7= 350K
and p = 100MPa, 0.1 — 0.5% in density above T = 350K, 1% for the iso-
baric heat capacity and saturated heat capacity, and 0.5% for speed of
sound. Deviations in the critical region are higher for all properties except
vapor pressures.

Please note: As this paper was a conference contribution it is limited in size.
For more detailed information, see the publication in the Journal of Chemical
Engineering Data [8].
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NOMENCLATURE
Latin Symbols
Symbol Definition
a coefficients of the EOS for the ideal
Helmholtz energy
AAD average absolute relative deviation
c heat capacity
d density exponents of the EOS for the
residual Helmholtz energy
h molar energy
1 number of terms
M molar mass
n coefficient of the EOS for the residual
Helmholtz energy,
number of data points
p pressure,
density exponents of the exponential
part of the EOS for the residual Helmholtz
energy
t temperature exponents of the EOS for the
residual Helmholtz energy
T temperature
w speed of sound
by any thermodynamic property
Z compressibility factor
Greek Symbols
Symbol Definition
« reduced Helmholtz energy
I} Gaussian bell-shaped parameter
vy Gaussian bell-shaped parameter
6 reduced density
€ Gaussian bell-shaped parameter
n Gaussian bell-shaped parameter
p density
T reciprocal reduced temperature
Subscript
Symbol Definition
calc calculated by the EOS
exp experimental
GB Gaussian bell-shaped
)4 isobaric

97

Unit

J-mol'K~!

J-mol™!

g-mol™!

MPa
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pol polynomial

S saturation

v isochoric

vap vaporization
Superscript

Symbol Definition

' saturated liquid

" saturated vapor

0 ideal

r residual
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