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Abstract
Application of least-squares as, for instance, in curve fitting is an important tool of data
analysis in metrology. It is tempting to employ the supplement 1 to the GUM (GUM-S1) to
evaluate the uncertainty associated with the resulting parameter estimates, although doing so is
beyond the specified scope of GUM-S1. We compare the result of such a procedure with a
Bayesian uncertainty analysis of the corresponding regression model. It is shown that under
certain assumptions both analyses yield the same results but this is not true in general. Some
simple examples are given which illustrate the similarities and differences between the two
approaches.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since its release in 2008 supplement 1 to the GUM (GUM-S1)
[1] has found widespread use in the evaluation of measurement
uncertainty. The supplement proposes a Monte Carlo method
to approximate a probability density function (PDF) which is
viewed to encode the state-of-knowledge about the measurand.
Standard and expanded uncertainties are then calculated in
terms of this PDF. Like the GUM [2], the starting point is
a measurement model

θ = f (µ1, . . . , µM) (1)

between the input quantities µ1, . . . , µM and the measurand
θ . (In contrast to GUM-S1 we use θ instead of Y to
denote the measurand.) GUM-S1 assumes that a joint
PDF p(µ1, . . . , µM) has been assigned which encodes the
knowledge about the input quantities. The proposed Monte
Carlo procedure then approximates the sought PDF p(θ) for
θ which is uniquely determined by the rules of probability
theory. Since it treats the derived PDF as one which expresses
the state-of-knowledge about the value of the measurand,
GUM-S1 employs the same perspective as Bayesian evaluation

of measurement uncertainty. This is in contrast to the GUM
itself which contains procedures based on both frequentist and
Bayesian statistics [3].

Even though the GUM-S1 method is compatible with
the Bayesian approach, it does not employ Bayes’ theorem.
Furthermore, many features which are a natural part of a
Bayesian analysis such as the incorporation of prior knowledge
about the measurand, or the treatment of simultaneous
observation equations [4], are not addressed in GUM-S1. As
GUM-S1 is now widely used, it should be clarified whether
it can be adapted to these cases, and if so, to what extent the
results are equivalent to a traditional Bayesian analysis. This
is important from a conceptual point of view and, perhaps, also
for the design of future guidelines.

It has been shown in [5–8] that the PDF obtained by
GUM-S1 for the particular case of independent Gaussian
measurements on one or several input quantities is the same
as the PDF obtained employing Bayes’ theorem with specific
non-informative prior distributions.

A simple modification [9] of the GUM-S1 procedure
allows for the incorporation of prior knowledge about the
measurand in the case when no data are actually measured
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and all of the distributions of the parameters of model (1) are
in a sense ‘prior’. The procedure corresponds to a consensus
density derived via the logarithmic opinion pool described,
for example, in [10, 11]. In the presence of data, and using
the assignment of PDFs on input quantities as proposed in
GUM-S1, application of the simple modification yields a PDF
which is the same as that obtained via standard Bayesian
analysis only when model (1) is linear [7].

This paper addresses the treatment of regression models,
another important application in metrology [12]. We propose
the standard Bayesian analysis for uncertainty evaluation of
the estimates of the regression coefficients and we show
under what conditions the resulting PDFs are the same as
those that would be obtained by a proceeding in line with
GUM-S1. We focus on the case when no prior knowledge
about the measurand is available, for which the Bayesian
analysis is carried out using (standard) non-informative priors.
We consider regression models of the kind

y(x) = gθ(x) + ε(x) (2)

where θ = (θ1, . . . , θp) are unknown parameters of a given
model, gθ(x), which describes the relationship between an
independent variable x and a dependent (univariate) variable y.
The ε(x) is the error term, usually assumed to be the realization
of a Gaussian random variable with mean 0. It is important to
keep in mind that ε(x) is also unknown; only the measurement
values y(x) at some x are known in (2). For ease of notation,
x is also taken to be univariate. We assume that measurement
results for y are available at different fixed, exactly known
values of x. For example, x may be the temperature and y the
indication of an employed thermometer, in which case gθ(x)

is the thermometer’s calibration curve. If this curve can be
assumed to be a straight line then

gθ(x) = θ1 + θ2x. (3)

According to its specifications, GUM-S1 is not designed for
application to models of this kind. This is because model
(2) cannot in general be uniquely transformed into a single
measurement model of the kind (1), cf the discussion in
section 5.

Nevertheless, GUM-S1 may be applied to a particularly
selected measurement model such as that defined by the
usual least-squares estimation. This way of estimating the
parameters is often applied and we consider this as the
‘GUM-S1 approach’ to the evaluation of the uncertainties
associated with the resulting parameter estimates. We compare
the resulting PDF with that obtained via standard Bayesian
uncertainty evaluation.

Standard Bayesian uncertainty analysis of regression
models is widely available. In all but the simplest cases
it requires the use of Markov chain Monte Carlo [13], a
different procedure from that required for the implementation
of GUM-S1. As GUM-S1 is a current guideline intending
the Bayesian point of view, and since many metrologists have
established their software implementation for it, it is relevant
to consider whether it can be extended to regression models.
Related studies have already been undertaken in [14–16]. The

conclusions are that application of GUM-S1 and Bayesian
uncertainty evaluation in this context are different methods
of inference. Yet both yield the same PDFs when the model is
linear in all of its parameters, the error variance is known,
and the Bayesian analysis employs constant priors for the
parameters. This paper confirms these results but shows that
when the error variance is unknown, the two methods produce
different densities even for linear models and that the GUM-S1
method may in fact fail to produce a result in certain cases. In
the non-linear case the densities also usually differ.

The paper is organized as follows. Section 2 specifies
all notation and gives general expressions for the Bayesian
posterior and the PDF obtained by the GUM-S1 approach.
The linear case is further studied in section 3. It shows the
equivalence of the GUM-S1 approach applied to the least-
squares estimate and a Bayesian analysis using Bayes’ theorem
in the absence of prior knowledge about the measurand and
when the error variance is known; for unknown variance,
generally different results are reached. Section 4 discusses two
simple non-linear examples which demonstrate that there is a
structural difference between the two approaches in general.
Section 5 presents a discussion followed by conclusions in
section 6.

2. Assumptions and notations

Assume that pairs of measurements (xi, yij ) from model (2)
are available for i = 1, . . . , n, j = 1, . . . , ni , where

yij = gθ(xi) + εij (4)

and the εij are independent realizations from the density
N(0, σ 2). Thus, the yij are independently drawn from
Gaussian distributions with unknown means gθ(xi) and
variance σ 2. We assume that the xi are fixed and exact. We
will consider both the case when the variance σ 2 is known and
the case when it is unknown.

We use upper case letters for random variables and lower
case letters for realizations or possible values of them. For
instance, Θ = (�1, . . . , �p) denotes the random variables
for the parameters and θ = (θ1, . . . , θp) possible values of
them. Likewise, yij are realizations from the random variables
Yij |Θ ∼ N(gΘ(xi), σ

2). In some cases the notation is simpler
if we reduce the problem using sufficient statistics [17], that is,
use Ȳi = (1/ni)

∑ni

j=1 Yij instead of the individual Yij . Then

Ȳi |Θ ∼ N(gΘ(xi), σ
2/ni). We specify the reference of a

PDF by the use of lower case letters of the associated random
variable, e.g. p(θ) denotes a PDF for Θ.

In the Bayesian analysis we determine the posterior PDF
p(θ|data) via Bayes’ theorem as

p(θ|data) ∝ p(θ)l(θ; data) (5)

when σ is known, where p(θ) denotes the prior and l(θ; data)
the likelihood. When σ is unknown, the posterior PDF
p(θ|data) is determined as an integral over σ of

p(θ, σ |data) ∝ p(θ, σ )l(θ, σ ; data), (6)
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where again p(θ, σ ) denotes the corresponding prior. The
likelihood l(θ, σ ; data) is in our case given by

l(θ, σ ; data) ∝ 1

σN
e−χ2(θ,σ )/2 (7)

where N = ∑n
i=1 ni and

χ2(θ, σ ) =
n∑

i=1

ni(ȳi − gθ(xi))
2 + (ni − 1)s2

i

σ 2
. (8)

In (8), ȳi = (1/ni)
∑ni

j=1 yij and s2
i = 1/(ni − 1)×∑ni

j=1 (yij − ȳi )
2. For known σ the likelihood l(θ; data) used

in (5) is also given by (7) with σ held fixed.
The posterior PDF p(θ|data) then encodes the knowledge

about all parameters θ. For a particular parameter, θ1 say, the
marginal posterior p(θ1|data) is determined according to

p(θ1|data) =
∫

p(θ|data) dθ2 · · · dθp. (9)

An estimate of θ1 is then calculated as the expectation, and the
standard uncertainty as the standard deviation of p(θ1|data).
This PDF is also used to calculate a (highest posterior density
(HPD)) credible interval which is termed (shortest) coverage
interval in [1].

The GUM-S1 approach is characterized here as follows:
we define Θ = (�1, . . . , �p) as the random variable obtained
by minimizing

χ2( ˜̄Y ) =
n∑

i=1

( ˜̄Y i − gθ(xi)

wi

)2

(10)

with respect to θ. This is formally expressed by the
measurement model

Θ = arg min
θ

n∑
i=1

( ˜̄Y i − gθ(xi)

wi

)2

. (11)

In (10) and (11) the ˜̄Y i denote random variables whose
distribution expresses the knowledge about the true value
gθ(xi) at the exactly known xi , given the observations yij .
Its exact form depends on our knowledge of σ . The w2

i =
1/ni specify weights according to the number of repeated
measurements at xi .

First, consider σ to be a known value. Even though
GUM-S1 does not explicitly consider this case, when the
variance of the sampling distribution is known exactly,

N(ȳi, σ
2/ni) as a distribution of ˜̄Y i appears to be in line

with GUM-S1. Next, consider the case when σ is unknown,
here GUM-S1 is clear. The distribution of ˜̄Y i is to be
taken as Student t with γi = ni − 1 degrees of freedom
and parameters ȳi and s2

i /ni , which will be denoted by

t1(γi, ȳi , s
2
i /ni). The joint PDF for ˜̄Y = ( ˜̄Y 1, . . . ,

˜̄Yn)
T is

the product of the individual PDFs as the ˜̄Y i are independent.
Note that for this density to exist the requirement that all
ni � 2 must be satisfied. It is possible to relax this and

require that at least one of the ni � 2. In that case, the

joint distribution of ˜̄Y = ( ˜̄Y 1, . . . ,
˜̄Yn)

T can be taken to be
multivariate Student t [18] with degrees of freedom γn =∑n

i=1 (ni − 1) = N − n, and parameters ȳ = (ȳ1, . . . , ȳn)
T

and s2
yΣn, where s2

y = (1/γn)
∑n

i=1

∑ni

j=1 (yij − ȳi )
2, see

[17]; Σn = diag(1/n1, . . . , 1/nn) denotes a diagonal matrix
with corresponding elements. This density will be denoted

by tn(γn, ȳ, s2
yΣn). In this case, the ˜̄Y i are not independent.

For the marginal PDF of a single ˜̄Y i a t-distribution
t1(γn, ȳi , s

2
y/ni) is obtained. The two marginal PDFs are quite

different. We will discuss both variants.
After specifying the joint PDF for ˜̄Y , a realization of Θ is

obtained by drawing a set of ‘new data’ ˜̄yi, i = 1, . . . , n and
by determining that θ for which χ2( ˜̄y) in (10) is minimum. In
repeatedly doing this, the PDF pLS(θ) for Θ is approximated
as described in GUM-S1.

3. Linear case

The case of a linear regression model can be treated analytically
since in this case the PDF pLS(θ) obtained by application
of GUM-S1 to the least-squares estimate can be given in
closed form. The reason is that in this case the corresponding
measurement model (11) has a closed form solution. In the
linear case the regression model (4) can be written as

y = Cθ + ε (12)

with y = (y1, . . . , yn)
T, yi = (yi1, . . . , yini

), ε =
(ε11, . . . , εnnn

)T, and the N × p design matrix with
N = ∑n

i=1 ni is

C =




C1 ⊗ 1n1

...

Cn ⊗ 1nn


 ,

where Ci = (Ci1, . . . , Cip) and Ciα = ∂gθ(x)/∂θα|x=xi
. The

notation ⊗ denotes the Kronecker product, and 1ni
is a ni

dimensional vector whose elements are all equal to one. The
vector ε is drawn from a N(0, σ 2IN) distribution where IN

is the identity matrix of size N and 0 a vector of length N

containing zeros.

3.1. Known σ

3.1.1. Bayesian analysis. When σ is known, it is simpler
to write the model in terms of the sufficient statistics, the ȳi ,
that is,

ȳ = CSθ + εS, (13)

where CS = [CT
1 · · · CT

n ]T, εS is distributed N(0, σ 2Σn). The
posterior density p(θ|data) is

p(θ|data) ∝ p(θ)e− 1
2σ2 (θ−θ̂)TV −1(θ−θ̂) (14)

where
θ̂ = (CT

S Σ−1
n CS)

−1CT
S Σ−1

n ȳ (15)

and
V = (CT

S Σ−1
n CS)

−1. (16)
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For the linear model and in the absence of prior knowledge
p(θ) ∝ 1 may be employed to express prior ignorance about
the parameters [19]. The posterior is then given by

p(θ|data) = 1

σp
√

(2π)p|V |e− 1
2σ2 (θ−θ̂)TV −1(θ−θ̂) (17)

where |V | stands for the determinant of V .

3.1.2. GUM-S1 applied to the least-squares estimate. The
random variables Θ = (�1, . . . , �p) defined in (11) are
readily obtained as

ΘLS = (CT
S Σ−1

n CS)
−1CT

S Σ−1
n

˜̄Y . (18)

Since ˜̄Y is distributed asN(ȳ, σ 2Σn) for knownσ , cf section 2,
the PDF pLS(θ) immediately follows to be

pLS(θ) = 1

σp
√

(2π)p|V |e− 1
2σ2 (θ−θ̂)TV −1(θ−θ̂)

, (19)

where θ̂ and V are given by (15) and (16), respectively. Hence,
the GUM-S1 PDF (19) is the Bayesian posterior (14) when a
constant prior p(θ) ∝ 1 is employed for the latter.

3.2. Unknown σ

3.2.1. Bayesian analysis. When σ is unknown, the non-
informative prior density

p(θ, σ ) ∝ 1/σ

can be employed [19]. The posterior density is tp(γB, θ̂, s2
BV )

with γB = N − p,

s2
B = 1

γB
(y − Cθ̂)T(y − Cθ̂),

and θ̂ and V given by (15) and (16), respectively. This
density is

p(θ|data) = 

[

1
2 (γB + p)

] |V |−1/2 s
−p

B



(γB

2

)
(πγB)p/2

×
[

1 +
(θ − θ̂)TV −1(θ − θ̂)

γBs2
B

]− 1
2 (γB+p)

. (20)

Note that this is a proper density for any set of ni � 1, even
for the case where all of the ni equal 1, as long as N > p.

3.2.2. GUM-S1 analysis. The random variables Θ =
(�1, . . . , �p) defined in (11) are obtained as in (18) with

the joint PDF for ˜̄Y taken as either a product of the n

Student t-distributions t1(γi, ȳi , s
2
i /ni) (clearly the GUM-S1

prescription), or a multivariate t-distribution tn(γn, ȳ, s2
yΣn).

Consider the case when all of the sample sizes ni are equal
to 1. In that situation the GUM-S1 procedure fails because
there are not enough degrees of freedom to estimate σ and so,
clearly, the GUM-S1 procedure does not produce the Bayes
PDF given in (20). This illustrates that one difference between

the two approaches is in the estimation of the unknown σ .
Further evidence is provided by the case of ni = 2 for all
of the i. When assigning independent Student t densities

with 1 degree of freedom to the ˜̄Y i , the solution of (18) is

a linear function of the ˜̄Y i and it was shown in [20] that the
marginal distribution for a single parameter, �i , has a Cauchy
distribution. Suppose that instead we use the tn(γn, ȳ, s2

yΣn)

for ˜̄Y , then (18) implies that ΘLS follows the multivariate t-
distribution tp(γn, Aȳ, s2

yA�nA
T) with γn = n degrees of

freedom and A = (CT
S Σ−1

n CS)
−1CT

S Σ−1
n . Consequently,

the marginal distribution for a single parameter, �i , also
follows a t-distribution with n degrees of freedom. In contrast,
the Bayesian PDF for �i is the Student t density (20) with
γB = 2n − p degrees of freedom.

For GUM-S1, pooling of the variances leads to
(significantly) larger degrees of freedom for the resulting
t-distributions of the �i than no pooling. Therefore, assigning

a multivariate t-distribution to ˜̄Y may be deemed to be
more advantageous. But neither way will GUM-S1 generally
produce the Bayesian posterior, and the degrees of freedom γB

always exceed γn unless p = n.
The more replicates that are obtained at each value of x,

the closer the results of the Bayesian posterior and the GUM-S1
approach with pooled variances are expected to be. The reason
is that the (different) degrees of freedom in both cases are large
and the ȳi will eventually converge to the gθ(xi) and these in
turn are points of a known function. This behaviour would
not occur if the gθ(xi) was simply an approximation of an
unknown underlying function, another common application of
least-squares estimation.

3.3. Example

In order to illustrate the estimation of regression parameters
for the linear case we consider the following regression model

gθ(x) = θ1 + θ2x
2. (21)

Let the parameter of interest be θ2. We assume first that σ

is known and that no prior knowledge is available which is
expressed by the prior p(θ1, θ2) ∝ 1. Figure 1 shows a set of
simulated data for the case when all of the ni are equal to 1. The
parameters underlying the simulation are (θ1, θ2) = (1, 1) and
σ = 0.2. In addition to the data, figure 1 also shows the curve
(21) with (θ1, θ2) = (1, 1), and the curve y(x) = θ̂1 + θ̂2x

2

where θ̂ denotes the expectation of the Bayesian posterior
p(θ|data) (17) which coincides with pLS(θ) (19) for the case of
knownσ . The distribution for θ2 is obtained by marginalization

pLS(θ2) = p(θ2|data) =
∫

p(θ1, θ2|data) dθ1

=
∫

1

σ 2
√

(2π)2|V |
e− 1

2σ2 (θ−θ̂)TV −1(θ−θ̂) dθ1

= 1

σ
√

2πV22
e−(θ2−θ̂2)

2/(2σ 2V22) (22)

where θ̂ and V are given by (15) and (16).
The PDF for θ2 is Gaussian, and for these data, the mean

and standard deviation are 1.21 and 0.18, respectively.
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Figure 1. Simulated data for regression model (21) including their
standard deviation together with the underlying model (solid line)
and the estimated model obtained by least-squares adjustment
(dashed line).

Figure 2. Data from figure 1, amended by one replicated
measurement at x = 0.1, 0.3, 0.6, 0.9.

Next, consider the case when σ is unknown. The posterior
density for θ2 is obtained by marginalization from (20) as

p(θ2|data) =



(
N − 1

2

)
(s2

BV22)
−1/2




(
N − 2

2

)
(π(N − 2))1/2

×
[

1 +
(θ2 − θ̂2)

2

(N − 2)s2
BV22

]− 1
2 (N−1)

. (23)

This is the Student t density with N − 2 degrees of freedom
where N = n. For the data shown in figure 1 we obtain a mean
of 1.21 and a standard deviation of 0.18.

As was discussed in 3.2.2, the GUM-S1 PDF does not exist
for the case of unknown σ and one observation at each value
of x. Suppose that we obtain another replicate at x = 0.1,
0.3, 0.6 and 0.9, see figure 2. Now it is possible to employ

Figure 3. GUM-S1 PDF (dashed), and Bayesian posterior (solid)
for the data from figure 2.

the GUM-S1 procedure. We did so using the pooled variance
variant, leading to a t-distribution for �2 with γn = 4 degrees
of freedom. For this data set we obtain a mean of 0.94 and
a standard deviation of 0.37. For comparison, the Bayes
posterior given in (23) is a Student t density with 13 degrees of
freedom and produces a mean of 0.94 and a standard deviation
of 0.19. Figure 3 shows the two PDFs.

The difference between the GUM-S1 analysis and the
Bayesian analysis is mainly in the treatment of the estimation
of the unknown σ , with the GUM-S1 analysis using the
deviations from the ȳi , while the Bayesian estimation uses
deviations from the estimated function. Both approaches
result in t-distributions. The difference becomes particularly
clear when comparing the corresponding degrees of freedom:
while the GUM-S1 variant (considering pooling the variances)
results in 4 degrees of freedom, the Bayesian posterior has 13
degrees of freedom and decays much more rapidly.

4. Non-linear models

Two examples are used to illustrate differences between the
estimation approaches in the non-linear case. The first example
shows the importance of the choice of a prior for the Bayesian
approach, and the second example demonstrates the effect of
constraints on the two solutions.

4.1. Example 1

Let
gθ (x) = θ3, (24)

that is, the data y = (y1, . . . , yn)
T are realizations from a

N(θ3, σ 2) distribution which do not depend on any covariates
x. We also assume that the value of σ is known. This example
is somewhat artificial since the model becomes linear if we let
gθ̃ (x) = θ̃ = θ3; nevertheless, some interesting features can
be demonstrated. In this case, for a prior p(θ), the Bayesian
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posterior is given by

p(θ |data) ∝ p(θ)
e
− 1

2σ2/n
(θ3−ȳ)2

√
2πσ 2/n

(25)

where ȳ = (1/n)
∑n

i=1 yi . The least-squares solution is given
by θLS = (ȳ)1/3 and hence (11) by

�LS =
( ˜̄Y

) 1/3
, (26)

where ˜̄Y ∼ N(ȳ, σ 2/n) with ˜̄Y = (1/n)
∑n

i=1 Ỹi . Application
of the change-of-variables formula [4] then yields for the
GUM-S1 PDF

pLS(θ) = 3θ2e
− 1

2σ2/n
(θ3−ȳ)2

√
2πσ 2/n

. (27)

In the absence of prior knowledge, if p(θ) ∝ 1 is employed, the
two densities are clearly different. However, for this example
p(θ) ∝ 1 might not be a good choice. Indeed, θ3 is a location
parameter and formal procedures [21] would yield a constant
prior for θ3. Application of the change-of-variable formula
then yields p(θ) ∝ θ2 as a non-informative prior for θ . This
prior density yields a Bayesian posterior which matches the
GUM-S1 PDF.

This simple example illustrates the fact that the choice of
non-informative prior is consequential for Bayesian analysis
of non-linear models. In the linear case, a constant prior can
be expected to be a good selection. For non-linear models,
different criteria for choosing a prior can result in different
(and non-constant) priors. But if the procedures described
in [21] are used, the Bayesian posterior and the GUM-S1 PDF
may in fact be identical.

4.2. Example 2

The second example is of measurement (such as in the
inference of fundamental constants) under the constraint that
the quantity is non-negative. The model is

gθ (x) = θ, (28a)

for
θ � 0. (28b)

The data y = (y1, . . . , yn)
T are realizations from a N(θ, σ 2)

distribution with a known σ ; again, the mean does not depend
on any covariates. The example is viewed as non-linear due to
the constraint (28b). When applying an estimation procedure
such as least squares, this constraint would need to be taken
into account.

Constraint least-squares estimation results in

θLS =
{
ȳ, ȳ � 0
0, otherwise,

(29)

which depends non-linearly on the data. Working out the
GUM-S1 analysis then yields the density

pLS(θ) = �

( −ȳ

σ/
√

n

)
Pθ,0 + λ(θ)

e
− 1

2σ2/n
(θ−ȳ)2

√
2πσ 2/n

. (30)

which is a mixture of a discrete density with a positive weight
at θ = 0, and a continuous distribution. In (30), �(·) denotes
the distribution function of N(0, 1), Pθ,0 puts probability 1 at
θ = 0, and the function λ(·) is given by

λ(θ) =
{

1, θ � 0
0, otherwise.

(31)

Since �(−ȳ/(σ/
√

n)) > 0 for any value of ȳ, the GUM-S1
density (30) assigns a non-zero probability that θ equals zero
(which is in contrast to the Bayesian posterior (33) below).
The reason for this is that for all ȳ < 0 the same constrained
least-squares estimate θLS = 0 results, and GUM-S1 assigns a

non-zero probability to ˜̄Y < 0.
For Bayesian analysis, unless there is a reason to believe

that θ = 0, the usual non-informative prior is

p(θ) ∝
{

1, θ � 0
0, otherwise.

(32)

This results in the posterior density

p(θ |data) = λ(θ)

1 − �

( −ȳ

σ/
√

n

) e
− 1

2σ2/n
(θ−ȳ)2

√
2πσ 2/n

. (33)

Clearly, the two PDFs (30) and (33) are different in structure,
and they do not coincide for any sensible choice of prior that we
considered. Of course, this difference is relevant only when
ȳ is negative, or not too large when compared with σ/

√
n,

as for ȳ � σ/
√

n the two PDFs coincide. But when there
is a difference, the Bayesian posterior is more conservative,
i.e. its HPD regions are always larger than those obtained for
the GUM-S1 density. Note that for the GUM-S1 density a
HPD region may split into two parts (and is expected to do so
for ȳ � σ/

√
n) as θ = 0 is always part of the HPD region.

Figure 4 shows a set of n = 5 simulated data points for θ = 0.1
and σ = 1. Figure 5 shows the PDFs together with 95%
credible intervals. As expected, the credible interval of the
Bayesian posterior is larger than that for the GUM-S1 PDF.

5. Discussion

Application of GUM-S1 requires a measurement model of
the kind (1). This is not available for a regression problem.
The reason is that a regression model of the kind (2) holds
simultaneously for all (or many) x and the corresponding
values of y, and it can thus in general not be uniquely
transformed into a single measurement model of the kind
(1). For example, any mapping which defines θ as the
parameters which minimize some norm ||[y1, . . . , yn]T −
[gθ(x1), . . . , gθ(xn)]T|| provides a measurement model in
terms of the ‘input quantities’ y1, . . . , yn (provided this is a
unique mapping). However, different norms imply different
measurement models. If one chooses a particular norm
according to reported uncertainties of measurement results
(as is done in (10)), then the actual measurement model
depends on the statistical model for the data rather than being
chosen a priori as assumed in the GUM or GUM-S1. Hence,
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Figure 4. Simulated data for regression model (28a) and (28b)
including their standard deviation.

Figure 5. GUM-S1 PDF (solid line) and Bayesian posterior
(dashed line). The bar at θ = 0 indicates the discrete part of the
GUM-S1 distribution with P(θ = 0) = 0.40. The two bars on the
abscissa show the upper bound θ̄ of 95% credible intervals of the
form [0, θ̄ ] for the GUM-S1 PDF (left bar at θ̄ = 0.85) and the
Bayesian posterior (right bar at θ̄ = 0.95).

a regression model cannot be uniquely transformed into a
measurement model. Therefore, this is different from the
single observation equation considered in [7]. There, the
observation equation model and the measurement model were
in a one-to-one correspondence. It should be noted that this is
the problem considered in GUM-S1.

When σ is known, the least-squares parameter estimate
minimizing (8) corresponds to the maximum likelihood
estimate. Hence in the linear case with known σ the norm
in (10) is in accordance with the likelihood which is the reason
for the observed equivalence between the GUM-S1 and the
Bayesian approach in the absence of prior knowledge about
the measurand. In the case of unknown σ the least-squares
solution no longer corresponds to maximum likelihood, and

the GUM-S1 PDF is generally different from the Bayesian
posterior.

As the interpretation of the GUM-S1 PDF is also that of a
state-of-knowledge distribution, it is equivalent to a Bayesian
posterior for a linear regression model, known variance and
the absence of prior knowledge about the measurand. Hence
GUM-S1 provides an easy numerical tool for calculation
of the Bayesian posterior in these cases. In the presence
of prior knowledge about the measurand (and when the
variance is known), the Bayesian posterior (14) is proportional
to the GUM-S1 PDF (19) (ignoring the prior knowledge)
and the prior. In such a situation a simple modification of
the GUM-S1 procedure [9] also allows one to produce the
Bayesian PDF (14).

When the variance is unknown, and there are no replicated
measurements, the GUM-S1 method fails to produce a PDF for
the measurand while the Bayesian posterior density does exist.
With some replication the GUM-S1 method can be applied to
produce a PDF. But this will generally not match the usual
Bayesian posterior.

The least-squares estimate does not depend linearly on
the data when the regression is not linear. In such cases
the GUM-S1 density is usually not the same as a Bayesian
posterior, but it can be, as was seen in the example in
section 4.1. The example in section 4.2 shows that the Bayesian
posterior and the GUM-S1 PDF may differ in structure, a
difference not simply due to the choice of underlying prior.
The reason is that the measurement model defined by (11)
considers a projection of the model on (Ỹ1, . . . , Ỹn), whereas
the Bayesian posterior rests on the norm between the observed
data (y1, . . . , yn) and the model. It is only in the linear case
with a known variance that these different proceedings are
equivalent.

We conclude that for the general regression model, it is
better to perform a Bayesian analysis rather than to apply
GUM-S1. As a consequence, other numerical methods
such as Markov Chain Monte Carlo methods [13] need to
be employed. As non-linear least-squares problems are
encountered in metrology, employment of such methods is
recommended. But note that when no prior knowledge about
the measurand is available, and the regression model depends
non-linearly on its parameters, the selection of a prior is not
straightforward. Simply choosing a constant prior may not be
a good choice [7, 21].

Model (3) was motivated as one which describes the
calibration curve of a thermometer. It was assumed that the
abscissa data are exact, often not the case as these data would
also be the result of measurement. When the uncertainties of
the abscissa data cannot be ignored, minimization of (10) is
no longer adequate. Instead, also the abscissa data need to be
adjusted, and the resulting least-squares estimate then depends
non-linearly on the data even though the regression model is
linear w.r.t. the model parameters, cf [22].

We focused here on the case when no prior knowledge
about the measurand is given as that case is addressed by
GUM-S1. However, often some prior knowledge about the
measurand is available or physical constraints are known as in
the example in section 4.2, and application of Bayes’ theorem
is strongly recommended then.
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6. Conclusions

Application of GUM-S1 for evaluating the uncertainty
associated with a least-squares estimate in a regression model
has been compared with a Bayesian uncertainty analysis.
When the least-squares estimate depends linearly on the data
and the variance is known, the GUM-S1 procedure in general
yields a density identical to the Bayesian posterior for the
usual non-informative prior, otherwise not. In the case
of unknown variance and for non-linear problems, the two
methods generally produce different results and application of
Bayes’ theorem is strongly recommended then.
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